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ABSTRACT

A relativistic expression for the energy density as
a function of particle density for solid neutron matter is obtained

using Dirac's equation with a truncated harmonic potential. Ultra

baric and superluminous effects are not found in our approach.




1. Introduction )

In the past few years special attention has been de-
voted to the problem of the possible solidification of the core of
a neutron star (Canuto, 1975). Several attempts to calculate the
equation of state of the dense neutron matter have been published.
In our opinion the most plausible ones are those of Banerjee et al
(1970), Canuto and Chitre (1974), Pandharipande (1973) and Guyer
and Takemori (1975).

Banerjee et al. (1970) proposed a solid - body model
for the dense matter at zero temperature. The neutrons are assumed
to form a body-centered cubic lattice, with a lattice parameter A.
This approach is based on the assumption that when the nuclear forces
become sufficiently repulsive, a possible minimum energy state can
be achieved by keeping the neutrons as far a part as possible by
localizing them at lattice sites. The calculations are done in the
harmonic approximation using the classical Debye model with Reid's
soft core potential as the interaction between neutrons. All cal-
culations were performed in a non-relativistic approximation.

Canuto and Chitre (1974), used a non -relativistic
quantum-mechanical treatment to calculate the energy of the neutron
lattice. They assumed that the neutrons oscillate harmonically
around their equilibrium positions at the lattice sites. The
characteristic frequency w of the harmonic oscillator and the
spread of the wave function of the particle are assumed to depend
on the lattice distance A . The frequency w is obtained by the

Hartree method taking the two body nucleon -nucleon potential as
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Reid's phenomenological soft-core potential. Correlations between
pairs of oscillators are taken into account. In addition, a FCC
structure for the neutron lattice was used to obtain the lowest
possible value for the energy of the particles. They considered

15 g/cm3 and have shown that only for den-

15

densities up to 8 x 10
sities larger than 1.5 X 10 g/cm3 the lattice is stable.

On the other hand, Pandharipande (1973) and Takemori
and Guyer (1975) analysed the possibility of solidification using
several versions of Reid's interaction. They conclude that for
none of these no liquid - solid phase transition is found for den-
sities up to 5 X 1015 g/cm3 .

In our opinion, the problem of solidification remains
unsolved and we can only speculate about this point.

If solidification is possible relativistic effects

1 3
> g/cm” ,

will be significant for densities higher than 2 x 10
since the region of confinement of the neutron (see Camuto and Chitre)
will be smaller than 0.8 fermi , comparable to the neutron Compton
wavelength, which is about 0.2 fermi .

In the present work our purpose is, assuming that the
core of the neutron star is a solid, to obtain an equation of state
for densities higher than 1015 g/cm3 taking into account relati—
vistic effects. We evaluate the relativistic eigenvalues for the
bound states of the neutron using Dirac's equation.

To carry out the calculations we assume that: a) the

neutrons are arranged in a lattice, b) they vibrate around an

equilibrium position under a potential V(r) that is harmonic for

r < a and is constant and equal to VO = _(1/2) mwza2 ’ for
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r » a ; c) since the vibration frequencies are extremely high we
neglect correlations among neighboring neutrons.

This model can be justified by the following argu-
ments: the very strong gravitational field in the core of the star
tends to confine each neutron inside a cell delimited by surrounding
neutrons.

Several forms for the nucleon -nucleon interaction
potential have been employed during the last twenty years. The
best theoretically understood model for the nucleon forces is based
on the exchange of mesons between two nucleons.

Walecka (1974) proposed a theory for a highly con-
densed matter assuming that the nucleons interact via scalar and
vector mesons. He solved the field equations, for uniform baryon
density, replacing the scalar field by their expectation values:
¢ » ¢, and Au—>i6u4AO = iéu4‘«f.

This approximation was first employed by Zeldovich
(1962) for a pure vector interaction.

Using a different approach for the strongly inter-
acting system of baryons, Bowers et al. (1973) considered only the
pseudo-scalar mesons.

However, as one can see explicitly in Walecka's work,
for high densities, the pseudo-scalar mesons play anegligible role
and the vector mesons dominate.

We assume, according to Walecka, that the vector
mesons play a dominant role and that X = 0 and A, = i Y.
Furthermore, ‘f is taken as soft, that is, with a finite maximum

at the origin (Otsuki et al. 1964). We must note that this last
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approximation will not be rigorously consistent with our scheme if
more mesons than vector mesons are needed to describe the soft-core
at the origin. However, up to now, this is an open question (Ca-
nuto 1975).

So, in our model, the neutron inside the cell feels

an average potential < ¥ > = V(r) which is soft and that, for
simplicity, is assumed to have an harmonic shape. The maximum
value for V(r) is Vo -

Assumption (c) is equivalent to an Einstein model of
a solid and it seems to be justified in the relativistic case be-
cause very high vibracional frequencies appear due to the confine-
ment of the neutron.

A similar procedure was adopted by Cazzola et al.
(1966) but, instead of the harmonic cell, they have used a square
well. Our description, involving a harmonic potential seems to be
more realistic than the previous treatment since the nucleon-nucleon
interaction, as required by the experimental facts, is soft.
| In section (2) we shown how to obtain the eigenvalues
for the bound states of the neutron corresponding to the model
stated above.

In section (3) we use the results of section (2) to
obtain an energy per particle-density relation that is compared

with the non - relativistic calculations.




2. Solutions of Dirac's Equation

Let us first solve Dirac's equation for the harmonic

potential.

Considering the radial Dirac's equation (Plesset 1932;
Messiah 1966) and assuming that A =0 and Vv = —%— Kr2 (see
section 1), we have:

dr 2

a _ XRa+[‘l‘9—'—§+ v ]Rb (1)
dr r he he
dRrR 2
b='XRb+[mc + E _ V]Ra (2)

dr r he he
where Ra and Rb are the small and large components,
respectively, and x = - (£+1) if j =2 + 1/2 and X = + 2
if 3 =2 -1/2

1/2

Defining kEmwz, E = (Illfil”—)/ r and E =
= n ho + mc2 , equations (1) and (2) become:

dr .

—a - X R, + (e_ + A E%) Ry (3)

dag €

dRrR

_b _ _ X Ry + (e, = A EZ) R, (4)

ag 1

1/2
where €_ = ne , e+=ne+—2—,A=% and €=(f1w2) .
- € mc

One easily verifies that for e+ 0 (Nikolsky 1930) the non-

relativistic 1limit is obtained, namely, Ra + 0 and Rb obeys
the radial equation for the non-relativistic harmonic oscillator:

2
d2 ___.__“2;1) - 2 4 2 R = 0
dag £




.
{
Equations (3) and (4) can be solved by expanding R,

and Ry into power series. For x =+ 2 (j = 2 - 1/2) we have:
..
L € 2m
R, = E° —= ) A E (5)
a 2 m=0 m
and o
+ 2
R, = gz 1 ) B, & m (6)
m=0
where Ao = 1,
A = 1 €48- Apa + AR [ €+ _ € } _
2m | 28 +2m -1 2 {2042m -3  28+42m - 1
A
_ A2 m=-3
22 4+2m - 3
for m>1, with A_ = 0 and
B = £ [e A - AR ]
m 2020 +2m+1) L t W -1
For x = - (£+1) (3 = 2 + 1/2) we have:
..
242 2m
R, = E Y £ (7)
a o B
and o
Rb = £2+1 2 Bm g2m (8)
n=0
€_ 1 €, 5_2
where Ao = ——, Al =" + A ’
22 + 3 20 +5 2(22 + 3)
€, €
1 + “- 1 [ ]
B, = -3 -— B, = —5— | €, A, =ARA ,
1 2 (2% +3) ’ 2 4 + 71 (o}
A, = 1 [ e. B, + A By ] ’
22 +7




€. € ' £ €
1 +5— + -
A = A . + ADA__ [ - ]
m 2% +2m + 3 [ am 07l =2 { -z 2m '
Az m=-3
- for m > 3
2m - 2 v
and B = 1 €, A - A A for m > 1
m om + “m-1 m-2 - :

It is in general not possible to write Ra and Rb
in closed form. This can be done only for € = 0 .
Figures 1, 2, 3 and 4 are a plot of Ra(E Y/E and

Rb( £)/E as function of £ and € .
(INSERT FIGURES 1, 2, 3, 4)

Figures 1 and 2 show the case yx = +4 with g =1
and n = 5/2 ; figures 3 and 4 show the case x = - (2+1) with
£ =0 and n = 3/2 .

For € = 0 (non-relativistic limit) we obtain from
equation (6) that R = £ exp(-§°/2) for x = - (2+1) = -1

2 exp(-£2/2) for x = +2 = +1,

and from equation (8) that Ry =
which are the radial wavefunctions for the harmonic oscillator for
the states 1ls and 1lp , respectively. From equations (5) and (7)
we see that Ra = 0 , in both cases, if € = 0 .

For € > 0 and for very large values of § we see
from equations (3) and (4) that Ra = cos(A 53/3 + 68) and Rb =
= - gin(a 53/3 + 06) which means that the neutron cannot be bound
by the harmonic potential. This effects is known as Klein's paradox

(Klein 1929, Plesset 1932, Tomonaga 1968). We shall show that with

a truncated harmonic potential, bound states do exist.

The radial eigenfunctions for the constant potential
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V(r) = Vo can be found from equations (1) and (2). It is known
(Cazzola et al. 1966) that the eigenfunctions that correspond to

bound states are:

. 1 n
R, = v e - Vo 1 £ hé,) (ig&/e) w e(e - vo)
and y _ (1) (9)
Rb = e -v, + 1 £ hz (i g&/e)
2 2 .
where e = E/mc” , v, = Vo/mc , ' =24+41 for x=- (2 +1) ,
L' = 2 -1 for x =2, e(e-—vo) is the signal function of e -
= Vgt % the parity of the state, hél) the spherical Hankel
functions of first order and q = /ri - (e--vo)2 is real.
The complete eigenfunctions w;nt and wint for
r < a are:
. R
int _ a
wa - 1 Cint 3 YIE':]
R (10)
lpint = C b
b int £ 23
For r > a we have:
ext _ — — (1) . v ~
VXY = i Ve - vy - T hyy! (igE/e) & ele - v) YIE,J.
(11)
- .ext  _ = — (1) .
Vet = Copp Ve -vg + 1 hy (i q&/¢) y’;‘j

where Ra and Rb for x = + & are given by equations (5) and
(6), respectiﬁely, and for x = - (£+1) by (7) and (8), respect-
ively, Cint and Cext are normalization constants and Y?j the
function os the total angular momentum (j ,m) , formed by the com

position of a spin 1/2 with the spherical harmonics of order L .

For r = a , corresponding to £ = ea/ X , where X




is the Compton wavelength of the neutron, we must have ll’;nt =

_ ext int _ ext .

= wa and ¥ = wb . This gives: .
Ra(ea/ X) ] Rb(ea/ X) " .

cle-v. ) w
O

S e=v_-T hé];) (iqa/X) /e=v_+T ni (1qa/x)

(12)

From this relation we can determine the energy levels

e 1in a graphical way.
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3. Density of Energy and Comments

In this section we obtain the density of energy u
as a function of the density p of the neutron matter at zero tem
perature. According to the model suggested in section (1), we have
u=mne, , where n is the neutron density and e, is the ground
state energy of one neutron for a given lattice distance A .

To calculate e  we proceed as follows: we fix a
in equation (12) and look for a potential Vo that gives the min-
imum value for the ground state energy e of the neutron. This
minimum value is taken to be e, -

In all cases analysed here the wavefunctions are con
centrated essentially in the harmonic well. So, the lattice
distance A is given approximately by A = 2a .

Since Vo = (1/2) mwza2 the characteristic frequency
w depends on A and consequently on the matter density as occurs
in the model of Canuto and Chitre (1974).

We considered only two cases: (1) j = 1/2 , L =
= 1 (&' =0) and (2) j = 1/2, & =0 (' = 1) . These cases
are the two lowest energy states having the lowest centrifugal
barrier.

Following Canuto and Chitre, we considered the FCC
structure as the favorite for the solidified phase. Another
structure, like BCC, gives higher values for the energy.

In Figure 5 our results for the energy density

u (erg/cm3) , as a function of the density p (g/cm3) , are com-

pared with those of Banerjee et al. and of Canuto and Chitre. The




0

energy density for j = 1/2 and & =1 (&' = 0) will be indicated

by ul( p) and for j=1/2 and £ =0 (L' =1) by u2( p) .

( INSERT FIGURE 5 )

We observe that only for densities less than 4><1015

g/cm3 the energy density uCC( p) obtained by Canuto and Chitre

is lower than u2( p) . Our results ul( p) coincide with u
01

CC(p)

n 15

for p < 1 5 g/cm3 and are lower than u for p > 10

CC(p)

g/cm3 . For densities higher than 40 x 10ls g/cm3 ’ u2( p)

becomes lower than ul( p) .

For case (2) V0 varies from 0.35 up to 4 BeV when

15 g/cm3 up to 100 x 1015 g/cm3 . For case (1)

0l 3

p goes from 10

\) varies from 1.8 up to 4.20 BeV when p goes from 1 > g/cm

o

up to 40 x 1015 g/cm3 . These results are in agreement with the
generally accepted values for the strength of the nucleon - nucleon
interaction (Canuto 1975).

We have shown in section (2) that when e+ 0 the
non-relativistic approach can be used. On the other hand, as ¢
becomes of the order of, or greater than 1, the relativistic treat
ment must be used. Of course, € 1increases as p increases. For
our conditions, € runs from 0.5 up to 2.2, meaning that w

assumes values ranging from 3.7 X 1023 24

15

rd/s to 7.7 x 10 rd/s.

For p & 5.0%10 g/cm3, we can put, approximately,

uy 1013'25 pl'50 and u, = 1015‘45 p1'36 . So, for these

densities, the pressure defined by P = [ p2 %5 (u/p) ] is
T=0

given by P, = 0.50 uy and P, = 0.36 u, respectively. This

means that the sound velocity Cq divided by the light velocity
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e -

c 1is, in case (1), given by (cs/c)2 0.50 and, in case (2), by
(c/e)? % 0.36 .

Probably, somewhat better results can be obtained~by
taking into account the many body effects due to the coupling of
modes but this is not the aim of the present work. The purpose of
our calculation is to estimate the importance of relativistic

15 g/cm3 .

effects for densities higher than 10
An important result of our simple model is that
(c,/c)? is of the order of 1/3, rather than 1  (Canuto 1975).

Therefore, no superluminous or ultrabaric effects appear in this

model.
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FIGURE CAPTIONS

Fig. 1 - Ra(g)/E as a function of §¢ and ¢
and n = 5/2 .

Fig. 2 = Rb(E)/g as a function of £ and ¢
and n = 5/2 .

Fig. 3 - Ra(E)/E as a function of £ and ¢
= - (2+1) = -1 and n = 3/2

Fig. 4 - Rb(g)/g as a function of £ and ¢
= - (8+1) = -1 and n = 3/2

Fig. 5 - The energy density u as a function

The computed values are indicated by:

, for y =+ 2 =1
, for y =+ 2 =1
 for y = -
, for y = -~

of the density o .

Banerjee et al.

(— » — )

Canuto and Chitre (

( —— ) and our u, (- - -

4

our

)

) .
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