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fopﬁlations oscillations in iédiétea population$ of flies
| are cbnsidered. Qualitative methods of analysis are applied”to
the functional‘difenrential equatibp rgpreéenfing the system '
and rcohditions for the occurence of oscillations are defived..
These cbﬁditionsrare feadily vizualiéed in‘termé of paféﬁéferé

"‘thch are easily measured and have a straightforwarg biologicél_

interpretation. S
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~ 1. INTRODUCTION -

bscillations in isolated populations of the;blowfly

Lucilia wereffirSt observed by Nicholson (1954). Recently,

analogous oscillations in populations of Drosophyla Sturtevan
tis were observed by Mourao and Tadei (1974) and to our know—
ledge a mathematical analysis of this phenomena was, ‘given
only by.Maynard—Sﬁith (1968,1974). (see also Goel Samaresot
& Montroll 1971) . In both publicetlons by Maynard—Smlth the
oseiliations were atributed to the time interval Tt required
for an egg to become an adult fly. |
.%However theé equation proposed by Maynard-Smith to
describe the phenomena in his first publication isidiffereﬁt
from the ooe proposed mgre recently. The equatiop proposed ih
F.the first pdblication is a noﬂ linear differential difference
equation and is ahalysed‘only numerically. The equation propo~
sed in the second putlicatioh is a linéar differential differen
ce equation and is analysed by means of Laplace transform techni
ques. Thls second equatlon has a "dr1v1ng term" and therefore has
the serious drawback of not hav1ng'a zerc population as an unsta
ble solution and furthermore has unbounded oscillating solutions.
The content of this paper is as follows. In the section
IT we propose a somewhat modified form of the eqoation proposed
in Maynard-Smith (1968). The chief aévéntage of our formulation
is that it depends on parameters that Have a tpansparent physical
interpretation and furthermore are easily measurable. We also
show that the equation pro?osed in Maynard-Smith (1974) results

from an inappropriate expansion of ocur equation. Then in section

IIT we analyse the solutions of this modified cquation in terms

a
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of the parameters range and glve several suff101ent CODdlthnS
for the oscillations to occur.
In section IV we present the results of numerical SR

integratlon of our equation for several cases suggested by the

>

ana1y51s made in section III. It is shown that our equatlon
admits solution with very peculiar oscillatory behavieur which
to our knowlwdge has not been so far detected; It is ;also
discussed 'the conditions for ekperimentally detecting this

behaviour.

II. THE EQUATION

The populations studied in Niehelson (1954)’and Mourao
.and'Tadei (1974) were fly populations .confined te liﬁe in cages,j
..and receiving a fixed llmlted amount of food Let N be the num'\
ber of flies per unit volume of the cage at the time t. The ha-
bitat (that is the cages) can be characterized by two -functions
of N :b(N.) the birth rate per head and A(N.) the death rate per -
head. - e
Qualitatively, the general form of these two functions
is as shown in Fig. 1 that is, A(Nt) is a monotonicaly in-
Creasing function of Nt and b(Nt) is a monotoniecaly decreasing
function of N, satisfying the conditions: A(0)<b(0), b(=)=0 and
A () o0,

Unless explicitly stated A(Nt) and b(Nt) are assumed

to be infinitely differentiable.




Let v be the time interval which is required for an egg to
become an adult fly. '

_ Then we have . ' e o

- )rNt—T

The first equation proposed by Mavnard—Smlth (1968)
can be obtained from equation (l) by replacing b(N ) by (a bN )
and assuming k(Nt) to be a constant. We shall see in the next
sections that it is not necessary ﬁormakersuch drastic sim- ;
plifications to analyse equation (1). _ -

The second equation proposed by MaynardQSmith (1974)
follows from atributing the decrease in birth rate with N, to
lack of food. His reasoning is the following: 1lét w be the
amount of food per unit volume supplied per unit time to the
flie;. Then the amount available per unit time for each adult

is w/Nt. Assuming that each adult consumes a fixed amount £

just to survive without laving any egg then the excess food

Samg N, (.




availa%iéEfb; eggs productions QS;G?@ZNt—EQAt_tﬁig stage May-

b nard;shith (1974) aséﬁmes that the birth rate b(Nt)-is propof-
g;qnqlgto G, that is, b(Nt)#J<G. The driving term in his |
equation results from the fact that G + = as Nt + 0. Note how-

~ever that what can really be said is that the birth .rate is a

function ¢(G) with the folldwihg shape (fig.2).

 FIGURE 2
. 3
. I £
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We should then write

dNt w ' -
T <R =8 ) N o mA(N) N

t-7T ] -

and a new function b(Nt) can be defined such that-b(Nt)=¢(w/Nt-g)
so that equation (1) is recovered. .

Let's call N the eduilibrium density which is the value
of the population density corresponding to the intersection of
the curves A(ﬁt) and b(Nt) (éee fig. 1).

Ve can then rewrite equation (1) in terms of a new

variable &N

=N t-—-N

t
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" Let's now expand

_asN, | - - \ ]
- L b(Ny+n (2 SN _. + [A(N)+N ar 6N,
dt’ | aN, , o BN ~

-.Haingu_ b(N+6N o) (en W)= A(N+6N ) (M M) @

LTIy,

- S R - = B ~ b gt

b(N+5Nt)—b(N)l—6N ( ) +R (GN RIS (3
and = :-::f:g/:hv7«1;_,v-¥:
A (.ﬁ+5N- ) =X\ (W) +6N (59—-) + R, (6N ). ‘ | (4)
: t e\ ang ) _ ) R o
oL ' N ‘

where R (GN ) and RA (6N ) go " to zero at least as (6N ) ~as

‘

GNt goes to zero.

Substituting (3) and (4) in (2) we have

i

2|

_ ¥ - L3

> * ) Co N

_[ap : 2 ax 2 - -
..(zi-ﬁ-t-) (GNt-T? - (dNJ 7(5Nt) CtR (8N ) (N+76Nt__,l_)~R>\(6Nt)r (FT+on, )
N L | . - (5)

2

In the next section we shall show that the existence

of oscillatory solutions around the equilibrium value Nt=ﬁ for

_equation (5) depends only on the relative value of the paré-

meters,

n=b(N) =A(N) ; [ ab . aa and T
T\ @) Gy
‘ * N N '

which represent the birth (or death) rate at equilibrium, the
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* ' sicpes of the birth rate curve and the death rate curve respeg

‘£ively at the equilibrium density and the time time interval
‘fequired for an egg to become an adult-fly.
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III. SUFFICIENT CONDITIONS FOR SUABILIFy-wyw ifif HOUILIBRIUM

" “SOLUTION i, =N

t

~In this section we shall obtain sdfficient conditions
for stability of the equilibrium solution Nt=§. Violation of
these sufficient conditions will give necéssary conditions for

the existence of unstable solutions of oscillatory type.

Let's in eduation (5) call

N

T pem (2 I B (7)
| A W+N(éﬁr)__- | | o -
N - N Yy o o

. By the assumptions on b and X (Fig.i) (%gg)ﬁ-s 0

and (%%;ﬁﬁ éo,so that in general B <A, Note that B can be
t .

negative.

Equation (5) has 6Nt=0 as a solution and this
S solution is asymptoticaly stable (El'sgol'ts l§66) if all the

roots of the following equation (Bellman and Cooke -~ 1963)

8=A-B ¢ =() (8)

Co = fap\ - R o o )
B _n+N,<5ﬁ£>, o E | ‘ - (6)

KIEEN
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‘j:have“ﬁegativeireal part On the'other‘hana if equation (8) ﬁas
at least one solution with positive real part then 6N =0. is an
-unstable solution (Bl'sgol'ts 1966) of equation (5) and there- -

- fore eauation (5) admits oscillatory solution.
If s 1=81+18, is a solution of equation (8) so is‘SE

and therefore we should speaP of a pair of roots. Rewriting

equation (8) in terms of S; and S, we have

7 sy +A=n e-.'TS:L cosTS, 7 o (9)
s, = -B &"™51 sings - (10
5 = e sintS, , - (10)
B
or . : s . ) B R
(s9+ A2 + 82 =ip? ¢72T51 -y

" for avfixed 5, we have an oscillatory solution,if the intersec-
2

- 2;
r occurs to the right of the origin.

—- 8 . - . »

The curves £,(5,) and £,(5;) are plotted in Fig. (3) °

ticn of the two curves, fl(Sl) = (Sl+A*)2 + S

-=B2 e-2'r Sl

FIGURE 3
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S6 we see that there is no-oscillation if .
B 55 + A2 T L a2
or surely if N
) 2 - '
_ BT A o or = -ALBZA (13)
Using equations (6) and (7) we obtain:
- ' /
-=fa =fap | ~fd\ .
“+N(aﬁ—) < “‘N<<’ﬁ€"> JS “*N@ﬁ") :
- At/ t)- |
_ﬁ, I e - - ab . < (d)\“)' o . ,..(14;) B
o an) o
: | o N ~ N S
e L ab ), e Lfax NV as)
B e -7 5 dN_ | o

A béttér sufficienﬁ‘condition can‘belqbtained froﬁ eﬁﬁations
(6) and (7). In‘order to have an oscillatory solution S, muét
be positive and we can see from equation (9) that this
condition can be satisfied only if cos TS, is negative hecause

if cos TSz >0, equation (9) gives:
+ = e~ TS, o .
5, A B e cos 15, < B

or




or

o= lfaw N _fa L.,
Sp<N ('&f\}‘é)_ '(a‘xr,)__ <0
N N - YN

Therefore cos TS2 rmust be negative and a necessary

condition for oscillation to occur is - S
2n1r_. + - \<|T52l \< T+2nw - . - | ! (16)

and equatiohr(l2) gives
. s | i o !
B¢ (g-;) + Az o - _an

‘as a sufflcient condition for no OSC1llation Therefore,

violation of (17) is a necessary condition for oscillation to |

occur.Note that if T is very small conditlon (16) is always

satisfied and no oscillation can occur.

Let's now give sufficient conditions for the existence

'of 2n pairs of roots with positive real part. To this end let's

investigate the behaviour ef_a root as .a function of 1 . The
pair efrequations:

S, (1) +A =B e~ T8y (1)

SZ(T) =-13 e_TSl(T) sinrsz(r) - {(19)

"define implicitlythe functions Sl(r) and SZ(T)'

For B and A satisfying equation (13), equation (16)
shows that for small values of T all roots of equation (8) have
87<0.Increasing twe can see that there exists at=1,, for

which a pairﬁof solutions reaches the imaginary axié. In fact,

VCOSTSZ(T) ' o (18)
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equations (18) and (19) admit a solution Sl(Tl) =0. and S, (1,)

o = ,-_.. P - -

-~ S As mm ._..,._";_-‘ i e

whioh is given by the solutions of

-,

A= BiCOSTISZ(Tl)

The solutions of (20) and (21) are.-r

B cos 1Y

>
o

is violated

L -

note that (for B <0 and A >-0)

2nT 4+ % < TY { 2nT + w

since we must have cos TY< O and sin TY> 0.

Now inspection of fig. 4 shows

FIGURE 4

Sz(tl)=-B sin tlsz(ill

) Y = -B sin T'Y LoRLomInULan

(21)

(22)

(25)

@0

- (23)
(24)
- Note that (22) makes sense only if the condrtion (13)

To solve the, system of equation (23) and (24) vie first
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t}}'at_:i vie have 'Q set _of sqlﬁt;i_ogs _given by

e 2o - e PR

T, = -I.Q)"+’2W(n-l)> o (26)
S n - -
‘where . 7 sv: - '
6 = arc sin(—- %) | ‘ (27)
restricted td the intérvai z%'2>é < ﬁ. .

The value 1y=0/Y is the minimum §aiue of ‘Grsuch that
équatioh '(8) has a pair of-ro'o_ts with S, greater t.han zero. To
show this we must show that the slope of the function S;(r) at
the point T=Tl,‘is poéitive so-that it crosses the axis.

" By taking derivative of eq. 19 we obtain a linear .

]
1

system of equations - s | -
as, as, .
7{:‘1”(51*"{13?" “S,TTar = S3 7 (SptA) Sy N - (28)
» as, - - ds, o~ we el

For which the determinant

A = [l+ T(Sl+A)] 2 . (TSZ)Z

is always positive, regardless of t. In particular for a value

T, when a pair of roots is on the imaginary axis we have

T,y )

I S Y S L

(30)

piol
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On the other hand the determinant in the numerator of Cramer s

'rule for %1 s e e o
A ;—: ;
) Al-.:> -SlE(b -t—/\? +T (Sg + (5 l-rz\)z):}

So that

X (iiil_) =" I s p (3D
R oo B ¥ 4 . 2 2 )
| | dar (1+TnA)“ +- (TY) . ,

-——

It should be noted that equation (31) is show1ng not
only that for -T=Tn-'a pair of roots will cross the imaginary

axis but also that a pair of roots crosses the imaqinaiy axis

PR - . E - - . : . o . v hd

a Single time. - ' ' —_
S | Before closing this ection we would like to stress -
that conditions given by equation (13) (oxr (17)) are very

easialy Visualized, that is, it is possible to tell whether a

populationoscillatescm'not just by inspection of the curves

b(Nt)‘and A(Nt).

IV - NUMERICAL RESULTS

Equation (1) was solved numerically assuming for

b(N.) and A(Ng) the following form

t nax

‘ - ~ (32)
0 . fo; Nt> Nmax

(b -b. N for N,< N
b(Nt) ='{ o 1t
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and - , ,
AN} = constant =n . (33
where R
.
= 2
el . o N!.‘“'?‘?‘, tf‘bl R - -

The following rgsultsrwere”qbtained:

(1) If the condition (17) is satisfied, the solution N_ will
leWaYs tendftﬁséhe“équilibriUﬁ'soiﬁtibn N, independent of the
initiéliﬁéhai£i6nsQ‘Tﬁié'feéultysuggé?ts thét-if condition (17)

is satlsfied‘then Nt— N is nore than a stable solution it is a

- solution which is stable in the large. ',5;"" ' "f;Jr"f"

(i) If condition (17) is nciasatisfiéd then oséillatory’
. solutions were obtained indéfendent of -the initial conditions.
This result suggests that 1% condition (17) is violated then

-there 1is no solution of ecuatioh (1) that tends to E és t—?w .

This is much séronger than stating. that N is an unstable solu-
_ tion because instabiliﬁy cnliv guarantees that there exist
solutiéns of equation (1) which do not converge to N as t— w;.

, |

(111) In rig. 5 we present. tha qualitative behav%our of the
solution of equation (1) v!iu condition (17) is violated. Fig.
5a shows the behaviour of the solution for a set of pérameters
" such thateq(8) has only ¢ :» root with positive real part and
Fig. 5b shows the same tiing.for a set of parameters such that

eq.(8)has 2 roots with po-iiive real part.

The qualitati:. Lehaviour shown in Fig. 5b provides

us a way of testing equ.iion (1). ‘According to equation (26) ,



such a behaviour is expected if ' B '?;s

Yt -6 > 21

O (39)

'and this condition can be fulfilled by 1ncrea51ng}the absolute
value of B and/or decreasing A (see equations(22) and (27)).
©In onerof the p0pulations stuﬁieﬁﬂ%y'ﬁourao end Tadei
(i974) a behaviour similar to the one depicted in Fig.5b was
observed. However this behaviour was observed for 2 big cycles
only disappearing afterwards. Therefore we conclude that this
Hmight have happened because by pure accident equation (34) was
satisfied for a certain period of time only and no spec1a1 care

was taken to ensure this‘ permanently

[}

14,
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- FIGURE CAPTIONS

| Fig. 1 -~ Birth rate per b(Nt) and death rate per heéd A(Nt) as
functions of the pepulation density Nt' The point N is
the equilibrium density and n is the value of b(Nt) or
A(Nt) at N.

Fig. 2 - Birth rate per head ¢(G). as a function of G=w/Nt - -
which is tHe excess food available for egg prdduction.

5 -

Fig. 3t.-_The solid curves are the function f(S y= (S +A)2'+ 82
‘5,>plotted against 'Sl for three values of 52 and
:the dash and dot curve is the functlon f (s )- B2 e_ZTSl
‘plotted against Sl .. B -
Fig. 4 - This flgure 111ustrates the graphical solutlon . of

equations (23) and (24). For given values of A and B,
ifiTn <1< Tn4i—equétion (8) has n roots w1th positive

L real past.

Fig. S - Numerical solution of equation (1) with b(Ntf and A(Nt)
given by equations (32) and (33) respectively for b0=4,o,
bl = 0.001 , ﬁ = 1.0 and two different values of 71:

figure (a) shows the solution for 1= 2.0 in which case

eq. (8) has only one root with positive real past since

Tl.= 1.2 and = 4.8,

T2
Figure (b) shows the solution for 1= 5.0 and as Ty = 8.4

it corresponds to a case of 2 roots with positive real

past.

-

In both figures the time scale is given by the res-

pcective value of T.









¢ Bid




ﬁ\;




T A T AL LA T L T

Ehbad

.

30

38

36
tempo ()

34

32

22 249 26 28

20

fig. Sa

——

IS

: v
< Jo
~
’, ™
.
Lo1%
oo.~ 5
[ Iom
B2
.
LI .
. .-U—
¢ o
ettt N
"o, I
. .
oo\ 0
o, N
<"
»oou ]
*e
K} 13
...
‘0000 “1
‘e . LN
Y]
o0® Tl
OO.I
**
g -4
o . -
" o o B
o ] | o
Fooo T
B
A o)
.. .., -
’
*® .
o ®
H do
%, =
3
. -
Qoteoo
’ S
ocu- -
L]
o.% “
°
ochu Im
[ 2
. oo.a .
m ﬁw‘.l...l
o
("o NN m
o o
Y
{]
-4




