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. ABSTRACT - A quantum formalism, including phenomenological
dissipation, is developed from an extention of the classical
canonical formalism proposed by Morse and Feshbach and applied

to the time evolution of a gaussian wave-packet.

RESUMO - Desenvolvemos neste trabalho, um formalismo quantico

que inclui fenomenologicamente efeitos de dissipagdo. Este for
malismo € obtido a partir de uma extensio do formalismo canoni
co classico proposto por Morse e Feshbach e aplicado a evolugao

temporal de um pacote de ondas gaussiano.




1. INTRODUCTION

The observation of strongly inelastic collisions bet

- ween heavy ions at energies well above the Coulomb barrier has

kindled interest once agaih on the description of dissipative
processes in quantal systems(l).'The high level densities of the
colliding nuclei at the relevant excitation energies suggests
moreover thet the transfer of energy from the relative motion
to other modes may tolerate a phenomenological description in
terms of some quantum extention of the classical concept of vis
cosity.

A classical deterministic treatment of viscous effects
fits naturally in the scheme of Newtonian mechanics, by means of
the introduction of forces that cannot be derived from a

potential function. This very fact, however, tends to make

it alien to quantum mechanics, at least in so far as it is cons
tructed upon the formal structure of the classical canonical for
malism. This formalism is particularly ill adapted to deal with
nonconservative phenomena. Its essential cohenrence is irrevoca-
bly broken by the introduction of ad-hoc devices such as the Ray
leigh dissipation function. Explicitely time-dependent Lagran-
gians, on the other hand, are known to lead, upon quantization,to
difficulties related to the resulting explicit time-dependence of
the canonical Variables(z).

In this note we want to explore within a quantum
context, a possible gap in the imperviousness of the canonical
tormalism to phenomenological dissipation. It has been pointed
out by Morse and Feshbach(3) that a bilinear-Lagrangian in the

two degrees of freedom, x and y

Lg = mid s R0 - g - - Ry

leads, by means of the least action principle, to two independent
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equations for x(t) and y(t) which contain velocity-dependent

dissipative forces

f\m’i+@f¢+%2+k¥—=o &
%1%‘:_;2,3'*,%,14.%&:0 .
Since £’5 is a time-independent Lagrangian one might use the
standard canonical quantization procedure to obtain a theory
that would, at least, contain in its classical limit the
behavior of a linearly damped system under linear conservative
forces.
2. THE ACTION FOR THE BILINEAR LAGRANGIAN
It turns out, however, that such a straightforward
procedure meets with several problems. In order to see what
they are, we may take the simplified Lagrangian .

LB = fvmhg + %({}x-fﬂg)

from which the linear conservative forces have been ommitted,and

study the behavior of the corresponding action functional

t
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for suitably parametrized families of space-time paths x(t),y(t).
In particular, taking a family of fixed end-point, uniformly ac-
celerated motions with accelerations q&and %} respectively,

one gets, in the limiting case when R=0,

SB [Tx"(’}] - Com.sts a’ﬂ”y ¥ ‘:‘
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while the usual quadratic Lagrangian for two free particles

L
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This illustrates the fact, while being both stationary at the
uniform motion trajectories with %; = 'X; =0, these two action
functionals have different properties for paths differing from
the classical space-time path, Since quantum propagation can be
described in terms of the behavior of such action functionals for
all space-time paths between the chosen end-points, and given
that SQ leads to the usual quantum mechanical description of two
noninteracting particles, it follows that one should not expect
to obtain a proper quantum mechanical description by quantising
LB’ even in the frictionless (i.e., R=0) limit, without any
further considerations.

Is should be borne is mind, however, that the y
degree of freedom introduced in the bilinear Lagrangian LB is not
meant to be physically meaningfull in the same sense as x. In
fact, the classical equation of motion gives unphysical
exponentially growing solutions for this variable when R is not
zero. In a purely classical context this is of little consequen-
ce as the Euler-Lagrange equations for the two degrees of fre-
edom are completely independent. Quantum-mechanically, however ,
this separation is no longer aplicable (as can be seen e.g. from
the non-separability of the Lagrangian in the variables x and
y) and one has to properly specify the role of y.

In order to do that, we recall that what we would
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like to build out of LB is a quantum formalism for a single
degree of freedom that would include the effects of a linear

viscous force. In addition to having the correct classical limit

(by which we mean that the solution can be described in terms
of that of the classical Euler-Lagrange or Newton equation with
a linear damping force when the actions involved are large in
units of 1L ), we require the theory to reproduce the usual free
particle quantum mechanics in the limit of zero friction. We
will show next that this additional correspondence requirement

specifies to a large extent the role to be played by y.

3. THE BILINEAR PROPAGATOR: CORRESPONDENCE WITH STANDARD QUANTUM
MECHANICS OF A FREE PARTICLE

for reasons to be made clear below, we choose to
describe the x-system in terms of a density matrix ri(X'%lft)
The time evolution of this density matrix in the frictionless
limit is more simply expressed in momentum space by using the

standard quantum mechanical propagator for a free particle:

"t't(k’-‘z x)
(D(kl Lt) = e ™ P,x(bx v 0)

~J
where now (3 is just the double Fourrier transform of P . If one

wants to use the bilinear Lagrangian, in the frictionless limit

k]

[
one gets, for a two particle density matrix f)<kx x) 9 g,;t >)

BE (k! b, -k by )
! \ - e x 5 X '3 AJ / .

Since, however, all we want to describe is system x, we may

require in addition that : v

tl'a'F(bx ylbb '3) }’db P(bx x/! 31&93{) P (bx xi ) :
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provided that the initial density has been also so chosen that
| ~
th ()(bxkkat(, b ) = (’l(bxb‘

Use of the explicit form of the two propagators and of the
~
symmetries of P leads at once to the condition that the density

in the two degrees of freedom be of the form

3 iy by 0 = (008 (s - 1) G e by

where G (z) is a properly normalized arbitrary even function of
its argument. By Fourrier transforming back into configuration
space we get, corresponding to the initial density for
X, [Dx(xx'; 0), a density for x and y which is of the form
_l |
oty 10) = py (e BE - B 0) g L)
where again g(z) is any properly normalized even function of its
argument. This function (or equivalently, the function G(z)) are
entirely redundant in the frictionless limit we just considered.
However, as we will show below, it plays an important role when
frictional effects are included.

We see, thus, that it is possible to do ordinary one
particle quantum mechanics by using the bilinear Lagrangian LB
(which R=0) and considering densities in two degrees of freedom
of the particular form given above. What we attempt to do
next is to include frictional effects by merely turning on the
R-term of LB in the bilinear propagator. Because of the special
form of LB’ this may be done by directly evaluating the
corresponding path integral t

K(“,"W'Bt) = gD[xlé)]SD[’t&(f)] w’o_i{ S LBdt

o]
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which is of the Gaussian type and can thus be worked out

explicitely(4). Propagation including friction would then appear

as

Px('mc';t) = P‘a— H”dudu'du,'dv' K(u')a" vﬂa;t) X
p (% i1 “"%j“r.) 0)q () K™ (we, vyt )

2

= y Kalua(\r Y

(ux, vx's t) Cy(“"'? 0)

<ff

where the effective propagator jzl££ can be explicitely

written as

5(4( K WP{ i«,[(u- )—%—(x x)][(s (“")w"d'(uw)]% ?

X
ah Va
i
X R(Y- x) .
where N Bt
2.k i-ws&,% W
The last factor, CL(Xr-X') , originates from the function

g and is given by

P (x-%') jdz wp[ iR (- x)z}g(a)

It is constant for the diagonal part of the density matrix
(probabilities), but affects the time propagation of the off
diagonal part (correlations). In particular, if g(z) is a

Gaussian, T“t will attenuate and eventually destroy all corre-

lations in configuration space.
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This feature of the theory actually requires that the
description of the x-system be in terms of a density matrix. It
is an extremely reasonable feature on physical grounds. In fact,
any viscous effects must be seen ultimately as resulting from
the coupling of the explicitely retained degree of freedom to
other degrees of freedom that remain unobserved. This situation
will lead in general to the increasing occurence of correlations
between observed and unobserved modes, which implies in the loss
of initial quantum coherence in the observed degree of freedom
alone. This point of view hints, moreover, to the possible
interpretation of the function g(z) as a phenomenological
fﬁnction describing the effectiveness of the unobserved modes
(here mocked up by the single degree of freedom y) in destroying
the quantum coherence of the initial state in the x-variable.

We may also mention other easily verified features
of the theory. First, the bilinear Hamiltonian associated with
LB’ being the generator of time translations and being itself
independent of time, is a constant of motion. It must not, how-
ever, be interpreted as the energy of the system. The latter

may be defined by correspondence with the classical energy, i.e.,

! 2

- ™M

E, = v

and is not a constant of motion unless R=0. In general E decays
exponentially with time. The Hamiltonians is, on the other hand,

a Hermitean operator, leading to the conservation of the
integrated probabilities. A more delicate point concerns the

position-velocity uncertainty relations for the bilinear theory.

The canonical momenta are, in fact, in the frictionless limit




P}: 'WL"} amo( = ’WL')Z,

so that the canonical comutation relations (which are of course

consistent with the path-integral quantization) give, in general
N . . . - . _ ‘t
[xvljz[%)%:):D ) {x"b]'[%I‘)L]— i{'“:

This is at variance with what one should expect for the proper
quantum description of two degrees of freedom. It can be
verified , however, that these comutation relations, used in

connection with density matrices of the special form considered

here, give results that agree with those obtained from the usual
comutator [¥‘Q£]= it/ﬂw and single degyee of freedom

densities Px (x'xf)

4. GAUSSIAN WAVE-PACKET WITH FRICTION

We finish by briefly mentioning the result of the
application of the above theory to the propagation of a gaussian
wave-packet given initially by the density

2, 12
ty(x-x')  _ XX

P(xsc’-,o)= N e o  2bZ
%

The probability distribution Py_(y'x }t-) at time t computed
with the effective propagator ‘jZ4¥F envolves in time
retaining its gaussian shape and in such a way that its center
of gravity obeys Newton's equation for a particle under the
effects of a linear viscous force. The spreading of the wave
packet 1is quenched by the frictional effects(4) in such a way

that its width b(t) tends to a constant for large times. As shown

in the figurel this constant may actually be less than the initial




width b(0)=b0 if the friction coeficient R is large enough. For

one special value RO of R, in particular, one has b(w)=bo. the

packet will therefore stop and freeze under the effects of
friction. The time dependence of correlations involves a more
detailed study of the physical content of the function g, and
will not be discussed here.

The authors wish to thank each other for endurance

and mutual encouragement along the meanders of a winding path.




- 10 -

REFERENCES

1- A.K. Kerman and S.E. Koonin, Phys. Scripta 10A (1974) 118
R. Lipperheide, Nucl. Phys. A260 (1976) 292
C.M. Ko, H.J. Pirner and H.A. Weidenmliller, Phys. Letters
62B (1976) 248

2- E.H.Kerner, Can. J. Phys. 36 (1958) 371
W.K.H.Stevens, Proc. Phys. Soc. (London) 72 (1958) 1027
I.R.Senitzky, Phys. Rev. 119(1960) 670

3- P.M.Morse and H.Feshbach, Methods of Theoretical Physics, Mac

Graw-Hil1l 1953, sect. 3.2.

4- R.P.Feynman and A.R.Hibbs, Quantum Mechanics And Path .

Integrals, Mac Graw-Hill, 1965

T

See e.g. R.W.Hasse, Jour. Math. Phys. 16 (1975) 2005




b.(T)/b

-

100.

mb2

Figure Caption

Fig.1l. Width of the gaussian probability distribution as a

function of time for various values of the friction

coefficient R. R is given in units of R0




