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ABSTRACT

Analytical expressions for the projected-BCS energies
and reaction transition rates among the isovector pairing collec-
tive states are obtained by the recognition of symmetry properties
in a class of BCS wave functions. As a consequence, a simplified

generator coordinate treatment is suggested.
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Recently, two methods, namely, the projected-BCS approxima-
tion and the Generator Coordinate Method (GCM), both of which
conserve the nucleon number and the isospin, have been developed
to treat the isovector pairing collective states in medium weight
nuclei (Chen et al 1978). The most elaborate and time-consuming part
of the calculations lies in the restoration of the broken symme-
tries appearing in the generating BCS wave functions. To damp
the fluctuations both in the nucleon number and the isospin in
question obliges one to face a four dimensional Hill-Wheeler
projection integral which carries an integration over the gauge
angle and all the three Euler angles in isospin space. Therefore
the calculations in general become considerably more involved
than that of angular momentum projection for deformed nuclei
where a traditional simplification was made such that only one
of the Euler angles was taken into account in the éase of axial
symmetry. One is thus very tempted to seek a possible counterpart
of such an axial symmetry in the isospin case. It is the pur-
pose of this letter to report that our searching effort in this
direction proves to be fruitful. 1In recognizing the existence of
a class of wave functions which show some kind of axial symmetry
in isospin space we have been able to achieve a great simplifica-
tion of formerly heavy computations and been furnished with a
key to attack the problem of projected-BCS analytically. As a
consequence, time and cost are considerably saved in performing
projection. For some interesting cases, we even arrived at some
closed forms for energies and reaction transition rates by which
some physical features begin to show transparently.

It has been recognized for some time in the literature

(Ginochio and Weneser 1968) that in the ceneralized treatment of




isovector pairing with quasi-particle approximation, the solution

for the proton-neutron gap parameter, A is always zero for the

™’
lowest 07 states of even-even nuclei. This implies that the
quasi-particle vaccum state wavefunction is always reduced to the

following BCS product for the neutrons and protons separately:
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where U and V are defined by the quasi-particle transformation
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orbit with space-spin quantum number jm, and T=7T for proton and
T=v for neutron. Here 0 is a label that would distinguish
between the two kinds of quasi-particles.

Now the simplicity of the BCS theory is revisited. However,
the price one has to pay for this is that no way
may one assume any kind of axial symmetry which would simplify
the performance of the Hill-Wheeler projection to restore the
lost symmetries in the wave functions. On the other hand, in
keeping with the hope of finding such axial symmetry in the isospin
case, we have noticed that for self-conjugate nuclei, the solu-

tion Awﬁ=AvvéA;‘Aﬂv=0 can not be unique for the simple ;eason

that the wave function (1) is only valid for even-even nuclei.




There must be another solution which would apply to both even-

even and odd-odd. It is easy to prove that such a solution does

exist and leads to

A = A . = 0 ; A_ = A (3)
. The corresponding wave function is then given by
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If we apply the rotation operator R{g)=e 2 to this type

of wave functions with any value of A, + we find §|BCS>=§BCS>
which implies that this class of wave function does have the
symmetry properties which we havé searched for.

Of course, for the nuclei other than self-conjugate ones
these properties no longer hold true. However, due to the
charge independence of the Hamiltonian, the fact remains that
there are degeneracies in energy among the members of the isospin
multiplet and so it suffices to merely calculate the energy
of one of its members, namely Tz=0, the self-conjugate nucleus.
As for the reaction transition rates, owing to the Wigner-Eckart
Theorem it is enough to calculate the reaction rates for a proton
-neutron pair transfer from one conjugate nucleus to another.
For these reasons we would not lose any generality if we formu-
. late the theory by considering only self-conjugate nuclei. 1In

doing so, we are fully utilizing the symmetry property of the

class of wave functions which we have found. The analytical




results thus obtained are therefore the most general ones.

In the framework of the projected-BCS approximation, our
energy expression for a 2N-particle seniority zero state with

isospin T is obtained as follows:
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where H is the nuclear Hamiltonian. 1In arriving at this expre-
ssion we have applied to the wave function, |BCS>, according

to eq.(4), the Hill-Wheeler projection integral which carries
the integration over gauge angle 6 and one of the Euler angles R§.
The corresponding transformations in gauge space and isospin
space are 5(8) and R(B) resﬁectively. PT(cos B) is the Legendre
Polynomial.

If one uses the charge independent T=1 pairing Hamiltonian
and adopts the notations vj(6)=Vlﬂ(j)exp(%g)=vzv(j)exp(%g)
uj=U1v(j)=UZn(j) then the overlap functions <BCSI§(6)§(6)|BCS>
and <BCS|ﬁﬁ(B)§(6)|BCS> in eq. (5) can be evaluated by the proce-

dure describe in (Ehen et al 1978). The results are:
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where xj(e,e) = uJ + v (6) + 2ujv (6)cos B and ej are the single

particle energies, Qj pair degeneracies and G is the pairing
strength.

It is interesting to note that in general we can rewrite
these overlap functions in the form of a polynomial in v%(e)
and cos B by repeated applications of the binomial theorem.
After introducing such expressions into eq.(5) the calculations
of energy are then reduced to the evaluation of the following
elementary integrals
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This is the obvious result of applying the projection
integral in eq. (5) to a term of the above mentioned overlap
polynomials, say, (vg(e))l(cos )™

After some long and pain-taking labours, we finally arrived

at the following form for the energies

Egp = - I 2,6 + 3 [NO-3) + T(2+1)]c +
J | (8)

+ [A, (N,2, U, V)+B_ (N, Q,U,V) T(T+1)] Fp(n)
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with 1
Xp = N
z Cn(NIQIUrV) FT(n)
n=T »

where we have used the collective labels such as @, U and V for
91,92,...,0(1),U(2)... and v(1),v(2),.... The isospin function

FT(n) in the energy formula, is given by:

nd.
Fn(n) = -
T 2T(n+T+1)!!(n-T)!! (9)
with
n=T7, T7T7+2, T+ 4, ... , N

from which the recursion formula for the F-function is obtained

as

- n{n+l) - T(T+1l)
n(n-1)
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The isospin-independent coefficients A,B and C in eq. (8)
written in terms of U and V form an extensive expression which
can be found in (Kyotcku-1979). Here we only present the results for

the degenerate model:
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It is interesting to see that in this simple case by using
eq.(10) we are able to prove that the last term of eq. (8)

vanishes thus reproducing the exact solution with isospin.




To see the functional dependence of the energy on T(T+1),
we simply writé Fp(n) in eq.(8) in terms of F(N) using eq.(10)
and by so doing we eventually end up with the expression of a
quotient of two polynomials in T(T+l) if we limit ourselves to the
case of T<<N or we approximate our formula by replacing the lower
limit, of the summation in eq. (8) by some T-independent number.

If in addition,the Taylor expansion of the above quotient is
carried out, we finally would reach the form a+bT(T+l)+cT2(T+l)2+
...+ which immediatly reminds us of rotation-vibration model.

In order to test our formula we have performed some numerical
calculations with a semi-realistic four level model which stands
for the states of the pf shell. As expected we did reproduce
the results dbtained by the previous method (Chen et al 1978} where
the BCS wave functions were not chosen to be axially symmetric in
isospin space and, as aconsequence, we have been able to reduce the
computational time considerably. Because of this
reduction in time the FBCS calculations with isospin which implies
variation after projection become as practical as those without
isospin. This observation has been numerically confirmed by our
FBCS results which prove comparable with the exact solutions.

In order to calculate the transition rates for pair transfer
reactions we need to evaluate the reduced matrix elements of
the operator A;=[a§ X a;]J=O T=1  Noting that this operator no

longer commutes with ﬁ(a,B,Y), §(6), we have the following

expression for the matrix elements between the projected state

with isospin T and nucleon number 2N and that with T' and 2(N+1):
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where DﬁM" is the Wigner D-function. One should note that the

integration in eq. (11]) is now over all the three Euler angles a,

g and v.

After utilizing the same trick that was used to reach eq.

(8), we obtain
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The T-independent coefficients Dél) and Dé2) are in general

expressed in terms of N, @, U and V as found in (Kyotcku 1979). For
degenerate model, they are simply given by
p{l) (28-N)

(2)_ _
n " Cn and Dn = Cn

In this simple model, one is able to verify, with the little

effort, that for the transition, say, T»T+l1l our expression is then

reduced to JT!T#I}(ZH-N-T)(T+N+3)72 , that of the exact solution
(Hecht 1965).




So far we have been considering only the seniority zero isos-
pin yrast states. It 1s very tempting to treat the higher excited
states using the generator coordinate method with the generating
functions obtained by projecting out sharp isospin and nucleon
number from our axial symmetric BCS wave function (4). The gap
parameter Anv in U(3j) and V(j) is now used as the only generator
coordinate under the present assumption that the axial symmetry
ls preserved even for the excited states. The energy kernel
<PTPNBCS;A¢v|ﬁ|PTPNBCS;A$v> and overlap <P, P BCS;A> [P P BCS;AP >
involved in the Hill-Wheeler equations can be evaluated analytically,
as shown in detail in (Kyotcku-1979) by the method described above. We
are thus adding one more interesting example to those few cases
(de Toledo Piza et al 1977) where one is tempted to solve the Hill-
Wheeler equation analytically. However, we choose to test the validity
of the present approximation with GCM by solving the probler for four
level model. Our preliminary results do agree reasonably well
with the former one (Chen et al 1978). However further investigation
in all cases 1s needed to draw some definite conclusions as to
symmetry properties of the excited seniority zero states.

The great simplicity of the present methods, as compared
with their earlier complicated versions suggests that they might
prove powerful in the study of isovector pairing collective

states which are strongly populated by pair transfer reactions in

the medium weight nuclei.
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