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ABSTRACT

We discuss a method for constructing an explicit or-
thonormal representation for the collective subspace associated
with the generator coordinate method, assuming that the overlan
<a]o'> is a Hilbert-Schmidt kernel in the space of weicht func
tions. We show that the equivalence between the diaconalization
of the many-body hamiltonian in the collective subspace and
the solution of the Griffin-Hill-Wheeler equation is a dy-
namical question which cannot be answered hy kinematical con-
siderations alone.The treatment'gives a simple picture of well

known misbehaviours of the generator coordinate weicht functions.

An application is made to the Lipkin model.




@. INTRODUCT TON

C.W.Wong has put forth in reference (1) the point of
view that the solution of the Griffin—Hill--Wheeler2 (GEW) in-
teagral equation can be identified with the diagonalization of
the hamiltonian in a subspace of the many-bodv Hilhert épace ’
the collective subsnace S.

In specific cases one finds difficulties in the im-
plementation of this corres-;pcndencel"3 and in what follows we
will give a brief outline of the nature of these difficulties.

In the generator coordinate method of GHW2 one con-

siders many-body wave functions generated by the ansatz
7 = Jc(zt) x> d (1)

where f(a), the weight function, is a function defined in the
Hilbert space of the complex valued, square intearable func-
tions. The generator states |o> are a family of many-body wave
functions parametrized by the label g, the generator coordinate.
In the method of GHW the function f(g) is determined hy the

variational method ,

S SILAED: _ o (2)
SAFD

which leads to the GHW integral equation
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C.W.Wong1 has investicated the formal correspondence between

the solutions of Eq. (3) and the solutions found in the




2,
diagonalization of the hamiltonian in a subspace of the many-

body Hilbert space, the collective subspace S.

(P HR-E)R ) =0 W .

Where B is the projection operator onto the collective subspace

S.

In the work by Wono, the formal correspondence bet~
ween the two equations is shown in terms of an assumed bhior-

thogonal expansion of PS involving the generator states:

P - SA?& 12 < = Séa 1% Y<K | (5)

where . .

<é§'|g§>> = __(5‘-f£).

In this case Eq. (4) reduces to Eq. (3) if we make the iden-

tification of the weight function with the projection of |f>

on the biorthogonal basel.

f@ = &l

In specific models like the "qaussian overlap" approximation2
one finds difficulties in the implementation of this corres-
pondencel~3. Wong shows that in this model ,Eq. (4) can have
solutions which are not obtained in the solution of the GHW in
tegral equation, Eq. (3). However it is well known that if in

the variational principle, Eq. (2), one varies |f> in a closed

subspace of the many-body Hilbert space, the solution of Fq.

(2) is equivalent to the diaconalization of the hamiltonian in




3.
the above subspace. So the difference found by Wong leads us
to the conjecture that the subspace generated by the ansatz (1)
is different from the collective subspace 8. In order to shed
some light on this problem we investigate the properties of the
GHW integral equation when the overlap <ala'> is a Hilbert-
Schmidt kernel in the space of square integrable functions.
This is not a purely academic case. First, projection of par-
ticle number and ancular momentum fall in this category.Second,
we can consider weight function spaces with an appropriate
measure with respect to which the kernel at hand will bhe a Hil-
bert-Schmidt kernel. Third, in the numerical handlinc of the

CHW integral equation4 we always replace Fq. (3) by

N R
Z[ CHILIE A= <¥Ala\“>} J((o%) -0
J‘:i

where the &; 's are a finite, discrete set of points and in
this case the kernel <gi|gj> is trivially a Hilbert-Schmidt
kernel. Our treatment generalizes this case to that of a con-
tinuous label g.

Besides, the interpretation of our treatment lead us
to expect that the main qualitative features of more ceneral
cases are already present in it.

For kernels having this property we give a method
to construct an explicit orthonormal representation for the col
lective subspace &. This will allow us to understand the nis-
behaviours described by Wonql and to relate them to properties

of the biorthogonal expansion (5).It has often heen suggesteds

that problems could arise in conhection with zero eicenvalues

~ of the overlap kernel <ala'>. Out treatment shows clearly how
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ever that these problems can be trivially avoided by means of
a suitable restriction of the allowed weight functions.Probhlems .|
of a more fundamental nature, on the other hand, appear in con-
nection with situations in which a sequence of non-zero eiqen?
values approaches zero as a limit point. Our work is orcanized as
follows: in section II, we construct a representation for the
collective subspace S when the overlap <al|a'> is a HFilbert-
Schmidt kernel in the space of square integrable functions.Fur-
thermore we discuss in detail under what conditions Fa. (3) and
Eq. (4) are equivalent. As an application, in section TITI we
consider the cenerator coordinate method applied to the
Lipkin model which is a particular case where the diagonaliza
tion of the hamiltonian in the collective subspace S is ecquiva-
lent to the solution of the CHW integral equation. In section .

IV we present some concluding remarks.

(:) THE OVERIAP <g|g}> AS A HILBERT-SCHMIDT KERNEL
A. M representation for the collective subspace
Consider the case where the overlar <g|a'> is a Hil-

bert-Schmidt kernel in the space of square integrable functions,

i.e.

fAi ' | 1) < oo

(6)

In this case, there is a decomposition of the kernel in ortho-

. . 6
normal eigenfunctions
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where the un(g) satisfy the eigenvalue ecquation

n

f@\s_‘) () do’ = X, 0w () (8)

If we include the eigenfunctions of zero eigenvalue, the func-
tions un(g) form an orthonormal base in the space of functions6

T ou () W) - S(x-a)

n

j”‘:("—‘) u,n,(g) do = Sy

n

An important property of the Hilbhert-Schmidt kernels
is that if the eigenfunctions of eigenvalue different fror zero
span a space of infinite dimension, An has a limit point for
A=0 and this is the only pbssible limit pointG. In what follows
we will denote the suhspace of the function space spanned by
the eigenfunctions of zero eigenvalue, the null space, by Lo
and, the subspace spanned by the eicenfunctions of eicgenvalue
di fferent from zero, its orthogonal complement, by Ll .

Tt is shown in the appendix A, that due to the proper
ties of the spectrum of the Hilbert-Schmidt kernels, the many-

body vectors produced hy the GHW ansatz

1§ = jéﬁ > [&) | (9)

form a linear subspace of the many-body Hilbert space which is
however not closed except in the special case when Li has finite

dimension. In order to remedy this undesirahble feature we note
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first that since the functions {u (a)}form a base in the space

of functions, the vectors

nD = JU-“(«:O x> dx

form a complete set in the subspace (in general not closed)
generated by the ansatz (9).

The norm of the states |n> is equal to

<’V\\n'> = }‘-M SV\Y\' | (

The consequences of Eq. (10) are the followino:

a) The eigenfunctions of the overlap kernel <a|a'> with ze

eigenvalue give rise to vectors of zero norm in the mans

body Hilbert space

fo[t_x_ w () [«> = o 12 =0

b) The 1A, are semi-positive definite, since they are norm

vectors defined in the many-body Hilbert space.

c) The vectors

‘“> 0o, L/z\ pE ()\ O Ix () |xD

for A, # 0, are orthonormal vectors
It is also shown in the appendix A that the clo:

subspace of the many-body Hilbert space generated by the

normal states {|n>} is in fact the closure of the linear
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produced by means of the GHW ansatz. This subspace, defined by

means of the projection operator

]?; =::E:: \i%f><(jﬁ \ )

N, A ¥

is what we call the collective subspace.When this space is of
finite dimension, the norm of all vectors |n> , BEq.(10), has a
lower bound (the smallest non-vanishing eigenvalue) and as a
result of this the linear space generated by Eq. (9) is closed
and equal to the collective subspace. It is in fact the existen
ce of eigenfunctions of the overlap kernel with arbitrarily
small eigenvalue which gives rise to dificulties in the general
case. One important point that emerges from the ahove consi -

derations is that if we do not restrict the weight functions to

belong to the subspace Ll’ the correspondence between the
weight functions and the vectors of the many-body Hilbert
space is not unique. It becomes unique only if £(a) belongs to
LL' In what follows we will restrict f(a) to Li.

The existence of eigenfunctions of the kernel <ala'>
having zero eigenvalue is a manifestation of the fact that the

generator states are not linearly independent. This is a direct

consequence of Eq. (10). Also using Eq. (11) we have

gé .
)= () w17 2
na_AM*O
which can be written as

) = | d=x' Py (&) 2>




where
E ' ) W ("“) w (°‘)
| ("‘,d =Z ; mw = mn ‘= (13)

is the projection operator onto the subspace of the weight
function space spanned by the eigenfunctions of the kernel

<g|nf> with non-vanishing eigenvalue, L This shows that the

l.
generator states being linearly dependent, they are reproduced
by a kernel which is the restriction of a delta function to

the subspace LL‘
B. Biorthogonal bases in the collective subspace

In order to determine vectors |g> havina biortho-
gonal properties with respect to the generator states lg?l,

we consider the equation

<g?‘g'> = T (x,«") | (14)

This i1s in fact sufficient in view of the linear
dependence of the generator states as discussed in the
preceding subsection. Using Eq. (13), Eq. (14) can be written

as

DGR =) w @ @)

Eq. (11) now shows us that

A
<?.<'ﬁ> = (Zw) w, (%) (15)
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Using Eqg. (15) it is very easy to verify that the solution for

<a|n> 1is

(16)

ey = tnl)
@I (r)™

Using Eq. (15) and Eq. (16) we can show formally that

[t = [da ]y 1w>) o

n,,¥*0
The biorthogonal states |&> defined by the Eq. (16), however ,

do not in general belong to the many-body Hilbert space. To see

this consider

un(x )42 (x*)
32> - Z -

Eq. (18) shows that in general |a> does not have a finite norm

since, although un(i) is a normalized wave function,An has a
limit point for A=0. The only case where |3> is
quaranteed to have a finite norm is when Ll has a finite

dimension.

C. The equivalence between the solutions of the GHW
integral equation and the diagonalization of the

hamiltonian in the collective subspace.

Even though the |d>'s in general do not have a finite
norm they may still be useful if <&|f> is a well defined func-

tion in the space of square integrable functions, i.e.
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In the case when L, has a finite dimension, |3> has a finite
norm and Eq. (19) is satisfied. In this case the ansatz (9)
generates a closed subspace of the many-body Hilbert space
which is identical to the collective subspace. Furthermore the
biorthogonal representations (17) is a well defined represen-
tation for the collective subspace. The consequence of all
this is that the diagonalization of the hamiltonian in the col
lective subspace is equivalent to the solution of the GHW in-
tegral equation if we make the identification of the weicht

function f(a) with <&|f>,
(@ a1

In the case where the subspace I has infinite dimension the

1
|&>'s do not have finite norm and we see easily that not all

vectors defined in the collective subspace, which are such that

ETOINE N A BN

n'3¢t0

satisfy Eq. (19).

This means of course that there are vectors in the
collective subspace that cannot be expressed by the ansatz (9)
with a normalized weight function. In this case the bior-
thogonal bases cannot be used for a general vector in the col-
lective subspace. This has the consequence that the Eq. (4)
can have solutions which cannot be obtained by the solution of

the GHW integral equation. These are the states which belonag
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to the collective subspace but not to the linear space
generated by the GHW ansatz (which is in this case strictly
smaller than the collective subspace). It should be stressed
that the misbehaviour of the weight function for certain vec-
tors of the collective subspace is solely a consequence of the
representation in terms of the biorthogonal sets and therefore
has a purely kinematical origin.

We see also that there can be no"a priori" criterion
to decide whether the solutions found in the diagonalization
of some hamiltonian in the collective subspace can he obtained
by solving the GHW integral equation. This is a dynamical ques
tion which cannot be answered without the explicit use of the
specific hamiltonian. The discussion above shows that even when
the GHW integral equation is not well defined, the diagonaliza-
tion of the hamiltonian in the collective subspace is always

a well defined procedure.
@ GENERATOR COORDINATE METHOD IN THE LIPKIN MODEL

As an example of the approach discussed in the
preceding section we study the Lipkin model, which is a case
where L, has a finite dimension and the two equations (3) and
(4) are equivalent.

The Lipkin model is extensively studied in the
11terature7'8 and in what follows we will only review its
most essential features.

We have N fermions distributed in éQo N-fold
degenerate levels separated by the energy €. Each level is

characterized by a quantum number g, which is equal to +1(-1)
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for the higher (lower) level and a quantum number p associated
with the degeneracy in each level.

The hamiltonian of the model is given by

t o+
£ a o +—\-/- Z X @, a (20)
H=3 PE PT 2 p¢ T pT P-T p-g
T P‘)W"

Defining the quasi-spin operators

T %
3+ = Z aP-bl Q'P-L = 3-
11

Jz

T OZ;« a,?c_ (21)

1}
i -
-
9

we can easily see that they satisfy the following commutation
relations

[1, 7]-2% [%,7]-%0

(22)

Using the quasi-spin operators(2l) the hamiltonian (20) can be
written as

H=€J+3 (3 +17)

(23)

The Eq. (23) shows us that (H,J2)=0. Therefore Eq. (23) can be
diagonalized within each multiplet. In particular the ground

)|
state belongs to the multiplet J =4 N which can be seen by

noticing that the unperturbed ground state

+ + t
= Q G« e . O (24)
o) = Lo 1D
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is an eigenstate of J2 and J, with eigenvalues % N(; N+ 1)
and - -; N respective1y7. In order to use the generator coor-

dinate method we choose for the family of generator states a

family of normalized Slater determinants belongina to the mul-

tiplet J= -} N and parametrized in the following waye'
\%> = - .Lxﬁ(a-—z- J-D- /O> (25)
The overlap of two generator states is equal to

B8 - " (B

The overlap (26) is a periodic function with period 2m., We
therefore choose for the space of functions the space of square

integrable periodic functions and restrict them to the interval

(-1, ). In this space the overlap <¢'|¢> is a Hilbert-Schmidt

f ""’f“"’l@'l@l ‘”‘(2”1 < o

kernel,

(27)

The eigenfunctions of the kernel <g'|g> satisfy the equation

[ 145 wnd) dg = 2 w9
°x

which has the solution
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{ .
i NZEN‘IN '/-g‘m :
o ing 2 (2'"”0- ('Z '").
AN 'E 2 0 n .> _{_ N
0o v\(--z":/\/ (28)

The many-f:ody states
w

T _ N
e © 19 d¢ =0 > z,\

-X

have zero norm and the states
Y
{ ingd
=N LT by A -
\“> = (23- Z.\’A\LIZ .Jr -

are orthonormal vectors in the manv-bodv Hilbert space of the

|\'l pd

{ng g

model and form a base for the collective subspace S.

N
Z
B =) WS
< -N
2

So we see that the Lipkin model is a case in which LJ. , and
therefore also the collective subspace, have finite dimension.
In particular the set |Ti > is related to the usual J, represen
tation by means of an unitary transformation anrd therefore the
collective subspace is the same as that cenerated by the stan-

dart multiplet J= -;- N ,'-;- N < <;. N. The existence of

z
eigenfunctions of the kernel with zero eicenvalue iinplies
that the | ¢ >'s are not linearly indebendent, the linear deren

dence being expressed by
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3 in(d-4)
£ WY e |47

Pi
=
W
{

Y4

The states hiorthnaonal to the states [¢> , on the other hand,

obey the eaquation

3 Y
<:é>|‘#l>> = fi:(ﬁén%;) ==:§:: 4;_23;___;

n=z - &
and are thus gixfn hv ¢
B z - L11{>
_ 2 m
‘¢> - Z (2"? 2‘»4)&/2 \ >

ne.-N
2 (29)

As discussed in section III (see Eq. (29)), |$> has a finite
norm in this case and we can construct a representation for

Ps in terms of the biorthogonal states.

P, = |4p185¢a) - | o 190K

The diagonalization of the hamiltonian in the collective sub
space is therefore equivalent to the solution of the CHW
inteagral equation. This tell us that in the Lipkin model the
generator coordinate method with the generator states given

by Eq. (25) gives the exact solutions.

@ CONCLUSIONS

The preceding discussion lead us to the followina

conclusions:

a) In the case where the subspace generated by the eigenfunctions
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of the kernel <a|a'> with eigenvalue different from zero has

finite dimension, the GHW ansatz (9) generates a closed sub-

space of the many-body Hilbert space. Furtherﬁore, the sub-

space generated by Eq. (9) is identical to the collective sub- n
space S and there is a well-defined representations for S in

terms of states biorthogonal to the generator states. In this

case the diagonalization of the hamiltonian in the collective

subspace is equivalent to the solution of the GHW integral

equation.

b) In the case where the subspace generated by the eigenfunc-

tions of the kernel <a|a'> of eigenvalue different from zero

has infinite dimension the subspace generated by the ansatz (9)

is not closed. 1Its closure is the collective subspace S. In .
this case it can happen that the diagonalization of the hamil

tonian inS leads to state véctors which cannot be obtained by '
solving the GHW integral equation. To understand this behaviour

in the case of infinite dimension one may, following Ref. 9 ,

first consider the case where S has finite dimension. In this

case Egs. (3) and (4) are equivalent. When the dimension of S

increases there are solutions of Eq. (4) such that the norm of

the weight function f(a),

f(?." = <°Z,]C>

increases without bound even though |f> has a finite norm. In

the limit when the dimension of S becomes infinite the norm of

f(a) diverges. These are the solutions which canr;ot be found ‘
by solving the GHW integral equétion. Note however that the

divergence of £(a) does not mean that the corresponding many-
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body vector also diverges,

It is important to notice that the question whether
the two equations have the same set of solutions cannot be
decided without the explicit use of the hamiltonian. This
fact tells us that there is no guarantee "a priori" that the
GHW integral equation can have solutions with a square
integrable f£(a). This difficulty can be avoided by noticing
that the diagonalization of H in S is always a well defined
procedure.

Finally we have shown how to construct an explicit
orthonormal representation for the collective subspace S.This
allows us, in‘principle, to solve Eq. (4) and to investigate
the definition of appropriate collective dynamical variables.

The generalization of the present treatment to
general overlap kernels is under iﬁvestigation and will be

subject of a separate publication.
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APPENDIX A

We show that a) the linear space generated by the
GHW ansatz, Eq (9) is in general not a closed subspace, and
that b) the closure of this space is the collective subspace S.
This can be done easily by considering a normalized many-body

vector in S written as

0
l%>:;,a.,i“ 5>, ) gl -t

We also introduce the sequence of vectors

h=L, ), %0 (A.2)

which clearly converges to |g> as N + o , It is easy to check
that each of the vectors IgN> can be generated by means of the

CHW ansatz with the square integrable weight function g(N)(g)

agiven by
N
(u)( ) Z Qn Ly ()
«) = Y 2
8 H:J—, }M*o (A‘V\) (Ao3)
i.e.

9" = f g% %y dx

(a.4)

The desired results now emerge when we consider that the eigen-

values A have zero as a limit point. In fact, there are vec-
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tors satisfying Eq. (A.l) and that are such that the corres-

ponding sequence of functions g(N) (o),

Eq. (A.3) diverges in
the weight function space as N + ®» , The norm of these func-

tions is, in fact

jlg(n) i _l_gzl’_i

n=d, A\ #9 (A.5)

the convergence of which is not guaranteed by (A.l) in view of
the decrease of the ln for large n.
We see thus that, by means of Eqgs. (A.2), (A.3) and

(A.4) we can generate a sequence of vectors each of which has
a well defined weight function that will converge, in the col-
lective subspace, to any pre-assigned vector |g> . This proves
b) . The corresponding sequence of weight functions, however,
will not in general converge in the weight function space Ll'
so that not every vector in S can be associated with a weight
function. In this case, the Cauchy sequence (A.2), which lies
in the linear space generated by the GHW ansatz, Eq. (9), does

not converge in this space, thus proving a).
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