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ABSTRACT

We discuss two dimensional massive quantum electrodynamics
both as a superrenormalizable and as a renormalizable theory,
showing their equivalence up to a renormalization. The Green

functions are explicitly constructed in zero fermion mass limit.

RESUMO

Discutimos eletrodindmica quantica massiva em duas dimen -
soes tanto como uma teoria superrenormalizavel como uma teoria
renormalizavel. Mostramos sua equivaléncia a menos de uma renor
malizagao. As fungbes de Green s3o construldas explicitamente

no limite em que a massa do fermion tende a zero.

I. INTRODUCTION

The quantum theory of gauge fields has recently received
much attention in connection with the unification of electro-
magnetic and weak interactions. There are also many attempts
to incorporate strong interactions in this scheme, the concept
of "asymptotic freedom" having played a central role in their

1)

endeavour. "It is therefore convenient to have a theoretical
laboratory at ones disposal in order to study problems con-—
nected with gauge invariance. With this idea in mind we

2)'3)both as a

discuss 2-dimensional electrodynamics (QED)
superrenormalizable and as a renormalizable theory. Although
this is only anabelian model, we think it worthwhile to
discuss mainly for pedagogical reasons.

One of the peculiar features of 2-dimensional QED is that,
due to the fact that the phase space dzk increases only as k2
for large k, the theory is renormalizable in the so-called
unitary gauge and superrenormalizable in the gauge, which in
the fourdimensional world is called renormalizable. The equi-
valence of these two formulations can be explicity studied.
Another advantage is of course the theorie's exact solubility
in the zero-fermion-mass limit.

We introduce the usual paraphernalia of Bogoliubov-Para-

4),5) in the

siuk-Hepp-Zimmermann (BPHZ) perturbation theory
above mentioned two gauges in sects. II and III. They include
the discussion of Ward identities, equations of motion and the
zero mass limit. In sect. IV we show the equivalence of the
unitary and renornalizable gauge and in sect. V we make contact

with the soluble zero mass limit. The conclusions are contained

in sect. VI,



II. _THE UNITARY

Let us consider the 2 dimensional theory specified by the

effective Lagrange density X
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which up to the four-fermion interaction corresponds to massive

QED in the so called unitary 9auge. The free meson propagator

is given by
— hy.hv Tz
$pv=m (%\w"——mz) (—— )

- Due to the bad as_ymptotic behaviour of JDV" , (II.1)
describes in four dimensions a non-renormalizable theory. 1In
two dimensions however (Q‘tv}.\z)ﬁ(r’” is a super-renormalizable
interaction (it has dimension d=4 < 2 ) and the power count-
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ing for a'graph ¥~ constructed from (II.1) and (II.2) gives

Fint of external gepmcon Qines of ¢
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) B: at og external boson Lines of &
for the degree function d(Y))which measures the superficial
divergence of ¥ . This is the reason for having included the
Thirring interaction (Q{\*\.\/B(ﬁr\*u\») in (II.l)G); it is
necessary in order to have a renormalizable theory. If not
present in zeroth order, this coupling would be induced in
order e’z. Thus the theory turns out to be renormalizable,
the divergencies of our graphs being either zero or one.

The renormalization scheme we will adopt is a soft versiozﬁa)
of the BPHZ subtraction procedure. Since it involves changes
in the mass parameter m it will be convenient to use the
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following variables
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-t

A = m AL
p=m A (. &)
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e = M C,

With the definition (II.4) we can rewrite (I1.1) and (II.2) as
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The Green functions of the theory are calculated as a

finite part of the Gell-Mann low formula:
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where the superscript (o) indicates the free fields as
specified by %Y., . The finite part prescription consists in
the application of Zimmermann's forest formula with two genera-=
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lized Taylor operators T ° and zt .
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The scheme above is adequate for the derivation of homo-

geneous parametric differential equations and has the advantage
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that the M and m dependence of the subtraction terms is trivial
and zero mass limits can be most easily taken. Since we are
interested in the soluble M-= 0 limit, this subtraction scheme
is very convenient.

Due to our subtraction scheme (II.8), the vertex functions
T'(ZN'D('P‘:;‘DL;; ™M ; }*)

and qé stand for the fermion and meson momenta respectively,

of this model, where P.

satisfy the following normalization conditions
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Observe that the parameters m and M are not the vector
meson and fermion physical masses. The fermion physical mass

however goes to zero as M — 0.

As we see from (II.3), the two point function of the meson
field is only logarithmically divergent. The meson wave function
renormalization is therefore finite and accordingly we have not
include a couﬁter term of the type

T-'P,F" in (I1.1).
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Normal products up to degreé‘v~§re defined as usual. If

[vg is any combination of the basic fields and its derivatives

of canonical dimension less or equal to two, then the normal
product Ng[O] is defined by

(o)
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With a degree function

§(¢)=3-LT_3 (. s)

for proper subgraphs containing the special vertex Ns [8],
As we make our subtractions at zero momenta,these normal pro-

ducts satisfy the differentiation formula

A KT NG IEIO X > = KTN,, [31)> (T 16)

II.1) Equations of Motion and Ward Identities

Equations of motion for the fermion and meson fields
5)
and Ward identities can be derived in the standard way. One

finds for example

F <AL XY - 5’_&» DT X6 >

Ly
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pERY
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Equation (II.17) can be derived by noting that the line

corresponding to the Ay» field can be linked either directly
to anather meson field (15% term) or to a current vertex (2"%
term). In the latter case one uses current conservation ex-

pressed by

ot N,,(Qt‘,_q»)(oz> leu« ) - Sy NLTXD
(T1®

Equation (II.17) is represented graphically in fig. 1. We sketch

derivation of (II.18). First, because of (II.1l6) we have

< TN ( GO0 E Y =< TN, QLT )X >
(a9

Now using the graphical representation for (IX.19) in

momentum space we have

A + 3 i3
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and (II.18) follows.
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Besides (II.18) we will need the Ward-Takahashi identity for

the axial current N, (G ¢*X ¢)*

DML T NI NTYIwED = ¢ CTNLIM @l E > -

- Z [ SGe-x) 8% + e ‘153‘6593 V1< TR Vo> (T 23)
e

which can be shown to be true following the same steps that

led to equ. (II.18). (This time however one uses ‘.y(x‘ =
(K+¥-MI¥F+E (M- M) +aAMme%).

We consider now Zimmermann's identity

M NG CEEE ) = £ Ny (MJEF) + v 3% AL =
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This equation can be derived by noting that the difference
among vertex functions containing MN,{(F Xfy) and N2 (MFX5y)
comes from subtractions for proper graphs that contain these
special vertices. For example, graphs with two external ferm‘ion
lines will require either the application of ©° or T* ,

according to wether they contain the degree one or the degree

two normal product. This produces an expression of the type

aF(°>\»L | STOR, pop)
K o 'Mf‘»\\)-\.?(‘ dp .Q-q)
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times the amplitude for the reduced diagram. Since the reduced
diagram will have a special vertex with two fermion fields,
this will give a contribution to the lSt and the 3rd term in
the r.h.s. of (II.24} (Charge conjugation properties have
already been applied in order to exclude the vertex qjtwifzﬂ‘y
from (II.24)). The second term in the r.h.s. of (II.24) can

be explained by a similar reasoning.

Observe the absence of a four fermion vertex in the r.h.s.
of (II.24); as is well known this results from Fermi statistics
and specific properties of the two dimensional Dirac matrices.
Y}th the information (II.24) and (II.23) we rewrite the axial

vector Ward identity as

(-n) S K TN LF XM EY VWX D = 1% <TMITEGIES «

~) —— N —
~ RETIFARWK D~ 3 [leowige sy i KTX >

with (X.26)
2 s
h - 2=

R = 2 v (. 2%
Lt

Note that both h and R are mass independent due to (II.24) and

(I1.25).

II.2) Homogeneous Parametric Equations

The derivation of homogeneous parametric equations is

greatly simplified by the introduction of the following dif-
)

41
ferential vertex operations (D.V.0.)

*a
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' (TL.29)
with this notation the Lagrangian (II.5) can be rewritﬁen as

v ieu = A;‘,‘A's"' A+ A v eAg + 9 A,

(X.29)
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Notice that F}N F® is a soft operator since it cancels

the longitudinal part of the vector meson propagator (II.6).

We have therefore two soft insertions

A_=-c [ N 1o

N, =2 [N TR FPW (T30

Due to our subtraction scheme (II.9) it is easy to derive the

. T1Q1N,L)
following relations for the vertex functions

2N L)
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O M
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The peculiar form of (II.31) is a direct consequence of

our change of variables (I1I.4). The y..-dependence of TaNL
is given by
P T (ML Kol
L _ GNL) .
ol Tve = 2 A AT (T 35)
L=y

where the coefficients of, are mass-independent. They can be
determined directly by observing that P enters only via the

subtraction terms. For example
) ) (2,0)
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The counting identities
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can be derived by inte_grating the egquations of motion
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M —
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Making use of eqg. (II.31-37) and of

11.

QPK'IN.L) Ab'\_’ (LML)
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- s
de

one can establish a homogeneous parametric differential equation

13
of the Weinberg )type

5)
The proof of (IT.40) is standard. One substitutes the above

equations into (II.35) and equates to zero the coefficient of

each D.V.O. C&;) L=z, , %, This gives the following
system of equations for the g's , ¥'s and Q's

Ay - P ta-Q Su-27%, =

o (X4

. +2¢ = O (T.v)
A3-P, 2~ F 53 -2¥, = © (T. 43
Ao+ O, te - P g, -2%, = O (T we)

ces'fq_ts "fz_ss -\—Q;.L-l}f\e- ¥,e =0 \I.45)

Ae-0te-L S+ Qu-b4qy, =0 (T.4¢)
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This system always has a solution in perturbation theory,
since its determinant is non vanishing in zero order.

From the equations above we have

Q=2 s (x. 47)

To see that,one uses the Ward identity

which follows directly from (II.18). Equation (II.48) implies
that og=edy,Sg=eS,, ts=ety  and thus using (II.44) and
(I1.45), we obtain (II.47).

We can now show that several parameters occuring in (II.40)

are zero, namely
(’-’1'?1=Q’11f1’ o (IJ&S)
In order to show that ¥, =0 , we use
[D-2Ny¢- L +2¢, VAP OM _ o (x.50)
- ¥ o M Q_ S —_
where D }*at_‘_* f’.«m Dmbﬁ-?,_ &M-\'\”\ a%-» \LLB—E (A.s\)
which is easily derived since A; is an integrated zero

order normal product . Now the derivative of (II.40) with

respect to m2 gives

| 2w,
[ZD-sz,—Lg,_'}m"b\: -0 (T 52)
M'ﬁ-

Thus comparing (II.51) with (II.52) it follows ¥, 0.
From (II.42) and (II.47) we have then ?4.=(?>,_= o,

To show tl:xat B1= (2] we follow the recipe of ref.it.
Let us use the following notation for proper functions con-

taining only one normal product vertex

13.

Novmag proouct NMota¥ con
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Then following the same steps as above we can derive
(ML)

[ D-2Ny- LY, x24T =0 (I s

LD -2W - Lh « 22 ~u\ Ve Lo (= sy

Note the additional term in equation (II.55). If the
Q"S are zero,it is related to the so called binding dimen-
sion,which is a contribution to the anomalous dimension of the

— — 5
M LE ¥5¢7) field produced in the process of joining q)(x)\’

and L\J(\J) to form the composite object . Because of current
conservation the corresponding term is absent from (II.S54).
Now we apply the operator D to the equations (II.18) and (II.23)

and use (II.54) and (II.S55) together with the relation
°
tHeS< e'¢,  to

obtain Dh - o (I 56)
DR =0° (& 52
M
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As we have seen h doesn't depend on the masses. Thus from

(I1.57) we have

W
G 2™ 0 (L.5®
29
But ‘:_l" # © as a simple calculation shows. Hence
?
(,=O (I 690)
We can understand these results, perhaps more easily by using
the infinite counter term approach 15). In that language

the Q‘S ,(1% and ¥t are associated with infinite mass,
coupling and wave function renormalizations, respectively.
:t,_ for example, is zero because the meson two point function
is only logarithmically divergent, implying the absence of
infinite wave-function renormalization for AF.

In computing this logarithimic divergence of the vector-
meson propagator one can set M=0,since terms proportional to
M are already finite. But because of the property of the two

dimensional Dirac algebra

and symmetric integration,the vector-meson mass renormalization
is finite, implying the vanishing of ?1. Since in gauge
theories Qa.=e¥. it follows that B,=0., Ga=o©
finally is a consequence of the fact that the interaction, as
M- 0,is of the form ;'EV Svt with SY“ divergenceless and

a combination of free fields as will be shown later (sect. ¥ ).

e -

15.

III. The Superrenormalizable Gauge

In four dimensions the non-renormalizability of the model
of the previous section is solved by a Jauge principle:

instead of (II.5) one considers a new Lagrangian
: ’ 2 (O AW (.4
£ = £e‘£ + Zmet ( (e ) )

s k¥ ;
where the addition of the term (QFA )" has the effect of improving

the ultraviolet behaviour of the vector meson propagator. We

have

{ "‘: _M 2 "‘“ b,h\l\l Y ——-.
:DP\) =_i_2—;':‘-/\;\—7: (%h\) R> )MA + hz__,m:. —\-Q-;-/W\o Kﬂ. 2/)

With Mo finite,(III.2) is a meson propagator in an indefinite
metric Hilbert space. As in four dimensions only gauge invariant
(i.e. M, independent) objects can have physical relevance.

The power counting adequate for (II1.1) gives

SEY=2-1F-F % (m.3)

where fF-\Té, is the number of vertices of the type :Fé(*’ in
€. oOobserve from (III.3) that the vertices A.J\r and («D‘,,,A‘*)L
are trivial from the renormalization point of view: either they
belong to a 1PR (one particle reducible) graph or to a finite
graph. Thus in the Lagrangian (II.1l) these vertices are well
defined as ordinary products. If one uses the renormalization
scheme (II.8), then the vertex functions of this model will
satisfy normalization conditions of the type (II. 9) - (II.13)
with the additional requirement that e=0 in these formulas.

The derivation of Ward identities and homogeneoﬁs parametric

equations can be done similarly to the section II. The gauge




criteria for this model, however, deserve some comment.

We have

5 {TA*WX) = - S e 3y, D=2 M T X, S +

ez,

e Mo i IAFO‘-KL,M\?) - AF(K-jk,fm;’).) KTX> (B

i)
which shows that. QPPJL is a free field of mass M.
Furthermore, because of the superrenormalizability of the
interaction QK ¢ , the discussion of /M. independence

of physical quantities is greatly simplified. We have

— (3Me) < k) R .
M\% ii’n: - A‘P("”l")) A:‘_- 2——M3_ de NoK rA )}(‘) (—“— 5)

By using the equations of motion it is a simple matter to verify
that vertex functions with only transversal meson and on shell
fermion fields are ‘Mo independent. There will be no anisotropic
normal producé”in the discussion, since graphs with one internal
meson line are already convergent. By extension composite

objects having degree less or equal to two will be gauge invariant,

if they satisfy both the equations (III.4) and (T11.5).

IV. An Equivalence Theorem

In the previous sections we have seen two formulations of
the theory of a massive vector boson interacting with a massive
spinor field in two dimensions. The possibility of a formulation
directly without ghost fields is a peculiarity of the two dimen-
sional world and in this section we want to.investigate the
equivalence of theories that differ by the presence or absence of
the ghost field. We will show that for gauge invariant quantities
the theories of sections II and III are equivalent up to a
renormalization. To this end we consider the class of theories

specified by a parameter © < NN <A
£y - AN 1F(EZ- e h)@) +-n N [F(E - ieh)9] -

L (N RGFRT 4 DN [F 8,907

FIN A - 4o O] + G- N, IMF Y]+

mg

sl N[L 7By -ie T Ky) (T.1)

The degree function which determines the number of subtractions to
be made for proper subgraphs is given by

(%) = 2—%—- Y (2-%) (v.2)

where,with the exception of the vertex ]J_;ka , the degree 5«_
for the normal products of the Lagrangian (IV.1l) is 2. 1In the case

of the vertex § K\f we define

2a= 1 {°’" N[GK“{]
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whereas for N CP‘ 4 U

1,§ Vais an external vertex, i.e. it has

Sa = an external Atk attached to N[(?K&P-]
2 otherwise
thus  8(8) = 4= {Fg- B- O (I¥.3)

where
W : no of vertices NI & K‘{ﬂ
3B

: n9 of external A\"' fields attached

to NI K]

Up to renormalizations (Two theories are equal up to renor-
malizations, if they differ only by the values of their counter-
terms) we see that the case A=t corresponds to the superrenor-
malizable theory of section III and the case A=0 corresponds
in the m,» %@ to the theory described in section II.

In order to obtain a gauge invariant S-matrix the Green

functions will have to satisfy 163

oG
omt

@nL)

- A G(zn,L) (V. 4)

with Ao some D.V.O. normalized on mass shell.
This can be established by adjusting conveniently the

counter tems in (IV.1l) as we will show now. Firstly we have

2 . _de A+ 2% AL
Sy N L
L2 AL - 2k A, (W 5)

(X -

19.

where we are employing the notation

A, = o [N [T

Az= -~ Sd}" Nz[F W16

Ly >

Ny=t {0 NaTMEIe0
Dy == s N [FUB-te K261, By=- NG E- 20610

A5=L§ | d NJ(@gﬁpﬁh)) A= —;- | ox Nz{(aFAky}(x)
(§.6

Now we want to prove the identity

.

5 — —
Ag= A‘,*‘ZGLAL*‘E‘,A@ (&

where

L
Ao('acz""')= L X x| 2L v AL(x-2 mit) A glt-23,m3) <TX“"~"S> -

Lz

L —_
~-Le Zavi_'AF(’(-ai’m’;)[AF("—X:\)’m";)_AF(“!D’M:Y}<T-X-\’;’> -

by=l
~ied i [AF(""‘U”“?‘;) A g (%= xy,md) + Apx-y, m) AF(x-})é,mL')]<T_X\/
CE)
e T A ek, Aoy md KTES (8
Y

The term <14, is absent from the r.h.s. of equ. (IV.7),
because &, 1is given by AJ’ (023 (o;o). But because of current
conservation, AoT, (a'“(b\)hz) is transverse in its external
meson lines and thus vanishes at h:.= h,_ =0.

(IV.7) is proved by iterating the Ward identity
< TDPA“(X):)-(-_> ==~ Mo BvLAF(x— 2,Mm5 ) <T—_X:/\,\> .
N
+ Le Mme Z {AF(K'K{,)M\%) - AF(."‘}I;)/M:).X <Tz>

L
(ED

and taking into account the additional terms caming from aniso-

tropies in subtractions for the graphs shown in £ig.2.
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Observe that these graphs must contain at least one vertex N .
The [ insertion can be eliminated from (IV.7), if one

uses

- (ML) (L) [ (VL)
A,G 'Atre' = §3A3* EwAW‘EsAJC"

where the coefficients fi(g,e,k ,|A.) , i=1,2,3,4 are associated
with subtractions present in graphs containing A , but absent in
those containing A . Note that the vertex N;[Az] is absent
from the r.h.s. of (IV.10), by the same reason as in equ. (IV.7).

Using (IV.10) the equation (IV.7) can be rewritten as
5 . —_
Ag= Ac+ S M A ()
L=

From (IV.5) and (IV.ll) we see that in order to satisfy

(IV.4) the counter terms must be chosen as

db _ bobo- | ma dim
dmr M= > ° o8
T
sl&—'x-= 3 , €= Cer Y: M3 d e
mo S (V.2
g;‘;ﬂﬁ‘"l‘r ) o = do- JMG M oL e
~mo 1
g—g‘-ﬁ-”ls ‘1=fo"it Ns oM.

Thus we still have at our disposal the M. independent constants
bo,C.o, oo anol :f.e . These will be fixed by imposing the A\ -

independence of the S-matrix. We now have

(eme) — ~
é);‘w\ . '[Ak- AL.,_?’EA?- —E_E‘_AZ-\—

o (2N,
*'%;L‘ A, + %As] G (. 13)

Using (IV.10), (IV.13) becomes

(. 10)

* -

21.
;)Q(ZN.L) ac a
5 n - [- EPRARNITES
. 9_(}__ ) QML)

The remaining step is to rewrite (IV.14) in terms of dauge
~S
invariant normal products NZEG'] . These are linear combin-

ations of the N,_[D_.l normal products

~

AL = ? ‘Uri's A& ) C,;y: 2)3/'1’)5 (TE»'S)

satisfying

_a;_ 5;' G’(IN,L) - A.,Z\;, Gl(zw,l_) (I_V lé)

Sy
Observe that only formally cauge invariant products 5’;, can
appear in (IV.15). The matrix [’u]“-j certainly has an inverse
[w];, 1in perturbation theory and therefore (IV.14) can be

expressed in terms of the Ai, as

S ) ~ b ~
= 2 (S iwnd - Sy vl -
d=2

(L)

+(§—%-iomﬁs * (i—i-Es)wssZ\,a]G (1713)

DGQ?-N.L)
d A

The coefficients in (IV.17) must be M,-independent, since

~

on the fermion mass-shell both G S and AL are; they can

be evaluated by ché’éing Moo= . Thus imposing ?\ indepen-

dence of G"lN'L) will result in the following system of equa-

tions
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- a%*%)w ‘%— 2 ado’@v} )wu c
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S (22 gy - 2wy« (55 S (3 §a) e -
Do

- (S;* §3>1")35 ‘%—)::‘-’ W,z + Dd"’ § )’10%5 %’.‘_is)u}55=

(W12

which can be solved perturbatively for dbe Jcs ode and Df;
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This concludes the proof of

(2N L)
°& .o (.13)
>N

Let us now discuss the relation of the theories constructed
in this section, to the ones of section II and III. Due to
(IV.19) we get the same Green functions for any value of k.

For example for'k=l, which corresponds, up to renormalizations,
to the superrenormalizable case, the Lagrangian (IV.l) contains
no D.V.0. of the type Aq,. Thus the anisotropies are absent
and the counter terms b,c,d and f are M, -independent. Since
for A=1 the number of subtractions is the same as those of

the superrenormalizable case the limit M,— °© will not exist,
except for gauge-invariant quantities on the mass shell, which
are already "Mo-independent. When we talk about equivalence up
to renormalizations, we allways exclude these gauge invariant
objects.

Since our Green functions are X—independent the M¢—>°°
limit cannot exist either for A=0 for gauge-dependent objects.

But in this case we did make the same number of subtractions as

23.

in the renormalizable unitary gauge. Thus now the Mo dependent
counter terms diverge in the Mo — ® 1limit. We conclude that
in this limit, in which the equivalence up to renormalizations
obviously continues to hold, one needs an infinite renormaliza-
tion to go from the theories of this section to the unitary

gauge.




V. THE SOLUBLE ZERQ MASS LIMIT

Two dimensional QED is known to be soluble, if the mass of the
fermion is zero, even if the vector field has a bare mass different
from zero. Actually this model is an example of a dynamical gene-
ration of mass in which the vector field gets a mass through the
interaction. We want to consider here the limit M+0 of the
model of section I . Due to the presence of vertices of the super-
normalizable type in(II.l)some remarks are needed. with €x0

i) Due to the renormalization condition (II.9LTY—;;55ied
graphs with vertices with two fermion lines will have a momentum
f;ctor, which improves the infrared convergence of the integral
in the loop momenta of these lines (see fig. 3 ) This is necessary
if one wants to avoid infrared divergencies arising from the fact,
that, we have two legs with zero mass in the unsubtracted integrand?

ii) Increasing the number of vertices of the type Q*&Pu‘/ A*‘”
in a graph does not introduce infrared problems if the mass of
the vector boson is mantained different from zero. This won't be
true in general if m'=0. Even in the Landau gauge (m°=0) there
will be divergencies associated with graphs of the type of fig.4
and the perturbation series in e' won't exist. However because
of generation of mass an exact solution will exist. To obtain this
solution one should first take the limit M—0 maintaihping m, and
m different from zero, then sum the perturbative series to get the
exact solution and then discuss the other zero mass limits for
gauge invariant quantities.

Let us begin discussing the M+ 0 limit. From (II.4) the

vector meson propagator satisfies

2

T A¥ Ay = - ::" So Ae(x-95 m3) AT

2

whereas for the rotational of At‘ we have

ST AR Ay = = 3y Ay limdy

e - _ (¥.2)
v |o% A (kx; M S T (o) Av(d

= =99 Bplemaymd - o SO&I Agla-n "’\'59) TA L) Avla)d
with ‘ :
’ = (x=x') | oA
v 8 - -

Ar(eesymy e | S

90 7 Na [yt
In obtaining (V.2) we used the axial vector current conservation

: N

e - o LY e T -

<be°g‘,}x> X> =-= T3 AN XY +¢ ?;“.[é»(x-x,)t‘3 + é(x-mt“ 17X >
where of and (5 are known functions of the masses and coupling

constants.

The equation (V.2) can be easily integrated

§P<TA\*(() As(9dS = - S\, A (x-v; m% 1) (¥.3)

~
by
which shows explicitly that arLAr is a free field of mass Mm+«.,
The generation of mass is, as we see,a direct consequence of the

anomaly in the axial vector Ward identity. Using the identity
Voot (g Dumpora Il 3
o =29 \dhy %) via) + 0" |l Dlu-g) 87 au(y)
with _
O Do = - 5§k (T.w
which expresses the vector at in terms of its divergence and

18
rotational, we obtain
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M
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Other Green functions with at least one vector meson can be cal-

—_— N —
culated in a similar way. If }/_ = 1l Qv(xc)—ﬁ. Y UQJ‘)
= é-z\

then we have for example

, ¥
CTAWWY > = 25, 3 M [DUexd -Dlray) + Ay Caeg,ms) -
=1

= Ap -xismiY) TY >+

N
e T AR - rtnta) €

wex T (v 6)

+ (Dtqy) - AF(:(-‘QL;M'-}-(»B’:—] TYS>

The above formulae indicate that AF’ can be written as

AP-: Dr. \P\ =+ bt‘” \PZ Q"\z'})
with \P‘ = \P|° -« 4)“
?1’ 41» < o,

where ¢ and V¥, are zero mass scalar fields and ¢, and

2

¥,, are scalar fields of (mass)2 m and o respectively.

We can now integrate the vector current and axial vector

current Ward identities to obtain

. —_ N ;T
<T5‘~‘“)i ~ g_awz (Du-xc)~b(x~‘4¢)> STY. D>+
+ O:, e t [(bu-xe)— AF(."’(Cj”";{"'d)) Yf{ *

TN QSZ 8)

Bt T ol
(Dea) - B ong ) W AT > -
N ~ ; —_—
+Q S:‘ ot ‘,:D\""l)\“ti + D9 K\f;T‘} <T Y D

e “
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Green functions containing only fermion fields need a little

bit more of discussion. We start from the Dirac equation

| . ‘ _[‘i . N«
STy Y > =t 3 S KTY > (=) (¥2)
T I }

=\

- e<T (K@Y > - <T Nay ED T Y S

19,
and use the Wilson )identity

LTN(F 6y p 90 X =

=0, T N3 U@3,0 3% 10 X ) + 22 BT 4o XD -

20, (T XD + oy <THOYW XD (%.100

Note that al,a2 and a; are independent of e, M and m’,
while a, is linear in €. Moreover a3=0 because in the zero
mass limit it is given by

— " g i
TN (Gt @) tHy@) 9> |y

e

iy

(o]
(o}

yon

since it results from the first subtraction term for linearly
divergent graphs. But using the normalization condition(II.9 )

and

13

~ Rabds _{com&rdbu‘b‘ou of the,
<TN3/7. [@'(aﬂ L{’\?)b \P“ Ltvivial de??u {
M=®
ezo
in eq. (V.0) we obtain the result that (Vv.11) is equal to zero.

Substituting (V,(0) into (V.9) we obtain
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2T 0T > =t T sty < TE > -
- @Z,OKTHEOY > - 42, () G ANCZ ADICE LV ST,
(Ewn)

Applying t.\. D/Qrk to (V,11) and using (II.48) we obtain

) 2. - o 23
5;(2.)'0 J rk&p 3,/°°
and

t er 2.-‘) Z*z

-

which shows that as &0, ,3./a, and 23/, are finite constants,
but '2.=C-4.(H"€")r“' with <, a finite constant.

Using these results we can rewrite (V.12) as
KV, L N+ w _—
T LTYOY S 2L 35D 5(““~3<T\/qu> -
=) -

S e TURWY >-3 KT o Y > @w)

where the 3@, factor has been absorbed in (.Pa.nd. ex 2:./21", §= ?-3/3|\3.

20
From (V,6) and (V.8) we have )

T (Apy ) T = iz.[bf“ \Ap (x-9; me) - bu-m)] ST i) -
- =& T IDG-) - Afx-yym -roi)]*cs T @)@ edd
mTao ‘N

< T (3‘*\?). W ED = br D(x-9) +

T b I Dix-y)- AFU*ﬁsﬁiﬂ)]E?zT(Taph)@w)
m

L B0 DD T LT wOF > ALY

‘e
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Thus the fermion two point function is

- “F(y) (o - .
LT YT (S = e 2T ¢ “y? )

w here

Fw = ( °,,: d% ) (D - Al mi i) -

(Y6
e (- 2 >
+ -3 9 - AF(X~ lgym,_))
m

- (z(\i-@) -D()(-‘a>

Green functions with more than two fermi fields can be
constructed similarly.

From (V.5) and (V.16) we can verify equ. (III.S). F\}‘{her—
more we can see explicitly that the mo-dependence can be

gauged éway .
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VI. CONCLUSION

We have shown how to construct Green functions in gauges,
which differ in the high energy behavior of the photon propaga-
tor. Yet they all lead to the same S-matrix due to the presence

. of suitable counterterms, which in the m, + = limit become
infinite in order to absorb the difference between a superre-
normalizable and a renormalizable theory. Observables are of
course mo—independent.

The considerations of this paper can be extend to four

l, where one has an infinite number of counter

dimensions?
. terms, whose job is to ensure that the renormalizable and the

non-renormalizable theory produce both the same S-matrix.
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FIGURE CAPTIONS

Fig. 1 The Qpﬁrline can be attached only to the longitudinal
part of the meson line or to a entering or leaving fermion

line.
Fig. 2 Graphs contributing to anisotropie 3.

Fig. 3 The reduced vertex has a momentum factor which improves

the infrared behaviour of this graph.

Fig. 4 Graphs which diverg if m =M = O,
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