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Abstract. This is a didactical paper written to graduate students of 

Physics showing some basic aspects of the Quantum Vacuum: Zero-Point 

Energy, Vacuum Fluctuations, Lamb Shift and Casimir Force.                                                   

(1) Zero-Point Energy.                                                                                                  
 Graduate students of Physics learned that in 1900,

[1,2] 
Max Planck 

explained the "black body radiation" showing that the average energy ε of a 

single energy radiator inside of a resonant cavity, vibrating with frequency 

ν at a absolute temperature T is given by  

                                            ε = hν/(e
hν/kT

 - 1)                                        (1.1), 

where h is the Planck constant and k the Boltzmann constant. Later, in 

1912 published a modified version of the quantized oscillator introducing a 

residual energy factor hν/2, that is, writing 

                                       ε = hν/2 + hν/(e
hν/kT

 - 1)                                   (1.2). 

In this way, the term hν/2 would represent the residual energy when T → 0. 

It is widely agreed that this Planck´s equation marks the birth of the 

concept of "zero-point energy"(ZPE) of a system. It would contradict the 

fact that in classical physics when T→ 0 all motion ceases and particles 

come completely to rest with energy tending to zero.                                           

 In addition, according to Eq.(1.2) taking into account contributions 

of all frequencies, from zero up to infinite, the ZPE would have an infinite 

energy! Many physicists have made a clear opposition to the idea of the 

ZPE claiming that infinite energy has no physical meaning.                                       

 Anyway, the ZPE attracted attention of many physicists and during 

many years and it was analyzed in different contexts like, for instance, 

atomic and molecular physics, condensed matter at very low temperatures 

and general relativity.
[2]  

In 1916 Nernst proposed
[2]

 that the empty space, 

that is, the Vacuum was filled with the ZPE. 

mailto:mcattani@if.usp.br


 

2 
 

(2) Vacuum Fluctuations(VF).
                                                                                                                        

 After the propositions of the Heisenberg matrix mechanics
[3]

 in 1925 

and the Schrödinger´s equation
[3]

 in 1926 physicists were able to get only a 

rough idea of the ZPE.
[2] 

More clear understanding was only possible after 

the construction of relativistic quantum equations by Klein and Gordon in 

1926
[4] 

to spin zero particles and by Dirac in 1927
[5,6,]

 to electrons and other 

spin -1/2 particles. They predicted positive and negative energy states of 

free particles. The interference between these states create unexpected 

effects known as "Zitterbewegung"
[7,8]

 and "Klein Paradox."
[7]

 Shortly 

thereafter, trying to explain the "spontaneous emission" Dirac proposed
[2,3,8]

 

that the electromagnetic field in the vacuum is composed by an ensemble 

of harmonic oscillators introducing the concept of creation and annihilation 

operators of particles. So, the vector potential A(r,t), inside a box of 

volume V, would be written (see Appendix A):
[3,9]

 

       A(r,t) = Σ kλ[2πħc
2
/ωkV]

1/2
 [akλ e

-i(ω
k

t - k.r)
 + a

+
kλ e

i(ω
k

t - k.r)
] ekλ      (2.1), 

where akλ and a
+

kλ are the photon annihilation and creation operators, 

respectively, for the wave vector k, polarization λ and ekλ  the unit vector 

polarization of the electromagnetic field:  

[akλ(t), a
+

k´λ´(t)] = δ
3

k,k´ δλ,λ´ and  [akλ(t), ak´λ´(t)] = [a
+

kλ(t),a
+

k´λ´(t)] = 0  (2.2), 

where akλ and a
+

kλ obey the bosonic commutation relations.                                                

 Thus, the spontaneous emission would be light quanta radiation 

induced by zero oscillations of the empty space. In this way, this theory 

gives reality to the ZPE and shows that the spontaneous emission is started 

by electromagnetic fluctuations, that is, by Vacuum Fluctuations(VF). 

This theory, "Quantum Electrodynamics"(QED), predicts the existence  of 

"fluctuating zero-point" or "vacuum" field even in absence of sources.                                                                                                                                                                      

 In the electromagnetic domain VF are confirmed, for instance, in 

spontaneous emissions,
[2] 

Lorentz force,
[2,10] 

Lamb shift
[11] 

and measurement 

of the magnetic moment of the electron.
[12]

Note that the Casimir effect
[12-14]

 

can be estimated taking into account the quantized electromagnetic energy 

of the vacuum, without reference to VF.
[15]

                                                                 

 In recent paper,
[10]

 we have shown how the motion of a charge 

submitted to a "fluctuating vacuum" and to a Lorentz force is related with 

the "Fluctuation-Dissipation Theorem"(FDT).
[16-18]

 According to Dirac´s 
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equation predictions the 2S1/2 and 2P1/2 levels of the hydrogen atom would 

have the same energy.
[6]

 However, measurements performed by Lamb and 

Retherford in 1947
[19]

 of the hydrogen microwave spectrum have shown 

that the difference between these levels was about 1040 megacycles. This 

difference is named "Lamb shift". In Section 3 will be briefly  shown how 

to estimate this effect taking account two approaches. One heuristic 

approach 
[20,21] 

taking into account the stochastic VF and another using a 

quantum mechanical perturbation method adopted by Bethe in 1947.
[11]  

In 

Section 4 is seen how to calculate the Casimir force between two metallic 

plates in vacuum.  

(3) Lamb Shift.                                                                                          

(3.1) Heuristic estimation.                                                              

 As seen elsewhere 
[2,21] 

the fluctuations in the electric and magnetic 

fields associated with the QED vacuum (see Section 2) perturbs the proton 

electric potential in the hydrogen atom. This perturbation causes  a 

fluctuation in the position of the electron. So, this create a difference of 

potential energy ΔV given by, 

  ΔV =V(r + δr) - V(r) = δr. ∇(V(r)) + (1/2) (δr. ∇)
2
V(r) + ...   (3.1.1). 

Since the VF are isotropic,   

    <δr>vac = 0 ,                

    < (δr.∇)
2
>vac = (1/3) <(δr)

2
>vac ∇2(...).                                      (3.1.2) 

So, one can obtain,                                                                                                                         

        < ΔV > = (1/6) <(δr)
2
>vac  {< ∇2

(-e
2
/4πεor) >}atom.         (3.1.3). 

 Fluctuations of the electric field Ekλ(r,t) = -(1/c) ∂Akλ(r,t)/∂t, where 

Akλ(r,t) is given by Eq.(2.1), will produce electron displacements that will 

be indicated, for simplicity, only by (δr)k. Let us assume that the electron 

displacement is induced by a single mode k and frequency ν and, in 

addition, that the fluctuations obey the classical  equation  

                                           md
2
[(δr)k]/dt

2 
 = -e Ek                         (3.1.4), 

where m is the electron mass.                                                                                                                           
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This equation is valid only when the frequency ν is greater than νo in the 

Bohr orbit, that is,  ν > νo = πc/ao. The electron is unable to respond to the 

fluctuating field if ν < νo. Thus, for this oscillating frequency we can put 

                                         δr(t) ≈ δr(0)e
-iνt

 + c.c.                                (3.1.5), 

where,                                                                                                                                       

 (δr)k
 
 ≈ (e/μc

2
k

2
) Ek

 
 = (e/mc

2
k

2
) Ck

 
{ak exp(-iνkt+k.r) + h.c.}  (3.1.6), 

Ck = (ћck/2εoVol) and Vol is a large normalization volume of a "box" 

containing the hydrogen atom. Summing the expected values < 0|(δr)
2

k|0 >, 

where |0 > is the vacuum state, over all k contributions we get                                                                                                                 

           <(δr)
2
>vac  =  ∑ k (e/mc

2
k

2
)

2
 < 0| (Ek)

2
 |0 >  

                                         =   ∑ k (e/mc
2
k

2
)

2
 (ћck/2εoVol)                    (3.1.7), 

since only the combination akλa
+

kλ will give a non vanishing contribution. 

As, for very large volume Vol we can put ∑ k → 2[Vol(2π)
3
].∫o

∞ 
d

3
k , 

Eq.(3.1.7) becomes written as                                                                                          

             <(δr)
2
>vac  =  (2Vol/π

2
)∫o

∞ 
k

2
dk(e/mc

2
k

2
)

2
 (ћck/2εoVol) 

                                            =   (e
2
/2π

2
εoћc)(ћ/mc)

2
 ∫o

∞
dk/k                (3.1.8). 

This result diverges when no limits are imposed on the integral, at large 

and small frequencies. As mentioned above, the frequencies must obey the 

condition ν > πc/ao, that is, k > π/ao . On the other hand, k =2πν/c must be 

taken only for wavelengths longer than the Compton wavelength = ћ/mc, 

that is, for k < mc/ћ. With these extreme limits kmin = π/ao and kmax = mc/ћ 

in Eq.(3.1.8) and putting ao= 4πεoћ
2
/me

2
 we obtain, 

                   <(δr)
2
>vac  ≈  (e

2
/2π

2
εoћc)(ћ/mc)

2
 ln(4εoћc/ e

2
)                (3.1.9). 

For the atomic orbital and Coulomb potential, from Eq.(3.1.3),  

{< ∇2
(-e

2
/4πεor) >}at = -(e

2
/4πεo) ∫ dr ψ*(r) ∇2

(1/r) ψ(r) = (e
2
/εo) |ψ(0)|

2
   

 remembering that ∇2
(1/r) = -4πδ(r).                                                                                           

 The Lambshift
[11,21].

 is given by the energy difference between the 

two hydrogen levels 
2
S1/2 and 

2
P1/2 . As last one vanishes at the origin, only 

2
S1/2 contributes to the shift. So, as ψ2s(0) =√1/8πao

3
 we get:      
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              {< ∇2
(-e

2
/4πεor) >}at = (e

2
/εo) |ψ2s(0)|

2
 = (e

2
/8πεo ao

3
)     (3.1.10).  

 Finally, using (3.1.3), (3.1.9) and (3.1.10), the resulting energy shift 

ΔE2s = < ΔV >2s is given by  

                                        ΔE2s = (α
5
mc

2
/6π)ln(1/πα)                        (3.1.11), 

where α = e
2
/ћc is the fine-structure constant. According to (3.1.11) the 

estimated Lamb shift would be ΔE2s ≈ 1000 MHz, in fair agreement with 

the observed value {ΔE2s }exp ≈ 1058 MHz.
[22] 

 

(3.2) Bethe calculation.                                                                    

 A good estimation of the "Lamb Shift" was obtained by Bethe
[11]

 

using a noncovariant quantum theory
[8,20,21]

 of the radiation assuming that 

the electron interaction WI(t)
[3] 

with the VF is given by, neglecting the 

second order term e
2
A

2
(r,t), 

 
 

                                        WI(t) = -(e/mc)(A
T
. p)                                  (3.2.1),  

where e and m are the charge and mass of the electron, respectively and c 

the light velocity. In Eq.(3.2.1) A
T
(r,t) is the vector potential operator given 

by Eq.(2.1) where only transverse components are considered and p is 

momentum operator defined by p = -iћ ∇(  ).                                                       

 In what follows the atomic electron states are indicated by m and n. 

Taking into account Eq.(3.2.1) and following the usual perturbation  theory 

procedure (see details in reference 20), since only akλ akλ
+
 will give a 

nonvanishing contribution, we get the self-energy ∆E*α of the electron in a 

quantum atomic state m,
[11,20.21]

 

            ∆E*α = -(2e
2
/3πћc

3
) ∫o

ε* ε dε ∑αβ |vαβ|
2
/(Eβ - Eα + ε)          (3.2.2), 

where P means the "principal value" of the integral, ε = ћω is the energy of 

the quantum, ε* ≈ mc
2
 is a "natural cut-off" for the photon energies ε the 

and v = p/m = (ћ/im)∇.  For the ε extreme limits, relativistic corrections 

would be necessary but they have not been carried out.
[20,21]

                                         

 For a free electron the interaction with the VF gives origin to a self-

energy ∆Eo representing the change of the kinetic energy of the electron for 
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a fixed momentum, adding the electromagnetic mass to the mass of 

electron.  So, ∆Eo is estimated by  

                        ∆Eo = -(2e
2
/3πћc

3
) ∫o

ε* ε dε v
2
/ε                                   (3.2.3). 

 For a bound electron, v
2
 should be replaced by the expectation value, 

(v
2
)αα,  remembering that the matrix elements of v satisfy the sum rule      

∑β |vαβ|
2
 = (v

2
)αα . As this electromagnetic contribution is already contained 

in the experimental electron mass m considered in Eq.(3.2.2) it must be 

disregarded. Therefore, the relevant part of the electron self-energy in the 

m state ∆Em will be given by 

∆Eα = ∆E*α - ∆Eo = (2e
2
/3πћc

3
) ∫o

ε* dε ∑β |vαβ|
2
(Eβ -Eα )/(Eβ -Eα+ ε)  (3.2.4) 

 It is convenient to integrate Eq.(3.2.4) first over ε. Assuming that ε* 

to be large compared with all energy differences En - Em in the atom, 

                 ∆Eα =  (2e
2
/3πћc

3
) ∑β |vαβ|

2
(Eβ -Eα )ln{ε*/|Eβ-Eα|}       (3.2.5). 

 If Eβ -Eα is negative the Principal Value of integral must be taken. As 

ε* ≈ mc
2
 the argument in the logarithm is very large and it can be taken 

independent of β and substituted by ln{ε*/|Eβ - Eα|Av} obtaining,
 [20,21]

                                                                                                                                                     

                   A = ∑β Aβα =  ∑β |pαβ|
2
(Eβ -Eα ) = 2πћ

2
e

2
Zψα

2
(0)         (3.2.6), 

 where  Z is the nuclear charge and ψα
2
(0) = ψnℓ

2
(0).  For any electron with 

angular momentum ℓ ≠ 0 the  wavefunction  ψnℓ
2
(0) = 0; therefore the sum 

A = 0. For a state with ℓ = 0, however,  

                                           ψn0
2
(0) = (Z/nao)

3
/π                                  (3.2.7), 

where n is the principal quantum number and ao is the Bohr radius. 

 The Lamb shift = LS =∆E2s -∆E2p is given by the energy difference 

between the two hydrogen levels: ψ2s(r) and ψ2p(r). As last one vanishes at 

the origin, only  ψ2s(r) contributes to the shift. As ψ2s(0) = 0, only the level 

2s will contribute to the shift, that is, we have only the energy shift ∆E2s. 

So, according to Eq.(3.2.7) we get  

                LS = ∆E2s =  (e
4
/12π

2 
m

2
) |ψ2S(0)|

2
.ln{mc

2
/|Eβ-Eα|Av}           

                                   ≈ (e
4
/12π

3
m

2
 ao

3
) ln(ћ

2
c

3
/24e

4
)/ n

3
                (3.2.8),  
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 taking into account that| Eβ-Eα|Av ≈ 24m(e
2
/ћc)

2
 for the 2S state                                    

 So, with Eq.(3.2.8) we find,  putting n = 2, LS = ∆E2s ≈ 1047 MHz 

which agrees rather well with the experimental value 1057.77 ± 0.10. Mhz.  

 Note that this good agreement between theory and experiment occurs 

because relativistic effects are very small.
[20,21]

 

 

(4) Casimir Force.                                                                                               

 Note that the Casimir force,
[13,23,24]

as will be seen now, can be 

estimated taking into account only the quantized electromagnetic energy of 

the vacuum, without reference to VF.
[13,14]

                                                                        

 Let us consider a pair of metal conducting plates at a distance L apart 

in vacuum with very large dimensions along the x and y-axes. In this case 

the vacuum energy < E > of the standing waves (Appendix A) is written as 

               < E > = ∑n (1/2)ћωn  = (ћ/2) ∑n ωn = (ћ/2) {∑
*
ωn }               (4.1), 

where  ∑* means a summation over all possible excitation modes with n = 

1,2,...,∞.
 
                                                                                                                            

                            ωn = c(Kx
2
 +Ky

2
 + n

2
π

2
/L

2
)

1/2 
  ,                                                                          

Kx and Ky
  
are the wave numbers in directions parallel to the plates and                     

K = nπ/L is the wave number perpendicular to the plates.                                 

  Since the area A of the plates is very large, we may sum integrating 

over two of the dimensions (x and y) of the K-space. The assumption of the 

periodic boundary conditions yields,   

                 < E > = (ћ/2)2(A/2π
2
)∫∫dKx dKy

 ∑n ωn         (n = 1,2,...,∞)    (4.2), 

where A is the area of the plates and the factor 2 is due to two possible 

polarizations of the wave. Switching to polar coordinates, Eq.(4.2) 

becomes, putting dKx dKy
 
= 2πq

2
dq,  

                   < E > = A(ћc/4π
2
) ∑n ∫o 

∞ 2π qdq [q
2
 + n

2
π

2
/L

2
]

1/2
            (4.3). 

 From Eqs.(4.2) or (4.3) it seems that < E > →∞. However, from the 

physical point of view we must expect that < E > is finite.  In "old school" 

derivation of  < E >, to overcome this difficult, faithful cutoff functions, 

based in sound physical intuition were used.
[23]

 In modern derivations of    
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< E > we learned how to overcome using mathematical regularization 

transformations, shown in Appendix B. According to this method 

Eqs.(4.2) and (4.3) are written as, where α is a complex number: 

lim α→0< E(α) > = (Aћ/4π
2
)lim α→0 {∫∫dKx dKy

 ∑n ωn |ωn|
-2α

 }              

                           = (ћcA/2π)lim α→0 {∫o 
∞

y(y
2
+1)

1/2-α ∑n (nπ/L)
3-2α

}dy   (4.4),  

switching to polar coordinates and putting y = Lq/nπ.                                        

 Taking into account that the improper integral in y is equal to 1/3, as 

shown in Appendix B, Eq.(4.4) becomes written as 

                     < E(s) > = (ћcπ
2
A/6)(1/L

3
) limα→0{∑n 1/n

2α-3
 }         

         = (ћcπ
2
A/6)(1/L

3
) limα→0 ζ(s)                            (4.5), 

where s ≡ 2α-3 and ζ(s) is the Riemann zeta function
[26]

 (see Appendix B).   

In this way, Eq.(4.5) becomes, 

  < E(s) > = (ћcπ
2
A/6)(1/L

3
){lim α→0 ξ(2α -3)} = - (ћcπ

2
A/6L

3
) ξ(-3)   (4.6) 

Since ξ(-3) = 1/120, the final energy is given by   

                                       < E > = (ћcπ
2
A/720)(1/L

3
)                              (4.7), 

which is exactly the same result derived by Casimir.
[13,23,24]

.                                

 From Eq.(4.7) we see that there is an attractive "Casimir force", per 

unit area Fc/A between two perfectly conducting idealized plates, in 

vacuum, given by                                                                                               

                     Fc/A = d(< E >/A)/dL= - ћcπ
2
/(240L

4
)                   (4.8), 

which is very small, since it is proportional to ћ, that measured in the CGS 

system is given by,                                                                                                     

                         Fc/A = -0.013/Lμ
4
 dyne/cm

2
                                (4.9), 

where Lμ is the distance in microns between the plates. For instance, the 

force F acting on a 1,0 x1,0 cm plates separated by 1μm apart is F = -0.013 

dyne. This is comparable to the Coulomb force on the electron in hydrogen 

atom, the gravitational force between 1/2 kg weights separated by 1,0 cm, 

or about 1/1000 the weight of a housefly.
[13]

 Since this force is very small, 

only in 2001 it was precisely measured with success by G. Bressi et al.
.[24]

 

between two plates. 
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APPENDIX A. Electromagnetic Vector Potential A(r,t).                              

 We mention here only few properties of the vector potential that will 

useful to our brief review on Quantum Field Theory. So, since the field 

A(r,t) in a free space inside a metallic cubic box of volume V = L
3
 obeys 

the Helmholtz equation (lapl + K
2
)A(r,t) = 0 it can be written as 

A(r,t) =∑kλ [2πћc
2
/ωk V]

1/2
{ akλ(0)exp[i(K.r - ωkt -)] + a

+
kλ(0)exp[-i(K.r- ωkt)} ekλ   

(A.1), 

where ekλ  is the polarization vector with λ =1,2 , ωk = Kc and akλ ,a
+

kλ are 

the photon annihilation and creation operators for the mode with the wave 

vector k and polarization λ. In addition, 

                                    (Kx, Ky, Kz) = (π/L)(nx, ny, nz)                         (A.2), 

where n = 0,1,2,....and, for the Coulomb gauge, the transverse gauge 

condition  K.ek = 0 is obeyed.                                                                                        

 The field Hamiltonian is                                                                                                   

                        H = ∑kλ {ћωk (a
+

kλ akλ + 1/2)}                              (A.3) 

and that   ∑kλ (1/2)ћωk  →  ∞   gives the zero-point energy of the vacuum.                                                                                                                                                                                                                                                                                        

 Sometimes the exponential functions of Eq.(A.1) are written as                         

2π(kx-νt) = (2πkx-ωt) = (Kx - ωt) where, K = 2πk is the wavenumber. In 

the quantum mechanical approach we have (p.r - Et)/ћ =  (K.r - ωt) , where 

p = ћk and E = ћωk. Note that K = ω/c and k = ν/c, that is, Kλ = ωT e kλ = 

νT. As λ = cT we have  K = 2π/λ and k = 1/λ and, consequently, p = hk.                                        

 According to Eq.(A.2) Kn = nπ/L and taking K =2π/λ we verify that       

λn = 2L/n, that is, the wavelengths λn of the components decreases as 1/n.   

In addition, as EK = ћωK = ћKc, in a volume V = a.b.c we have 

                  EK = ћωK = ћ|K|c = (ћc)( Kx
2
 +Ky

2
 +Kz

2
)

1/2
 

                       = (ћc)( π
2
n

2
x/a

2
 + π

2
n

2
y/b

2
 + π

2
n

2
z/c

2
)

1/2
                          (A.4). 

APPENDIX B. Regularization Techniques.                                           

  The word regularize means to make things regular or acceptable. 

Regularizations techniques are used to show that some integrals and sums 

of series, that at a first sight seems to be divergent, are really convergent. 

We will analyze here only two regularization techniques: (1)Improper 

Integrals and (2)Riemann Zeta Function where summation of series is 

performed in a complex plane.  
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 (B.1) Improper Integrals.
.[25]                                                                                                                                                                                       

 Improper integrals are definite integrals that cover an unbounded 

area. Not all of them have infinite value. Those that have finite value are 

called convergent, and when it doesn´t are called divergent. One type of 

improper integral are those where at least one of the endpoints is extended 

to infinity, that is, with unbounded endpoints. For example,                                                                                                                

        ∫1
∞ 

dx/x
2
 = limb →∞{ ∫1

b 
dx/x

2
 } = limb →∞{1-1/b } = 1.                                  

 Another cases are those with unbounded functions                                                                   

       ∫o
1 
dx/√x = lima →o+{ ∫a

1 
dx/√x } = lima → o+{2-2√a } = 2.                                         

 In Section  4 we have, putting y
2
+1= w, the improper integral                                                                               

lims →o {∫o
∞
 y(y

2
+1)

1/(2-s) 
dy }=

 
lims →o {∫1

∞
 w

1/(2-s) 
dw/2 } =

                                                     

     
      = lims →o{-1/(3-2s)}  = -1/3, 

 (B.2) Riemann Zeta Function.
[26]

                                                                                         

 The Riemann zeta function or Euler-Riemann ζ(s) is a function of 

complex variable s = σ + it. This function can be expressed by  

                      ζ(s) = [1/Γ(s)] ∫o
∞
 x

s-1 
dx/(e

x
 -1) = ∑1

∞
 n

-s
                 (B.2.1), 

where  Γ(s) = ∫o
∞
 x

s-1
e

-x
 dx is a gamma function. It is a function that 

analytically continues the sum of the Dirichlet series seen in (B.2.1). 

 Detailed calculations and numerical values of ζ(s) for some s values 

are shown in reference [26].
  
In particular, for nonpositive integers, one has 

ζ(-n) = (-1)
n
 Bn+1 /(n+1), where Bn are Bernouilli numbers. In the case of the 

Casimir force, seen in Section 4,we have ζ(-3) = 1/120.                                  
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