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Abstract

A simple way of computation is used to get the effec-
tive potential of the Coleman-Weinberg lagrangian in a one-

parameter class of gauges involving ghosts.

Resumo

Uma técnica de computacao muito simples permite a ob
tencao do potencial efetivo do Lagrangeano de Coleman-Weinberg
em uma classe de "gauges" de um parametro que contém os chama -

dos "ghosts".
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I. The problem of computing effective potentials has only been
solved by displays of virtuosism. Coleman and E. Weinberg's(3)

(5)

way and Jackiw's are examples of that: for anything but the
very simplest models, it is hard to get the one-loop
contribution and almost impossible to go further.

In 1975, S.Y. Lee and A.M. Sciaccaluga(7)introduced a
very clever way of computing the effective potential of the
theory, including two-loop contributions. Apparently they were
not much interested in applying it to gauge theories, where the
problems really are.

In this paper we do precisely that. After solving
some complications with the gauge—fixihg terms, one has a very
efficient technique that allows the computation of the effec-
tive potential up to (and including) two-loop contributions in
a one-parameter class of gauges involving ghosts.

Our version of the jﬁstification for the method is
given in Section 2. This justification, required by some
delicate points related to the gauge invariance, is, to our
knowledge, the only complete one. In Section 3 we apply it to
the Coleman-Weinberg lagrangian and compute the one-loop con-
tribution. A discussion about the choice of gauge is also
presented. The analysis of the two-loop contribution is rather

long and will be deferred to another publication.

2. Consider the lagrangian

(1) L9, 3uP) =5 duf dup - VP

rp?
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where U(p) is a polynomial in the scalar field”. It is easy to
see that in the classicgl field theory described by this la-
grangian U(p) is the energy per unit volume for that state in '
which the field takes the constant value e The generalization
of this quantity to a quantum field theory is called the effec-
tive potential. Is is defined in the following way(l): let the
functional generator of the IPI Green functions, F[p] ; be de-

veloped in a power expansion of the derivatives of the field,
4 ‘. | a )'a.‘....
(2) ~Tlpl = |d'2[Vip) + 5 Z (2

where V, Z,... are ordinary functions of(P V(P) is the effec-
tive potential.

The usual way to write Pﬁp] is of course,

ad]

o C
(3) ['ly] =2; iTJd*'.'du” ,(m,“-tn) @(m).-.p(tn)

where P(n)(xl,...xn) is the n-point IPI Green function.

Taking the Fourier transform and using the translation
(2)

invariance one gets
n ~(n)
{ ¥
(4) Mgl = 2. ;.-Jd‘[‘P“”J Mo, 0)
n .

the Fourier components being calculated at zero momenta. Compa-

ring to (2) one gets, for constant.?,

()

(5) V(p) = _§ -&F(o,».ﬁ)ﬁp
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which allows the computation of the effective potehtial in
terms of an infinite series whose coefficients are the IPI
Green functions of the theory. Though this is hardly a conven-

ient method of computation, Coleman and Weinberg(3)

used it to
obtain, with great ingenuity, the one-loop approximations in
some cases. Symanzik(4) has shown that V(@) is the expectation
value of the energy per unit volume in a state for which the
field has the constant value?). Clearly, in the tree approxima
tion, V(P) coincides with U(P) of equation (1). For a theory

in which the vacuum expectation value of the field operator

does not vanish, but has the value v, one has, instead of (5),

n
o) (9-v) .

~n)
LM,

(6) Vip) = - 2_

From this equation it follows that

V)| _ o

(7)
ay p=v

which allows the computation of the vacuum expectation value
as the solution of a minimum problem. This is, perhaps, the
most useful property of the effective potential: its connec-
tion with the spontaneous breakdown of symmetries.

Computing V(?) has been a hard task. The summation
of an infinite number of Green functions was performed, as
mentioned above, in ref. (3); functional integration techni-

(5), (6)

qgues were used by Jackim ; Steven Weinberg investigéted

the connection of V(Q) with tadpole diagrams. This last tech-
nique inspired a very clever procedure invented by Lee and

(7)

Sciaccaluga which is, to our knowledge, the only simple

and efficient way of computing V(P). The original presentation
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treated only very simple cases, however, and the power of the
method was, apparently, not recognized. We adapt it here to
gauge theories.
Consider, for simplicity, a theory with just one
scalar field, given by a lagrangian de(w,épif ). Introduce a

new field

p'(n) =px) -V

where v is an arbitrary constant. In terms of p' the lagrangian
!
becbmesdf(@i &»@“), with some new vertices which depend on v.

We can rewrite eqg. (4) as

o Mlowo) = 3 & 4% T, oy [prao o] L@ten +7 ]
Defining

r'Le'l = Mgyl

and resuming eq. (8), one gets

' i AN —“u. " '(2,)--Lp'“") .
(9) FLW:ZJ‘ R—!Jal“z.-- d'en [Mcr,. e)@

In the tree approximation rtwqcoincides with the
lagrangian<f20§ &*W'). It is then clear that f;‘Ti,. aw ) are
proper vertices computed with the 1agrangian<fz¢i®w¢'). Fou-
rier transforming eq. (9) one gets

X oon)

L
(10) r'ee'l =§: i—,—jd""[‘(""’_? (Mo, 0)

oY)
where [ (0,.--0) is the n-point proper vertex computed, in

/
momentum space, with the Feynman rules of the lagrangian de.




Going on, one has

) n

- !
_L -r:"Tr—'(o,...o)‘P
n .

(11) VI(g) =V (®'+V)

for constant.@'. It follows that

_f\i(l)
(12) avee'sy) = - [ oy .
o’ 90
As
dva'ro) | _ dverss) . dva)
(13) d! B d((ﬂ’f»l&) dy ¢:v
p-0 Phv =
equation (12) becomes
y ~ )
(14) A = AV = - Pco) .
d¢ dv

P:O

That is, one gets a simple differential equation involving the
/
tadpole term computed according to the rules of lagrangian é’.

Putting v=(P at the end, one gets the effective potential V(p).

3. We apply this method now to the Coleman-Weinberg lagrangian:

the electrodynamics of zero-mass scalar bosons.
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Our goal is to find the effective potential as a function of(ﬂ
and ¢, , that is, for A, =0. To our avail the U(1) global gauge
symmetry wil. be used: it says that V(Q u&) is a function

only of Qz+4r' , restricting the problem to that of determining

the dependence with, say, qz .

Let us first define the theory by choosing the fol

lowing class of gauges:

(16) £6:—2!-§(dw'4,uf~-§-(n(&)z

(9)

with the corresponding Faddeev-Popov term

(7 jFP:afa‘-.gi(fa‘—se‘)}c .

By introducing a new, shifted field @1:‘& - we

pass to the transformed lagrangian
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A P, -;—- (3.4 )0

—_— 3“*94 4&474 + -——(O’w‘oa)ﬂ,»@ ez'q/“'A"“ ‘P," -

(A
2
(18) )
i} %.A A9 +ev(a.,«p£)A,ﬁ - &’ An An P
A

<
3 2 A - ___ L] _ ___’__ 'p.LQ, -

P < <_pt
- 73] -%cw.»)«/&}z*éia £ pepror-ale

where, to simplify the notation, we omitted the prime of the

field operator.

The Feynman rules corresponding to this lagrangian

are given in Fig. 1.

Fig. 1

The one-loop tadpole diagrams are given in Fig. 2,

Fig. 2
and contribute
4 ()
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The renormalization performed here was the 't Hooft

Veltman's(s)

"pole subtraction". To be able to compare our
results to some existentﬂ ones it will be found convenient to
introduce below other renormalization prescriptions.

The basic equation that gives the one-loop contribu

tion to the effective potential is

twd g ,\u‘
9 AL e"o’}_i_ ‘BW(GQC)—-LL} e b
2 < 2
S 0 VAR e oL
() o

which gives

y Y { PR b A - 3¢’ fe®
¢ ( - ) < 16 or* .
V() = — re 28t e X4
< ¢ t
M, <e ) - AR ) B -ST S .
(75 (z ‘)W(T*s)‘/
3z nm? .
P
A, 2 _L+i~) |
2 A, Y ¢ _
(20) + 36.' A (3 £ ) 5 '%-(L"w -L)
lont 017 327°
2z 2
Putting v = ( @+ Y. ) and adding the zero-

2
loop term ~% Uﬂi+@:) » we have the effective potential up to
4!
one-loop contributions. If, following Coleman and Weinberg, We
use the renormalization prescriptions

vy
(21) 4

rA
AL 90




(22) 'V = A
a(p“‘l = R

the result will be

A < o\
(23 Vg, )= & (9 AN

sl o sAt L het e! j((p‘q(p:-)‘g(,ntﬁﬁ“%v-if

e F lsan 192n¢% 69mis®

For §-»o° (Landau gauge) one gets exactly the re
sults of ref.(3). Analogue renormalization prescriptioqs for %L
were omitted and made unnecessary by the use of the U(l) sym-
metry. Note that the gauge-fixing condition is compatible with
Aﬂ =0, the point at which the effective potential was calculat
ed.

Some more comments about the gauge-fixing terms
are in order. What we did was to define the theory according

(9) through the gauge-fixing and ghost terms

to Faddeev-Popov
given by eqgs. (16) and (17) and then shifting the theory, in-
cluding ‘[G and Je ., by putting 1 =¢,-v . This is
the cleanest way to proceed, but is not the only one. One
could think of acting in the following way: first, shift the
field ¢a in the lagrangian at eqg. (15), then add gauge-fix-
ing and ghost terms. In the shifted theory, one can then

compute the tadpole diagrams. By solving eqg. (14) one has the

effective potential of the theory without shift. But, in which

gauge? The natural answer is: in the gauge determined by the
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limit of the gauge~fixing condition 12 as vr—~>0 . We illus

trate this with an example.

Consider the lagrangian (18),omit the last terms, replace .

them by

2
‘Lpa=-z'-§(¢“4# - (';} ¢.)
- 2
doFP _ ¢ {ae _ _e_g____(g),+u)}c .

What we obtain is the Coleman-Weinberg lagrangian

in the well-known Rg gauge(lo). By proceeding in an analo-

gous way one has

<
(24) V = _%-(@,% Qr) +

21 <""~P( 28
SR set et L0 Jupsew) i SR el
* 4452 k bym?d 399ntE 1280383 .

This should be, if this procedure is correct, the

effective potential of the unshifted theory in the gauge

{Q = —-z-l-g (dw"!w)e.

Now, in this gauge, Jackim(s) has the result (one-

loop) :

d
(25) V = _ET_((P.‘+ gr) +
Y

n 64 It 192 n%%

AR
i sat o _3e _.ﬁﬂ._}(@%@‘)zz/’“———‘wm*f ‘Tj
+
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. which does not agree with equation (24). Hence, the second

approach is not. trustworthy.

One of us (H.F.) is grateful to J.Frenkel, R.K®ber

le and M. Gomes for discussions. The other two authors

acknowledge financial support from FAPESP.
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Figure captions

Fig. 1 - The Feynman rules for the graphs a)

by the following expressions:
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