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ABSTRACT

It is shown that a nonlinear field theoretical model with
logarithmic nonlinearities exhibits the phenomenum of confinement.
There is no'elementary particle associated to the basical ffe]d of
the Lagrangian. On the other hand the solitons of the model work
like bags where’the QUantum excitation can live. Forces of the

harmonic oscilator type trapps these excitations within the bags.

(*) We have reported some of the resu]ts present here at the "Topi
cal Meeting on Non-perturbative Phenomena in Field Theory",CERN
(july - 1976) '
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INTRODUCTION

The success of the Quark Model and the nonobservability of
what would be the ultimate Constituents of matter has led to a va-
riety of proposals for the explanation of why Quarks are not seen.
However there is no Concensus among the various researchers on
which mechanism prevents the Quarks of showing up in a scattering
process. This question is still more difficult to be settled
within realistic (three dimensional) field theoretical models.

In this paper we intend to present a Local Field theoretical
model which exhibits confinement. Classical soliton-like solutions
of this model exhibits features which are characteristic of the
so called Bags(]). The trapping of the constituents (Quarks) is
due to an harmonic oscilator-like force which binds them together.

Section I is devoted to the introduction of the model and
discussion of some of its classical solutions. In section II we
discuss the classical stability of these solutions (and the
related Quantum fluctuations). Although the material of these
sections are not new (see for example ref. 2-4), they are impor-
tant in order to understand the whole pictures of confinement

which is present in section III. Section IV is left to-conclusions.

I. The Model - Classical Solutions.

The model which will be studied here was proposed, within a

(2)

different context, by Birula and Mycielski . It 1dis defined by

the following Lagrangian density:
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Where A, £ and a in (1.1) are dimensional parameters and d
is the number of spatial dimensions.

The Euler-Lagrange equation resulting from (1.1) is
4 X4 .d-1 - A
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Two conserved quantities which we shall exploit later on are

(1.2)

the energy and charge. They are given by:
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In ref(3) we have presented a large class of solutions of e-
quation (1.2). Of specia1 interest are periodic solutions of the

form:
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Where A(w) is given by
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We recall that each one of these solutions describes an ex-

(1.5)

tended object (Hadron) in its center of mass reference frame.Such
Hadron-like solutions are interpreted as Bound states(5) or

resonances (4) .

II. Classical Stability and Quantum Fluctuations

After one has discovered a Classical extended object a rele-

vant question which must be answered is concerning to its stabili

ty. This problem can be placed in the following way: suppose that




¢(§,t) is another Classical solution of equation (1.2) which

differs from ¢w(2,t) by a fluctuation e'imtq(f,t) (supposed to be

small at least for t=0)
P(Rt) = 4’()(,*-) y & ’7(’? 1t)

We say that ¢w(?,t) is stable if q(?,t) remains bounded in

(2.1)

time. In accordance with the criteria of infinitesimal stability
one has to check if the solutions for the linearized equation for
“(?,t) satisfies this requirement. The linearized stability equa-
tion is obtained by plugging (2.1) into equation (1.2) and retain
ing, (in the Taylor expansion around ¢w(;}t)) up to Tinear terms
in ‘n\(i,t).

« ] The procedure sketched above leads us to the following linea

rized stability equation for the fluctuation(4).
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We would l1ike to call the attention of the reader to the re-

semblance of equation (2.2) with the harmonic oscilator equation
in Quantum Mechanics. In Ref.(4) we have obtained the solutions

of the stability equation. They can be written in the form:
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Where A{ki} is a rea] constant, hki is the Ki-th order nor-

: malized eigenfunction of the harmonic oscilator, while
K= 2 g
A=A (6)

2&;{} in (2.3) stands for the so called stability angles 6




They are given by _ ‘ —3——7
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With respect to the stability of the solutions (1.5)we should say

that the main features which emerges from solutions (2.3 ) are:

There are stable solutions and unstable ones (Some of those
corresponding to k=0 in (2.4». Instead of discarding those unsta-
ble solutions we have suggested(4) that they are Classical mani -
festations of resonances.

A11 stability angles are discrete. As we will discuss shortly,
this is a consequence of confinement.There are no asymptotic states
of the basical field of our Lagrangian.

We mention that before quantization the fluctuations given
by (2.3) will be related to the quantum excitations around the so-
-11ton. Since these fluctuations are eigenfunctions of an harmonic
oscilator like equation it is clear that they are confined near .

the soliton.

III. Confinement:

We .intend to show in this section that thereare no particles asso
ciated to the "elementary" field ¢ which appears in the Lagrangian
(1.1). This is, essentially, due to the fact that one cannot in-
troduce quantum fluctuations around the Vaccuum ¢=0.

In order to see this, we shall place our systems in a"cubic"
box of volume Ld. We shall impose also periodic Boundary condi-
tions. Later on we will perform the Thermodynamic Limit L-w,

Now we will seek for plane wave type solutions of (1.2) (we

recall that these are solutions associated to the excitations of jj"°

the vaccuum) with finite charge. We write




ke - t)

P, nt) = ARw) €
Z, W

(3.1)
After substituting (3.1) into the equation of motion (1.2)we
-
will get the following restriction for 4{&,&)}
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The energy associated to (3.1) is
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On the other hand, the charge associated with solutions of
the form (3.1) is
| ;. d
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expressing|A|2 in terms of the charge - By using (3.4) - and subs
tituting in (3.2) we shall get
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While the expresion for the energy in terms of the charge

(3.5)

is 4
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If we require that the charge Q be kept finite in the Lo
limit, there are only two possible behavior for w‘compatible with

such a requirement. Namely:
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The point which we would 1Tike to emphasize is that whatever
the case (w»>= as in (3.7) and w+0 as in (3.8)). The energy will
allways be infinite if the charge is kept finite (see (3.6)).The
refore we conclude that there are no (free) observable elementa-
ry particles associated to the basic field of the Lagrangian.

The. confinement of the "constituents" of matter,in the above
mentioned sense, is associated to the nonexistence of the weak
field 1imit, which on its turn is a consequence of the nonanaliti

city of the Lagrangian interaction at l¢|2= 0.

IV. Conclusion:

We have shown that there are no free particles having finite
charge and energy aSsociated to the elementary fields. That leads
us to the possibility - in terms of particles - of having only
composite particles in the theory in such a way that the consti-
tuents does not show up freely (confinement). Such Hadrons indeed
exist, and their manifestation at the Classical level are the SO
called solitons.

In order to complete our picture of the soliton as a Bag we
shall analyse the nature of the fluctuations around the solitons.
We would 1ike to recall that inspite the nonexistence of Quantum
excitations around the Vaccuum (pF= 0), there are Quantum fluctua
tions (represented by‘q(i,t) in (2.1)) around the soliton whose
main features are:

1) these Quantum fluctuations are practiéa]]y zero for any
region of the space outside the region delimited by the soliton
(which in our example is similar to an hypersphere of radius Q)

2) the spectrum of these Quantum excitations is a discrete



one. That means that there are no scattering states of the consti
tuents (whose evidence is manifested by the continuum in the sta-
bility angle spectrum).

In this way the soliton works like a Bag. It holds the cons

tituents inside a region of space delimited by its "Boundaries".

This strong Binding has its origin in the Harmonic Oscila -
tor nature of the forces trapping the quantum fluctuations. At
this point it is worth mentioning that there are many papers in
the scientific literature which tries to confine quarks putting
by hand the Harmonic Oscilator potentials. Within our approach
this picture emerges in a very natural way.

In resume, we can say that the main features of a Bag,within
our semi-classical description are: |

- Free "elementary" particles does not show up.

- Quantum excitations are also confined within the Bag.

- The discrete nature of the stabiiity angles (this is not
dissociated of the earlier property). Within semi-classical
approximation this imp]ieé a discrete spectrum for the exci
tations.

A similar picture is achieved within the quantized (semi-

classical) nonrelativistic version of this mode](7).
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