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REFACE

These notes constituted a postgraduate course
given in the physics department of the University of S3o Paulo
during the winter semester (March -~ mcsmv of 1974,

The intention was to give a self-contained
introduction to the methods and results of algebraic Qsmbﬁca
theory =~ assuming a working knowledge of mcwuﬂcs field ﬂ:moww
(i.e. essentially the free field). Some effort was made to
develop the mathematical background of operator algebras, at
the cost of neglecting the Hilbert space aspects, mwwsosqr
wmmmm are perhaps more familiar. Further mathematical
background can be found, for example, in Dunford and Schwartsz
(1966) , Kadison (1967), Kato (1966), Lanford (1972), Naimark
(1964} and Reed and Simon (1972).

In chapters 1 and 2, some basic results concerning

- C*-algebras and Von Neumann algebras are presented. In chapter

3, canonical commutation relations are discussed, in hoth the
Heisenberqg and Weyl form, and Von Neumann's uniqueness theorem
is proved. It is also shown that it does Qzuﬁowmm0H_:RHQZMHM
many degrees of freedom.

In chapter 4 and 5, the axiomatic schemes of Seqal
and Haag and Kastler are presented, and some of their
consequences are given.,

The theory of the free charged bose field is
developed in detail in chapter 6,which leads naturally to chapter
7, the theory of mnﬁmnmmwmon»on.mmnwoww of Doplicher, Haag and
Roberts., |

Finally, in chapter 8, a two-dimensional model {is




@Hmwmﬁwmm~‘£rpor exhibits explicitly the philosophy mm<muowma _ _ é

in chapter 7.
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1. o* - Algebras

‘We shall develop here some of the basic theory of ¢’ -
algebras. The standart references are Dixmier (1969a), Naimark
(1964), Rickart (1960), and Sakai (1971). (See also Lanford
(1972) and Kadison (1967)).

The study of properties of general ¢’ - algebras can often
be reduced to that of a commutative algebra, which, in turn,
recuces wo.ﬂwm mﬁcaw of nounwucmﬁm functions on a compact
memQOHWm space. We shall begin, then, with Gelfand's theory of
commutative o* ~ algebras. This seems to be the natural mmwwwbm
for the spectral theory of self-adjoint operators on a Hilbert
space.

After this, we ovbmwmmﬂ ﬂmﬁﬂmmmbwmﬁuowm of 0* - algebras
{which is continued Hb_w.mus mﬁmmes their associated represen

tations, and some of their properties.

1.1) Banach Algebras

These first two sections are based on the

lectures of Simon (1972). . ._ |

1.1.1) Definition - A Banach mwmmvﬂw ASW¢S_Mam:nHﬁMV, |
GX, is a ooavwmx Banach space together with:
(i) an associative, distributive multiplication with
identity, { ;

(11) - ‘_mv= [ all |b] E£or mHH_m.vm.mH.n

A

(111) 44 = 1.
(Unless stated otherwise, we will assume that our algebras
have an identity).

1.1.2) Proposition - Let ({ be a Banach algebra.

Then the following hold.

a) The set, & ; Oof invertible elements of Qmu.m
open, and the inverse operation is continuocus from Mﬁ to Q.“




b) Maximal proper ideals are closed:

€y

¢) If x eQh, the spectrum of x,

fre¢ | x-21 28), is a compact subset of ¢

o (x)

&

d) For any x €0, o(x) # @ ;

e) Let x €0l. Then lim ||x"]| /n

>0

sup {|A]:A € o(x)}.

exists, and is equal to

Proof :°

~a) Let a € 4, and let b e & with |b]] < __.w....‘p.:“:u._. Then the

— o0 -t
geometric series a 1 uMo (ba Hvb converges in &4, and is an
inverse for atb. Thus, if ¢ €0l satisfies |c-a] < _m..“_._ "1, e
conclude that ¢ = a + (c~a) is invertible, i.e. ¢ is open.
Now let X * X in® as n » », with X s X e @ Then
-1 _ N -1
X~ o= (x + (x ~%))
-1 = ~1 n
= X Munoﬁx Cm..xu: for large n. Therefore.
-1 ._l .Imm - -1 = IH - n ’ e.r
xu X £ X Mnuw (x ~(x x:i + 0 as n > o,
B) Let M be a maximal proper ideal of Ol. Then M cannot R -

contain any invertible elements (otherwise we would have Mt = CL),
w.m_.. e < Qr/m By Awfa. is open and so 0Ngd is closed. |
mmvnmu.mm , the closure of M, is contained in OV 4. in @mn.ww.._
nuumn,_.wm. #0l. But M is an ideal .nonwmﬁium T and must there-

fore mm,.__m._mmnmw to M by the supposed maximality of 0.

nym.mn x €0\, and suppose |A|> J|x]l . Then the sum
| &».v ylu.x + ;.uu.unvm + e / ..
_aozﬁwwamw to (4 - »nwinw. But Axaiuw = T»,...f,_&...»nu.i..w and

so A £ 0(x): Hence o(x) is a bounded bubset of §.

Let ¢ be the map ¢:A » x - M . Then X € q:;,_, ifE _
x-2) 6§ iff r @ 3 1 (d). That is, ¢ * o (x) = e-pmﬁ . However,
¢ is continuous and 4§ ie open, so o(x) is nu.ommm. avmn&nonm

(%) is compact.
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3.
d) Let x efl, and suppose qﬁxvu&. The map e y+ﬁx;yv is an

antire function. m»uom qﬂxvlﬂ~ ¢ (x) has an inverse for all

-1

A e ¢, and s0 ¢ () is also entire. But, for _y—_wmwum~ we

have
-1 _ vl =1 g -l _\n
¢ (A) = (x-}) = (=}) Lo=g (A 7x)
+ 0 as |A| + =,

rwuo which is a contradiction.

By Liouville's theorem, ¢ (})
e) Let 2(m) = log ||x"]] . Then pﬁs+svmnﬁav+pﬁsv. Fix n ond
write kK = an+B, where 0,8 are integers swwr 0 £ B < s._aﬁmb
2(k) = al(n)+2(B).
Hence

(k) < ontn) , £(B) _ &(n) _ B, 8(8)

k nk "k 'n kn k

= MMM 2(k) < 2(n)

ing 20) < 4p 20)
k n R

iA

Therefore lim pﬁwy\w exists, and is egual to Hum_wawv\w. The -
result follows by taking exponentials.

ﬁmﬁ us denote this limit by anv |

Then HAxVAHsm__x:__H\nA__x__, and so H\_‘x__AH\Hﬁxv

If [A|<l/r(x), then @-ix)

has a series mxmemHOb_@H<mﬁ
U%_mmuoﬂyva. The radius of oosqmwmmbom Hm givenj precisely by
Al € l/e(x) = (1im :xﬁz M\v . In other words, (I - wxv H:
is analytic in _P_u. - /e (x), Uzﬁ not in any bigger disc. |
mosm<mﬁ_. e ..Lv 4~ Pun Hm entire, and SO its wb.qmwmm ..rm

analytic whenever it mxwmﬂm. This is whenever H.ﬂ.qﬁhyxv or .

A"lé¢  6(x). This holds if A is such that IA] < { sup __:w
_ xmaﬁu _




: | 4.
Thus (4 — Ax) % is analytic in the disc JAl < m.mm.,ﬂmwﬁ w..\_.
: — e
i sup | < 4 ,
Hence, by our previous reasoning, w:MWé3->,w £ \ﬂnnv 2
ie. rx) € sup At
Tm r(x) t. . : : -
But if :: > P(x) , we know that (p — %) has
a series expansion, i.e. A e ENoWw).
Hence mﬂ@. _Tg £ rix) , and so equality follows.
ne Gx) _

QED.

r(x) is called the spectral radius of x. It is the radius of the
smallest disc centred at the origin containing ¢(x), the spectrum

of x.

1.1.3) Theorem(Gelfand-Mazur)

Let U be a Banach algebra.

a) Suppose {0} U§ =O0L. Then OL=C.

b) Suppose Ol is commutative. Then ﬂﬂmﬁm is m.om&oawnmw vwe
jection between maximal ideals J C 0. and continuous non-zero ho-

' momorphisms, %, from Ol to C, given by J = ker £.

Proof. a) Let x €0L . Then o(x)# ¢, and so there is AEC
such that x-l ¢ m . It follows that x-24 =0, H.m.ku AL, some
rEC. | -

b) Let J €& be maximal. By 1.1.2, J is closed.

Tt follows that OL/J is a Banach algebra with respect to the norm

|| class x || = inf || x+3 |}.
A JeT - ,
Suppose OL/J contains a non-zero non-invertible element,

AN _
cla. Then (0L/J) cla is a proper ideal in (/J since it does not

contain c¢l4, m&m is not {0} . Hence oﬁw+q. the pre-~image of
(OL/J) cla under the canonical morphism O\ -+ chuﬁ Hm”m;wHO@mH
ideal in O which striectly contains J. This contradicts the
maximality of J, and so all non-zero elements of OL/J are inver-

tible. By a), /3 =~ €. If we denote this isomorphism by

By

-




ot

k)

&

5.
& ; and the canonical morphism Q»+ Qr\u by m , we see that
Do Mm_m homomorphism t& +€. The kernel of ¢y is exactly J.
To show that e.a_.wm continuous, $uppose the contrary. HWmm
there is a sequence a, € Ol such that o7 (a,) » -1 and a,~+0
as n+w. Then a, = G.im:ﬁ_. € J and converges to 11#J, which
contradicts the fact that J is closed.
._oon<mHmmH%~ Hmﬁ %: OL +€ be a non-zero continuwous woaosowl
phism, and let quwmw n. mx.g_mwnnm % is non-zero. Let a £ J.

Then any b & Ol can be written as

b= aib) 4 A b — a L) v :
B 16:) S 1(Y
_muwnm b - af (b) m.wmﬂ L= uyﬁsm see ﬁrmﬁ J is maximal.
2 (a) | |

We have, then, an mmmooMWﬁwos,vmWSmmw maximal Mmmmww- J,
and continuous homomorphisms, 2, with ker £ = J. This associa-
tion is one=-one since £ is Ssr@smww determined by its kernel.
Indeed, let 2 and &' have the same kernel. Then, for mum_w e oV,

we have a~(a)d € ker %, so a-2(a)l € ker &', i.e. £'(a)=¢(a)
QED .

1.1.4) Definition

A continuous homomorphism 0L+ € is called a multi-
waomﬂw<m linear functional, or a character.

1.1.3 says that there is a one-one oowﬂmmuosmmbmm_
between maximal ideals and characters of a oosasﬁmww<m Banach

algebra such that J «> £ if and only if J=ker &.

1.1.5) DPefinition

The set of characters of a commutative Banach al-

gebra, Ol , is called the spectrum of &, and is denoted SpdL.
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1.1.6) Theorem (Gel'fand) | | o 5
Let U be a commutative Banach algebra with spec- |
trum Sp OU . Then: | | -
a) SpOL is a w*-closed subset of the unit ball .Om ovx,
the dual of (L.
b) spl wm a compact Hausdorff space (with the induced
E»lwmﬁowomﬁ . _
c) Given x 6 00 , £ 6 SpOL, define x(L) = L (x) ._
- Then the function x on Spl, satisfiés ran X = og{x).
d) “:0L > C(SpO) is a homomorphism, and || x M, < __ x |].
Proof -a) Let £ € SpOl and let J = ker 2. Let x €0L.
Then x - L({x) 6 J and so x - £{(x) is not invertible, i.e.
2(x) € o(x).
But o(x) € {r] |[A| £ x(x)} -. and r(x) £ ||x]||. Hence
|2(x)| £ ||x||, and so 4 belongs to the unit ball of O*. _ e

Now let wg + ¢ in the w*~topology om_Qvf with each
2, € SpOL. Then, for any a, b 6, s, (ab) = & (a)t (b) converges
to n..nm;:uv (- this follows because _mgﬁmv | is bounded Guwmnﬁsww
in a). On the other hand, %, (ab) > &(ab). Hence % € SpOL.
-b) It is easy to see that the s,*lﬁowow_om% om. OL* is
Hausdorff. By the Banach~Alaoglu theorem :ucbm.ounm and Schwartz
(1966)), the unit ball of O* is E*JQOH_%WQW. Since sSpfl is a w*-clos—
ed subset of the unit ball of &*, it is w*-compact. |
:ov‘ As in a), (x) € o(x) for xell,2 € spll. Hence
ran x € 0 (x).
_ﬁmw A 6 o(x). Then x~X is not invertible, wsm S0 Umﬁosam to
some maximal ideal, J, say. H.mﬂ % € spbt be mco_w that ker & = J,
as in 1.1.3. ﬂwmb x-A6J implies that L(x) = A. : Therefore
%{2) = 2(x)= A, and ran x = o(x). o

-d) Clearly "is a homomorphism. We must show that




g

e

i

. 7.
x{-) 6 C(Splt). Let L, 2 in Sp& with nmﬁ sseﬁowowoa _E_Hms#
by definition of this topology, %, (x) ~ :xw for each x m 9

i.e. xgpv > x(1) and so xTv is oosﬁb:om.m.

NEJE

sup {|x(2)] |% € SpOk}

= sup {|A] |A € qﬁx: ) 5\ (¢)
u_ Hcc_ by H.H.w

< lxl] oED
a) implies that multiplicative functionals are automa-

tically continuous. The map x ~>% is called the Gelfand transform.

1.1.7) Theorem

Let (U be a .ooﬁsﬁﬁmﬁ.<m Banach mu.@muowm_mwumﬂmwmm

G% one element: i.e. there is a € O mnow that polynomials in a
are mm,b_mm in Qe E_gmb the __Bmw a: SpOl + ola) € @ is a homeomor-
wwu...me..

m.ﬁoow - a is no_bﬁ.b_s._on._w_mwos.m@? onto o(a) by H.H._m.
Moreover, SpQh and o(a) are both ooavmnﬁ.mmpmnounmm spaces, ...mn ‘we
need only prove that & is bijective. As just bo_ﬁmm._ a 'is onto
o{a), so we need only show that it is injective. |

Suppose that m;wv. = MQMV .. ~Since f wam m.,_w mH_m multi-

plicative, and a(4) = %(a), we conclude ﬁrm_ﬂ
N .3
h_mmons v bmﬁM. P;P v

But £ and & are continuous and a generates O, sot =2

QED

If a ,...,a, generate 0L , then in exactly the same way,

_osm_ shows that SpOV is homeomorphic to .nm._hm_ux. . .xqﬁmwv as a subset

k

of € under the map mH@ cene B a,, -




1.2) c* - Algebras

1.2.1) Definition -
A mmnmmu *-0lgebra is a Banach algebra
together with a map a-» a* satisfying
i) * is conjugate kummﬁy
ii) a** = a for all a 6 OV,
iii) (ab)* = b*a*, all mﬁw_m &,

lal|

iv) [lax||

A C*-algebra is a Banach *-algebra which satisfies

v) ||a*al{ = ||a]|?for all a & .

An algebra satisfying all of 1.2.1 is mHmo called
a B*-algebra or an abstract C*-algebra. Clearly, a norm closed
mH@mva of bounded operators on a complex mHHUmHﬁ.mwmnm also clos-

ed with respect to taking adjoints is a C*-algebra. Such an alge-

bra is sometimes called a concrete C*-algebra since it is "con-~

cretely" given as an algebra of operators. However, we shall see

‘that every abstract C*-algebra is Hmoaowwwmo.ﬁo such a concrete

C*-algebra, so . there is really no memmHmbom between ﬁmmB.

1.2.2) Theorem (Gelfand-Naimark)
Let U be a commutative Banach *-algebra.

Then the Gelfand transform ~: (% +_nﬁm@n¥v is an isometric *-iso-
morphism if and only if OV is a C*-algebra. |

Proof -~ If “is an isometric *-isomorphism, then
the C*-property 1.2.1 v) follows from _

_“m__w =t |£]2 __m for £ € C(SpOv). So 0L is a
mwnmpmmvﬁm. |

Conversely, suppose that (L is a n*lmwnmwwm. Let

h € X with h - h*. Then set

..

By



v u noown : : | *
. nw=0 n}
We see that u* = u f and c$ﬁ__n u = 4. Therefore
t -t + t [»] .

fufug i = Ny tl”

]
e

and so

g o= Bug o= fuog &= 4.

Now let £ € SpOL. Then, since £ is continuous, we have
_wﬁcﬁv = BB gng Llu_y) = m|wwpﬁwv.
By 1.1.6, _i.sﬁn: < __Ftn_ | = 1. This holds

for all t €M, so £(h) 6W. In other words, h(+) is real-

valued. : o

| Hw w_m_oa~ we omn.{npwm X = an+wwv+w Wﬁx*L%v

and W~x+xwu.mmm Wﬁw*uxv wwm_:mﬂgpﬁwmb ﬁwwm. invariant GbmmH»VL

mmsow _ o : °
. @) = XY = 10 = 3@

and so "is a *-homomorphism.

To show that ~is isometric, consider again h=h*g (V.

Then [|h][2 = ||n?||, and so ||n[]Z = ||n® |].
Therefore _ _ |
~ e 2 /o
i, = rl) = Bw W2 = (nl.
e o |
Now if x 6 (b , we rw<m M_m__w = __ww___ : |

__Ax*xv»__a_ since ~ is a *-homomorphism

¥

| |x*x] | since x*x is hermitian
[1x] ]2 - B |

Thus =

is isometric, and hence injective. It re-

-

mains oapw_wo show that is surjective. By the Stone-Weierstrass

. -

theorem, it is enough to show that ran =~ is closed in c(sp CL)

and separates points of SpQl. .
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~ -~

Since is isometiig, it mowwosm ﬁwmﬂ ran is
oosvwmﬂm (since OU is complete) and namﬂmmonm oHOmmm in namvﬁx\v
Hm_p_ # pm in Sp OV , then there is x 6 0L such that puﬁxvxpnﬁxvy
i.e. mamavxwﬁn~v. So ran " separates points of SpOv.

QED
Example: Let Ol be the algebra of functions mwaMﬁHo_Hs {z| _N_A¢w 

and continuous on the boundary with [1£]] = sup

|z |=1

Then the function g(z)=z belongs to OV , and qg.nmvwﬁyn AlZ1}.

Let B = C({z:]z]|= 1}) with the supremum norm. Then 0L C %,

~ However, qﬁﬁavuﬁy"_»_u 1} . So we see that if
we muwmﬂmm,ﬁzm_mwmmvwm' we may shrink ﬁwm.mwmnﬁﬂsa of an element.
This is to be expected muuom_ﬂwm spectrun is defined in nmuaw om
wb<mﬁmmm mxwmwwba. and these may exist 1f the algebra is enlarged.

However, this situation does not occur for C*-algebras.

1.2.3) Theorem _ _
Let x 6 OLC W where. 9 and s%u mHm Abow

necessarily commutative) o*thQmUHmm. Then roﬁxv = oﬂvhxu.

wwoom" We need enly show that whenever x-) has
an inverse in ® this inverse is in the C*-algebra mmsmwwwmm by

x and x*. Equivalently, we need only show that if a €& B is in-

-1 is in the 0*1mwamvwm mmvmwmﬁma‘vw_m and a*.

Suppose, first, that h=h* and h 1 exists.

vertible, then a

Let Q», denote the C*-algebra generated by h,

and $, that generated by h and h™l. Then #, is commutative,

and Q».nrﬁf

By 1.2.2, prn nﬂmn Sk, ). Let L0 € sp A,,

and suppose n_van_panv.

Then p_ﬁsslp

f
=
-

) =2 E;H:ﬁru, LW




¥
[+

&

I

1 1

1

Hence nwﬁsnwvnpwﬁrvl upmnwvn npmﬁw1wv. Since h,h” " generate

Q&m. it follows that pp»pw. Hence L#H noum»gmwmm as a subset
of namvmxwv separates points of mwu»w. mﬁuam rﬂw is an algebra

closed under the #*-operation containing constants, we condlude
-~ . ’

by the Stone-Weierstrass theorem, that %, is dense in C(Sp &,).
A i
But L»H is already norm closed, so we must have &»Hunﬁmwgﬂwv.
m _ S | | |
“_.._m.,a»H_lb»m. Hence h m.l.w.
Now let a e\ be arbitrary. If mIH exists in B, so does

(a*a) 1=a"l(a™1)*. since a*a is hermitian, (a*a) belongs to

the C*-algebra generated by a*a, and so belongs to that generated

by a and a*. But mupnam*mvnwm*, and so mlH is in this last
C*-algebra.

QED.

1.2.4) Proposition - Let 00 be a C*-algebra generated

by a single hermitian element h. Then ( is isometrically *-iso-
morphic to the algebra of continuous functions on o(h), in such
a way that polynomials in h are isomorphic to the same polynomial
on o(h).

Propof: By 1.2.2, & is isometrically *-isomorphic to

C(spO) under the Gelfand transform. By 1.17, m"mvor + o(h)

is a homeomorphism. Hence, there is a one-one correspondence .

between C(Sp U} and C{c(h)) given by £ € C(SpOl) - m.mIWOAqAEJ.
Let a:C(Sp@L) » C{o(h}) be this isomorphism. Let P(h) be a poly-
nomial in h. Then, under the Gelfand transform, P(h) becomes

P(R) € c(spOl), and o (P(h)) (1) = P(h) (b1 ()

P(x)
QED.
It is convenient to state here the following result,

without proof.
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1.2.5) Proposition ~ Let O be a C*-algebra and let

oy

J be a closed two-sided ideal in Ob «Then OWJ with respect to
the norm ||elx|| = inf [|x+j]] is a C*~-algebra.

| This can mmeHo<mm in several ways. PFor a protf us-~
me_hwm_=O¢H0= of approximate identity see Dixmier (1969a).
zmwSme {1964) uses acmmwtwu<mﬂmmms and Sakai (1971) uses bi-~

polars and central projections in QU**,

1.3} Spectral Theory -

‘There are several forms of the spectral theorenm,
the most 00:<muwmsﬁ of iwwow depends on ﬁUW,QOSﬂde. We shall
mw¢m three different formulations.
1.3.1) Theorem - Let A be a bounded self-adjoint ope-
rator on a Hilbert.space, $% . Then there exists a family {j }
of real Baire measures, each on o (A) , such that $# is unitarily
equivalent to m mﬁqwbv~a?9v and A is unitarily equivalent to @
multiplication vw A, i.e. if £ € m ﬁmﬂqﬁwvﬁatgv~ (Af) (A)}=x£(2). |
Proof - Let 6L be the C*-~algebra generated by the self-
adjoint bounded operator A. O is a commutative msvlmwmmmﬂm of
B ($), the O*rmwmmvwm of all bounded operators on & .

By 1.2.3,

% A = s
is isometrically *~-isomorphic to C(o(A)). Let ¢ :C(c{a))> OV be

kS

Vvamqﬁ>v~ and so, Uw:w.m.aﬂ oL

the inverse of this isomorphism. _
Suppose there 1s a vector £ € # such that {hg)gis.

dense in H . Then W, defined on C(g(A)) by
Pe (£) = (&, ¢(£)E)

is a positive linear functional. By the Riesz~Markov theorem

there is5 a measure Q¢m on o(A) with

Imﬁmv = Joa) mﬁtm

Define HiC{otA)) = H tby Uf=p{£f)c. Théh-
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i

[TUE[]12 = (6,8 () %0 (8)8) = /) |F]2ap,

g

. R
. | L2 (0() ,ap,)

U is isometric with a dense range and a dense domain of defini-
tion in bmaqﬁbvamxmv. It therefore defines a unitary operator
from bmﬁqawv~mtmv_ouno.ﬁ.

 Let £ € C(o(A)). Then (U™la U £) (1)

wlag (£)6) (1)
¢7L@adie) ()
ot a) (£

A£(A) by 1.2.4

It is easy to extend this to any f € HNAQAWV~@?mV. If there
does not exist a £ € $ as above, then, using Zorn's lemma, we
can find orthogonal subspaces ﬁ&vw in $, with emﬁm = $ , and

[»)
vectors £, e @# with nFm dense in aim. Then, as above, we.

5
construct d :L2 (0 (A) , me ) - u}g. w GQ gives the required
~ . mazwqmwmbom. |
&wm more conventional form of the spectral theorem wm
the following. |
1.3.2) Theorem - Let A be a bounded self-adjoint opera-
tor on a Hilbert space, # . Then there is a family {E,[» eR }
of projections on # satisfying: -
(1) E, is a strong limit of polynomials in A,
(i) BB =B ifw i, | | |
o (iii) mrwww Mw+m = m» ' mwwww m» = (, mwwww m» = a.J
(iv) A = bﬂ »mm» H;HHB H~_w_m »mm» , Where the Huwml_
€40 ~|[A]|-¢ .
mHmH is a mﬁwmpﬂumm HnﬂmmHmH in the norm topology.
, The family {E,} is uniquely determined by (ii),(iii)
£ mw.:.m .C..Al.. |

Proof - First we shall construct such a family ﬁm»w of

projections on #. Let Ol be the C*-algebra generated by A.




K such that
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Then (L is commutative and so it is isometrically *erOBOH@wHQ

Ay

to C(K), where K=SpOlL, by 1.2.2. A is isomorphic to A(-),

L

which is real-valued m»wom A is mmwmammuOPbﬂ (1.2.2). Let
» € R . Define a function P, () on K by

P () =

X{c € K|Ate) < 30T
i.e. Py (k) = 1 Hm_wnﬂv S A, owrmﬂiwmm.Wyﬁnv;u op__wmw
A= {x & K|A(0)S A} . Since A(+) is ooﬁﬂwwso¢m. A is closed
in K. Let %(+) be a non-negative function in C(K) such that
0 £ Z4ik) <1, « £ A, and L) = 1, K € A. (Such functions
exist by Uhrysohn's lemma. See for mxmsvwm Naimark (1964)}.
Clearly thxu converges ﬁozwyﬁxv as n » « » for each « € XK.

| Let £ € $ . Then the amﬁ  T > ﬁmﬁemv~.a € 9.. defi-

nes a positive linear functional on C(K). By the Riesz-Markov

representation theorem, there is a regular Borel measure tm on "
. _ ? ~ . : &
(£,T8) = [y T(x) dug (x) e

By the dominated convergence theorem, we see that Nﬂ_
converges to my in Hnﬁm\mzmu. In wmnﬁwozwmﬂs.ﬂb is bmlowsosme
Since Z 6 C(K), there is T 6 ({ such that zZ= 7T, Mnnﬁedvs.. We
have | _ Co _

g - g™ % = (&, (T-T"T-T™)8)

LK oy ) _ _

=TT,

i.e. {1 £} is Cawchy in g4 , for mmow.m 6 K. It mowwotm

that s-lim 7" wmewm. and defines a bounded operator, denoted E,.

Since ¥ is real, each ™ is self-adjoint, so m»um». Furthermore,

, . . o s e
since ||T%|| 4is uniformly bounded (by 1), we have

B, = s-lim T'7" = s-lim T°" = E,. "

n-w n--o




R

«

3

Therefore E, is a projection on 9%, for each A m.ﬁ .

It is c¢lear that m» is a mwwobo limit of voH%bOBHmHm
in A Umomsmm it is a strong limit of mwmngﬁm of Ol, and each
element of Ol is a norm limit of polynomials in A. This proves
(1) . o

To @wo<m (i1) , we note ﬂwmﬁ if u £ A, then N»Ntnmc

and so T,T =T , which implies that E,E =E .

ATH T Ko
Now, as before, we have, for £ & J,
2 _
By, e = B1EIT = 5 IRu= Rl
But wy+m converges pointwise to ww wm.m+o«.msm S0 by Lebesgue's
dominated convergence theorem, -ﬁm»+m|M>vm_—+o as €0, for
‘each & 6 . That is, E, = s-Lin B, . | |

In exactly the same way, __ﬁm :ovm__+o as A+-», and
__Am a.um__ 0 as A»=. This proves AHHHV.

We have |A(*) ] A__w__ Let us QH<me the Hﬁ#mw<mw.
mi__b__|m~__b__ ] into n equal parts, which we denote by I,
1<9%n. Hu is the vmwmlowmu interval Am..mu+wu Then _

Xwam_A _ >c£mH.WH ) = nﬂ._.: - ﬂ& )C)
It is easy to see that Mu -1 mu+w hwmu+w|mmuun.v = S,

converges uniformly to MA.V as n-»w,
Hence, for given 8§ > 0, there is an N such that for
INEE A e
S—Al%dus < 8 dug = S(5.8) = sligl
B IS A dpy <83 dug 3
That is, for n>N _ _

[1{ ._M* 05vi (Eaj,~ Eaj) — A ) E :_N < % ;wz_p

and we see that the sum converges in norm to A. Thus

Hal] R S
A = W y&ﬂw , €20 arbitrary.
=l ial]-e
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By

if »Aw__w__y E,=0, and if a>||All, E,=4 so we can write

‘A=) AdE

T
8
&

The ﬁwoom of (iv) is noe_ooawpmﬂm.

To see that {E,} is unique, we note that since Ey\-E,

is orthogonal to E ~E if (A,u]n(a B]=@, we have
. . : 5 "
P A

Let f£()) be the characteristic function of the interval (-||a|[-1,

). erm:«.m0H  & m.mx~ . :
_m_dn_@,&_w_myﬂ. = Jim W_&W;mﬁmz )5 )

-1

i

_?s\;_w%mx; m_yiumv + mw,hm_y;.a. mys-Lmv
I N TS I

i

(5 Bp8) — (8.8q8) = (56:8)
‘since mW = ( £ V < =-lA :\

= lEs i

Let § (1) be a sequence of polynomials converging pointwise to

£(X), A € AI_ _P_ _l“_;:mw__ u.gﬂ. FS?%S»G .COSSQDQ O __.c:.w. :..,:..:.D__...

ALY

16 e = [TOAEEE) = km (8O AEEE)

_ﬁiw, B.(A)E).

.t_w.
M¢ is, indeed, uniquely determined by A. _ _ =

Since (&, mvz__ﬁ:mv is defined Hs_mmm.m_ummvnpw of E_, we see that




o
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The projections {E,} are called w:m_mwmnﬁﬂmw projections
of A.

‘We note that by (i} and (iv), an omewﬂOH Be B (H) no§1

‘mutes with A if and only if B commutes with mww.mﬁmomeH projec-

tions of A.

i) gives only strong convergence. The E, may not Umpmsm
to 0L . 1Indeed, O may possess no projections. _

1.3.3.) Theorem: Let Ol be a commutative C*-algebra of
operators on a Hilbert space $t . Then there exists a Hausdorff
space K and a Borel measure 0 on K such that $  is unitarily
equivalent to bnﬁw.mrv and mmom A €0l 1is unitarily equivalent
to acwﬂwmwwemﬁwon_vw a nouﬂHSGOﬂm_mcbanOﬂ_OU K.

Proof - The proof is just as in 1.3.1, with K=5p(% and
? = mmw>x is the measure on K given by the vectors Mrmw.ﬁ%x
such that Q.NF u.m dense in H, and myﬁoﬁn H, The unitaries,
Uy , are defined by rwl : QNS = C(K), | |

bt AE, = AL).

QED.

1.3.4) Definition - Let A and B be self-adjoint operators

on a Hilbert space $ . We say that A and B commute if and only

if the unitary groups exp(is A)and exp(it B)commute for all

s,t e R.

If A and B are bounded, this is equivalent to. the GmeH no-
tion of commutativity.

1.3.5) Corollary - Let {A },e7 be a family of commuting
mmuﬂnmauo»:ﬁ_ovmﬂmwowm on a Hilbert space # . Then there is a
Hausdorff space K and a Borel measure |4 on K such that $¢ is
unitarily equivalent to hPAm‘mr(u and mﬂnw that each Ay, is unita-

rily equivalent to multiplication by some real measurable mcwnwwou.
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Aoy

Proof - The C*-algebra generated by the unitary operators

ﬁmxm;_u..m bgu_ seR , o € I} is commutative and so by 1.3.3,

&

. A bpﬁm.mr.v\ some K, W, and each exp{is bx%wm given by multipli-
omwwos on rﬁﬁmsarv by a oonw»:co:w function. One oms_wwms show
that this function is the exponential om a real function on XK ,
multiplication by which is unitarily mﬂﬁpdmwmbﬂ to Ay .
| | | QED.
For further details and a discussion of many related ﬁowwmm_sm
refer to Segal and Kunze (1968).

1.3.3 and 1.3.5 express the simultaneous diagonalizability
of commuting operators. Indeed, ij.m is the definition of a wmwmn

adjoint operator as given by Segal and Kunze (1968).

1.4) POSITIVE ELEMENTS OF A C*~ALGEBRA

P

1.4.1) Definition: An element a in a C*-algebra [l is
‘called positive if and only if a = b* for some hermitian b ¢ (.

We write a 2 0.

1.4.2) Proposition: Let .8 Um. m C*-algebra, and Hmw_:_

a€&Bl with a = a*. Then a 2 0 if and only if ¢(a) < {0 o) .

Proof ~ Suppose 6(a) C [0,%). Then, if &k is the
C*-algebra generated vw a, we have 4 nu_nhm@.hau and wmn.m =
gla) < Hwo.sv- i.e. a (.) 20. Let f & namﬁﬁ}v.dm the WOmHﬁwu
ve square root of a(.). Let beSsuch that b = f£. Then b=b*
and b* = a, since £% = 5. Hence a 2 0.

oou<mﬂmmH%.mﬁwm0mmmVo.ewmsmn b>. for moam.dn U*NA¥ \

and so a = a* and 6(a)C R . Let Tm.:N. . Then

(a4 p?a) = (b4 pd) = (b—ipn){b+ep)
mo$m<mﬂ‘,v.u.v$ implies that @ (b) CR and so (b wuwtv wm Hb<mhr : __ _tﬁ
tible. Hence (a + tmu_rv is invertible for all Tm,uﬁ r l.e. | h

(a - AA )"L exists for all A < 0. In other words, ¢ (a)< [0,%).
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1.4.3) Corollary - Let aeOl, a2 o0. ‘Then there ”.._.m a
unique s € U such that 5 2 0 and s2 = a. |

.E@..W - _ww H.n.w... there is _v e St(a), the o*lm“_.@muuwm,mmb.m..
rated by m~_€wﬁw b 20 mum_Up_u.m. We ouHM heed to @Ho<m_mawaﬁm|
ness. Suppose t€ 0L, t2 0 mnm_ﬁb_u a. Since a commutes with t
ond be di(a)y b Commintes witt 6. _ _ :
Hence $&(a,t) the C*~algebra generated by a wn& t, is commutative
and contains a, b and t. wmmpwuwwu nXAm~ﬁv_mm_nﬁwv mon K, we
have a = b2 =t* 620, £ 2 0. It follows that b = £ and so b=t.

QED.

1.4.4) Proposition - Let Ol be a C*-algebra and let k, h ¢ (Ol
with k 2 0, h > 0. Then h+k 2 0.

Proof - Let a = a*e (X , with ||a]| £ 1. By realizing a

_mm a continuous function on the spectrum of the C*-algebra it ge-

nerates, we see that a 2 0 if and only if |} -a]] < 1. Now

; &. - IEI. : ~ — h +_ el — kA
_:?=.+=F: _ Nl s e |

¢ Ml= ll + Wlel— e i
Tt 4l |

= el H(E- W \?._Z: ke A /U )i

T I T

21 since h/||h || > 0 and k/ |]k|] 2 0.
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Thus (h+k)/||h||+||k]|] 2 0, t.e. h+k > 0.

Ay

QED
1.4.5) Proposition - Let Ol be a C*-algebra, and

i}

a,b € 0L . Then g(ab) v {0} = (ba) u {a}
Proof - Suppose A # 0, and ab- AL has an inverse,

u. Then

(ba-}) (bua-4) = babua - ba - Abua + A
= b(ab-A)ua + Abua % ba - Abua + A
=ba ~ ba + A = »pﬁ. _
Similarly, (bua ~ 4 )(ba = A) = d. Hence ba-) 1is Hb<mﬂnwvwmm

It follows that o(ab) U {0} D o(ba). In the same way, we have
g(ba) W {0} O o{(ab). The result follows.

QED

1.4.6) Theorem : Let & be a C*-algebra, and let

a€Ol. Then a 2 0 if and only if a = x*x, some xe O N ¢
Proof - If a 2 0, then a = UN~ some m = b* e (OL.
Conversely, mﬁ@@Omm a = x*x, some x& Ol . Then W|m*
Suppose x*x is not positive. Let Sk be the commutative o*lmpamvwm
generated by a. Thensk is »moBOerpo to C(SpH) under the mmwmmsg
transform. Since, by assumption, a is not positive, neither is
a(.), and so wvmwm is an f, & SpA such that a(ls) < 0. But a
is continuous, hence there is a neighbourhood N of Ro Hspmw,mr
such that a() € 0 for all € N. Let £ @ C(Spsk) be such that f
is zero or the nwommm set m@u»,/.z\_mwm strictly positive on N.
(Such an f exists, by Uhrysohn's Lemma). Let be YA with m = f,
Then since faf < 0, we have bab € 0, (i.e. ~ bab 2 0) . That is,
bx*xb £ 0. |
Write xb = h+ik with h, ke®, h=h* k=k*,
(2h = xb + (xb)*, 2ik = xb -~ (xb)*). |
2 .2

2,

Then (xb)*(xb) = h + ihk - ikh  and, (xb) (xb)* +k24ikh~{hk.

h
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Hence (xb)*(xb) + (xb)(xb)* = 2(h%*+k?) 2 0, by 1.4.4. But,
~bx*xb = ~(xb)*(xb) 2 0, and so, by 1.4.4, | |
(xb) (xb) * = -bx*xb + 2(h2+k2) > o,
On the other hand, by 1.4.5, q:xmv (xb¥#) G{0} =0 ((xb)*(xb))U {0}
and so 0 ((xb) (xb) *) n_u_wl. (by 1.4.2, since bx*xb20). That is,
(xb) (xb) *S0. This implies that (xb} (xb) *=0 which is false |

(FA&f # 0). We must therefore have that x*x 3 0.

QED
.“_.L_.S Propositon - Let 9\&m a C*-algebra, msm. aeQ|.
_H_Um_w a can be written as a linear combination of
: .5 two hermitian elements of (&,
- 1ii) four voﬂﬁ.e._m elements of O,
u..mﬂ four unitary elements of OL.

Proof: 1) - a = 172 (ata*) + 1/2 ((a-a®yi).

ii) Let h=h* @ O . Let |h| denote the positive square

root of h? (1.4.3). As in the proof of 1.4.2, one sees that

h + |h| and |(h| - h are both positive. But h = mw..:i_b_v -

- wﬁ_s_rsu. Now use (1) . _ -
iii) Let h = h* efl. Then h?>0. Suppose ||h/| < 1.

Then 4 - h? 2 0 and so has a positive square root, S__....wmvw\m
Let u = 3 + i(4 - :pvw\m_. Then u*u = uu* =1, H.w. uis

unitary. Moreover, h = wu...ﬁ: + .si .

(2] |h| _V..H. As above

Now, if |[h[|21l, consider oh with o
1

~oh = .u....ﬁ<+<3  with v unitary, i.e. h = =— (v+v*), Z,os. use (i).

2 : 20
: QED.

1.5) Homomorphisms

1.5.1) pefinition - Let &b and ® be C*-algebras.

A homomorphism ¢: O ~ B is a linear map such that:
(1) ¢(ab) = ¢(a)é(b), anya,b € O,

(ii) o) = 4,
(D) 40" = @™ | ol ael.
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1.5.2) Definition ~ A map ¢:00 » ® is said to be or-

Ny

der preserving if a 2 0 implies $(a) 2 0, all ae a .

1.5.3) Proposition - Let a msm_aw be Q*mmwmmdwmm. and - ”
¢: X »%® a homomorphism. Then Av is order preserving, and is |
norm mmnwmmmwbm. _ _
Proof - Let a € 0L , a 2 0. Then a = b?, b= b* e OL .
Thus ¢(a) = ¢(b?) = ¢(b)? , and ¢(b)* = §(b%) = ¢(b). Hence
a > 0 implies that ¢(a) > 0. | | - _
Let a € 00, a = a*., By 1.2.2, -[laf|fSa < ||a]!l 1 .
__mwbom_e is order preserving, we have ~ ||a|lf £ ¢(a) < llal i,

By 1.2.2, we conclude that ||¢(a)[]| < Ilall] .

e ta)* @ || = [[¢(a*a)|].

‘Now, for arbitrary a € O, |letar]])?
_ | & lamal] = [a]]?

QED.

1.5.4. Proposition ~ Let U and ® be C*-algebras, and ¢

a one-one ﬁoaoaowwupma. Then elH is order preserving, wm& ¢ is

norm preserving.

Proof - Let ¢ (a) 2 0. We must mwos that a 2 0. Consi-

der GQQ*&JJ - wehpn;r?*nﬂ.._.gp.m.fg*nv
2 ._

i

2 (30)% + st @ + st te*) |

o

), swnee ) 20 (apl 23 e@wnaﬁs.

Y

By the uniqueness of the positive square root, we see that

e - e

2
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But A_w is one-one, so

. LAY
L)) 20

Exactly as in 1.5.3, we obtain mOH Glc* < & (%),
| &' (b)I 4 Wbl

i.e. Hall s _._ ¢ ()| for a1l a= afe L

as HchHHmQ

r mzm.wmbmm
for all a @ Q. Together suﬁ_w 1.5.3, this HHUHHmm. that _IV:L_T =P=_
for all a.e (. _

QED.

1.5.5) Corollary - The norm in a n*__..mH@m_on is unique. 3_01
reover, if Il -l is a norm on C{ with respect to smw.o_w_ﬁwm
completion of X ‘is a n*lmpwmvwm. _ﬂumb M- )= 1,

mmmwﬁ - Let & L —» aw be ﬁwm wamnﬁwmwomﬁHOU Em@@wb@ 0m &
into M , the completion of (X w. r.t. M n .Then, by 1.5.4,

et it = Walf o

- for all a € (,

fe. Wall = Ilall. |
QRED

1.5.6) Ummpbwﬁpoﬁ ~ Let Q be a o*..mw.mmvﬁm. An endomorphism.
is a homomorphism n.v A IW a .

nv is a monomorphism if ...‘.v is a one-one endomorphism, and
an automorphism if it is an endomorphism which is both one-one and
onto. The family of automorphisms of & C*-algebra A is denoted by

Aut Q . Evidently vﬁu Oﬁ is a group under composition.

“n
Gy

1.5.7) Propositon - H.mﬁ Ol be a ,nwnm“_.@m‘__oﬁm_: and av a ?ouou_

morphism. Them Av is norm preserving.

Proof ~ Immediate from 1.5.4,
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'1.5.8) Definition - An automorphism ¢ of a C*-algebra

wm_ called inner u_.m there mxpmﬁm ué Q. rou sbpwmuwﬁ such _ﬁwmw _
%_ (a) - uau* for all a & . __ |

Obviously, any unitary ue Q Qmmubmm_mu mnwo&ow.@w;a ”cu\
a — uau*, but not all ms_noaouﬁ?_.msm_mnumm in this way. We mpmo_
note that 1f % ‘is inner, then the u is not bmommmmﬂwww sbwacm.
Indeed, if UE& N?Hv ?QH _mrn bo for all sm.Qw\SHﬁ: v’ unitary,

_ X o : _
them YA U = a. So u and uyY give the same automorphism.

1.5.9) Definition - Let O{ be a C*-algebra of operators

on a Hilbert space %ﬁ , and let q. e aut OL . q, is said to

be implementable if there is a unitary operator U on %ﬁ such that

.Daﬁn&n.Co,C# | for all me\\

Clearly, if .a, is inper it is implementable, but the converse is
not true in general. As before, U may not be unique.

1.6) REPRESENTATIONS

1.6.1) Definition - Let Q be a o*lmwmmvww. A H.mmuﬂmmm.u_n.m.ﬁwos

of (A 1is a pair A%mwﬂ\ ) ooswwmnwb@ of a Hilbert m__@mo_m._ x , and
a homomorphism \:\ : Q l.wuw &9_..; from U into @ &, ﬂwm m_m__r._
of all bounded operators on %ﬁ . TR It) is mmHQ to be a mmwﬁ;mcw
Hmvhmmmﬁﬁm,:n.HOb if Ber m\u m O‘w , i.e. Fv O implies

a=0.

1.6.2) Proposition ~ Let ﬁ& ) be a representation of a

o*umpamvﬂm..g .  Then ):8 isac |mwamuwm in u\wﬁki wwoom -

Let d = ker \_.ﬂ . Since J\ is norm mmoﬂmmmwum.. it is oouwwbcosP

and so nu ig closed. Also Q is a two-sided Hmmmw and a€ ..M implies ».
that m»m.ﬂ_ . Hence /9 1is a c"-algebra (1.2.5).

Let p: - QN\Q be the canonical map. Let Am e Oﬂ\d Y,




e
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ae m Define hv A.wv = \_,_\ (a). We easily see that nv is well-defin-
ed on Q\Q , and defines a roEoBOH@meE" Q\Q.{v & ?&V . More-=
over; we see that nv is one-one onto T (L) . | Therefore ¢ is
norm preserving and so J\ (CL) is isometrically HmOBOHEaHo to Q\u
Therefore T (O) is a ¢ *_algebra.

QED.

1.6.3) Proposition =~ Let ( %m\ ﬁ_\ ) be a representation

of a o*..m“_.@mvﬂm Q Then \:\ is norm decreasing. \:\ is norm pre-
serving if and only if ﬁmﬁﬁqﬂ ) is faithful. Proof - By 1.5.3,
\3\ is norm decreasing, and by 1.5.4, norm preserving if ( u\ﬁ h.:\v
is faithful.
However, uLn._ \:\ is norm preserving, then \:\Amv = 0 implies

] qﬂ.ﬁmvg_ = llafl ,i.e. a=0. That is, (#,7) is
faithful.

| QED.

1.6.4) Definition - Let A“R q\v be a representation of

a C rmH@mva . :R 4u is said to vm M.H.H.mnwﬁowvwm if mb& only

if the only QHOmmm subspaces of u\m Hsﬁzﬁmww under }? ﬁHv _wwm

~ m and u\mu itself. | | _
1.6.5) Umm::.ﬁu.ou - Let 3 be. a set Om owmwmﬁOHm in

m& ;ﬁi. The commutant 3 of 3 " is the set
M_ym\%uhxuv |abzbu  for oll pmﬁ\_\m

1.6. 6) ewmoama - Let ﬁx D! be a Hmwwmmmbﬁmwpou 0m a

Oﬁth@wUHm X . ;\m Ty is irreducible if and Od“_.% if T (= ¢ 1

Hu.HOOm -~ Suppose \:‘.an v =4 1l » and suppose that ﬁ& ﬂ\v is not ,

irreducible. .H_:ms there is a proper oHOmmm subspace V of u‘ﬁ such

that T () v cv. | |
hm.ﬁ p Um the oww:oaoumw @HOquﬁPon om uﬁ onto <. | _H_Smb

pef (A)'. 7o see this, let A & TM@. rLet % .& e uﬁ and

zwu..w_m.mu m%+m..rm .m._.uﬁnw, \_\Nu HSN+HU.<~. We have PP~ =0.
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Y

Then n,m /PAY) = ﬁu.w + w.fw ..m..f?,w._. V.\.NV .

:tm\»mdv. + .S*mm, m.fﬁ o - o 5

va; E.uamv_ since A*3V = V

(§,AP7) since A:V->V

i.e. ($, PAY) = (§, AP%) for all §, % g 4. Hence PA=AP
and P e M(X)"' as asserted. However, this nouﬁﬂmawnﬂm y_\:Hv = ﬁ =
and so (¥,T) is irreducible.

To prove the converse, suppose lﬁ :\v_ is _MHHszoHvH?
..Ucﬁ i AQ.V. # a.a

Since A € : () ....Ewu.umm that w* e 48: , we easily &mmzom_,.

B .ﬁwmd B e T (&) implies that B* € 4 AQC. OHmmHHu? i AQS ' is
...kummu.: mzm 50 mbw B € ‘:‘ () ‘can be writen as a linear combination |
of two hermitian mHmEmUﬁm of T (OL)'. Thus T () mm € 1t implies

that there is ¢ = c* e () * with ¢ # A ¢ , Ae .

By ﬁwm spectral theorem, 1.3.2, we can write

.. +5 .. .

_On w »o_n_ _,
- b ,..., . .. . ..

for some mmau_.u.w of projections wm»w Since C # A A , there

exists at least one m? with m\ # 0 and m # & : zou.,mo_a_wmw.y m\; is

a strong limit of polynomials in C, and hence m_"\_; € \ﬂ:Q ).

Let V = E, #. Then, for te v,

M@t =7 (e € = m):EmmS monmﬁwmg i.e. V is

a proper closed msvmwmnm invariant under | s.:QC __H_E.m no.:ﬁﬁm&oﬁm.

the mmmsu—mm irreducibility. R

QED.

1.6.7) Definition - Let 3».)3 be _m_ﬂmvwmmmﬂwmn»ou of a

c*-algebra (X . A vector mm H is called eyclic (for &‘m 4: if
the set m.:. HQV%M is dense in %ﬁ | _ B




26.

Lvhd

gebra a is »Hnmaﬁowvum if and oaw if m<m3\ non-zero <mnﬁow in -

Jon

\M\ﬁ is cyelic.

mHOOm - mﬁvamm Auw >ﬂv is pﬂnmmcnwvwm~ and Hmn w e %n
% # 0. Then the closure of 1ﬂﬁn¥u m is a non-zero. invariant
closed mEomﬁmnm om u\ﬁ which must be mﬂmm“_. wo &w by the irreduci-
bility of Aum i ). 1In other sonm‘ w Mm nwowpo.

oow<mwwmwm~ Suppose every non-zero % %ﬁ is cyclic.

If V is a non-zero, proper closed mcvm@mnm in %ﬁ with
T(hve V, then no vector in V can be cyclic. Indeed, m € V im-
plies that ~‘.\,ﬂ () .mm € V. Therefore A&n Ty is irreducible.
Hﬁ momm.SOﬁ mOHHOSwﬁmw A%m :ﬂv Hm HHHszoHUHm zbmmw.

the assumption that %ﬁ contains only a dense set of cyclic vectors.

. _ 1.7) SBtates on a C*-algebra

1.7.1) pefinition - A wﬁmwm on a C*-algebra AM is a

positive linear functional G , with w ({) = 1. That is, w : ({~ ¢
mﬁow that, | |

(1) w is stmmns

(i1) a e, a 2 0 implies W(a) 2 0

(i) w(d) =

H 7.2) wHOwOmHﬁHOb - Let W be a state on mx. Then O -

satisfies a Schwarz wsm@smwwnw
. o )
| E.?,;V | € w ?_..,aL W (LX)

for all a,b & (X,

Proof - The form Am.vhv_uﬁbﬁm*wv Hw.w_mmmnswwwummw_mowa
with {a,ad » 0. _ o
- Qed

1.6.8) Propositon - A representation A&m _av om a Ck=~gl-
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_ :w,q.uv_wnovOmwﬁ»Ob - Let wW be a state on a n*|WHmmvnm

.
=

Then W is continnous, and Mlwil = mﬂmm_cvﬁmvé; lalj € uw_
1s equal to one. | _
Proof - We need only show n#mﬁ Ttﬁmv_% Wall for any ae& (X,

Let he(®{, h = h*. Then :
~lnll 4 _A < Mhit 4

and ﬂwmwmmOHm l__WZAfbﬁwvah#w=
e. Jwm| € Hnlf.
For any a € (X, we have

lw(a)] =lwita)]

. “_.\M
< w (a*a) . by 1.7.2

. / o .
RS | axa || 72 since a*a is hermitian

= g_w_é ..
|wia)yls lall.

QED. _ &

1.7, 4) Definition - bmﬁ E be a set in a Hwbmmh space X.
E is called convex if x,y€& E implies that «xx + (1- Q:\ £ E . for
all 0 s x££ 1.

A point 2z & E, a convex set , is an extreme wowbw {(with
ax + (1 -&)y, with 0<%<1l, x, y& E has
y = z, - |
i.e. z is not a convex combination of two distinct points of E.

]

respect to B ) if z

L

only the solution x

1.7.5) Definition - Let E be the set of states on - a.
C*~-algebra nx . Then E is a convex set in Oﬁ*~ the dual of mM
The extreme points of E are called pure states. If a state w Hm

not pure, then it is called a mixture.
It is easy to see that w is a mixture if and only if

there are mﬂmﬁmmﬂtH m:m ecm &Hmmmwmwﬁmwosncmcownrmﬁ

&

L




o
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1.7.6) Theorem - Let O pe a commutative C*-algebra.
Then the set of pure states on X is mxmoﬁww sp &,
Proof. Let WesSp L, and suppose W= Hcc + !cm

Let a6 X with a = a*. Then

w Ammv

7wy (@h) +wyad)=w@? | sincewesp A

I (W@ +wyia) )’

Hence
0= (w, @) —w@?) + (W, -w, @)

+ Wy (a%) - 26 () (a) + W, (a?)
> W la) -, (a) )2
1 2

because Ewﬁmmvv\.ﬁpﬁmvm mbm_ Ewammvw Ew_ﬁmvw

by Schwarz _ inequali J\ .

It follows wwmﬂ E (a) € Amv msm mo?. (a) cc (a) = =w(a), for
ecach a=a¢€0L. mm 1.4, q (1), we aonnwsmm ,nwm_u W= W, =
and so w 1is pure.

r

For the converse, suppose W is a pure mdmwm on Q..
Suppose a = a*e X, 0sa< 4 , 0 Fwla) # 1.
Define, for be X r | _

wj(b) = wi(ab)/wla) , w,b) =w(d- ~a)b) wd ~a).
Then W, and w, are states on ({, and we see that :

W (@) Wb) + w (=~ a) wy(b) =wb),

W= w(a)y Wy + {1l = wia) ) w,. |
Since W was assumed to be pure, we have W=uw = ...c» '
i.e. w(b) =uwjb) = w (ab)/w(a), .

i.e. wiab) =w(a)w(b), for all be &, and a as above.

Now suppose a2 0 and Eﬁmu_ = 0. _H._._Eb
lwiab) | & | wa® a¥ep) |




29,
< w (@) wmran)?

Hence, using w{a) = 0, we have

i

wi(ab) = 0 = wl(a)w (b), for all be (X.
1f a<4 and wi(a) = 1, then Wl - a) =0
and - a 2 0, so that, as above,

w ((L-a) b) =w(l- a)wib) _. for all be ],
i.e. wi(ab) = w{a)w (b). :

We have shown that for any a e, SH&U. 0< a< 4, and

for any b e {, we have
Wiab) = wi(a) wi(b).

By linearity, this holds for all - 0 £ a and then for all a < 0.
By 1.4.7, it holds for all a e .
This means that W€ Sp .

QED,

1.7.7) Theorem - Let O be a ' C*~algebra, and let uJ be
a vossmmm. linear msuo_ﬁ.oumu.. with :F.,_____u w(l) = 1. __H_wmb W is
a state on Ol. - | | ) |
| Proof. We only have to show that W is wOmwwwﬁm_.
Let he6 X, h = h*, We claim that __E_:.Qm R . |
Suppose Ww(h) =o + i, X, @€ R. Then W (h +.; Ly =
o + HHY+\:. , for all Ae R .

Hence ) o .

lw+ 1A | w ::.»_

Oon the other hand, o R
lwm+sad ] <ol ffnsaadl

Ry
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2 2 Ve
= (Inlf+ A7)

(using Gelfand's theorem to realize 'h as a mﬁsnﬁwosvr

asmwmmOHmhﬁ¢,y_~m__w=~¢.»N for all real A .

This is impossible unless %. = 0, and so W(h) is real as asserted.
Now suppose h20, and lhl| € 1. By the mUo¢ms cuﬁwvmgmp

Suppose W(h) < 0. ;

Then (4 -~ h ) =1 ~w(h)>}.

However, [wW({ 4 - h )] £ f ?M hil € 1.

This is a contradiction . Therefore w(h) > 0.

.The result follows.

WED

1.7.8) Theorem + Let Qanpmw.vm o*lmwmmcwmms and let

w be a state on ({ . Then there exists a state % oshmumso:_dsmﬁ
%v OL = w . In other words, a state on a C*-algebra can always
be extended to a state on a larger o*lmwmmcﬁm.

Proof -~ Since W is a state on AM r we have
Hwil = w (4) = 1.

By the Hahn - Banach theorem (Dunford and mowamwwN,
Aummm;~ there exists a linear functional, % say, on mw , such
that % is bounded, :%:u flwland PMI=w. Since PrO=w , we

have

gy = wl) =1 (4ed CH).
But then . e o
W= jwn=wit) = pety = 1.
By 1.7.7, § is a state on L -
QED.
In order to mwwws&;ﬂzwu_Hmwcwm_nm_dem mﬂmwmw.,am_

shall need a result on the existence of extreme points in a
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*q

convex set. This is the Krein-Milman theorem, which, when applied

B

to the set of states on a C*-algebra, implies that any w™ closed
convex set F of states contains extreme points (with respect to
F}). A precise statement of the Krein-Milman theorem and further

details may be found in Dunford wbm mow_smﬂﬁm Awwmmv .

1.7.9) _H_?wOHm_E - et A ¢ & be C*-algebras, msQ,.”mE.uUOmm
that W is a pure state ow... Ol. Then w has an extension to a
pure m.ﬂm.:um on .
_Wm,wm.m_... - By H..\_.ms z\_m(wnos that w has extensions to states on
ik . Let F = J.w\mﬂ.wm#.m on &wl g Q = ccw . Then F ¢ <. 30H@0¢0H. ,
it is ownwo_._m ‘that F is convex _.m:_m_ W*-closed. ._H.wm_HmH.OHm F has |
mu_ﬁﬂms_m._ vou..uﬂm... Let: w be mco_u_ an m.uﬁ..HmBm point. We claim that
§f is pure on (ﬁu . Suppose H_goﬁ.. ; i.e. there are states T fﬁ,m
Oﬂ_mw.msmo»\.xn»mso_rﬁ._mﬂ_%_uon%»} Dnol%m. _
Now f€ F implies that w=o b A+ (1 -a)f, MA . : *
But .w:.g and f, M are both states on [ , and W is pure.
Hence lm»Q 2 ._ﬂs X =w, i.e. .m and .Wu belong to F. This
contradicts the fact that % is an extreme point of F.

We conclude that f is pure on 3.

QED.

1.7.10) Corollary - tet X pe a oxlmwmm_vﬂmm then the
pure states separate points of a .

Proof ~ Let ae X , and let a = h + ik ﬁ.wr.w‘ k,6 X, hérmitian.

By 1.4.7, wi{h) and W(k) are real for any state w . Hence
Ww {(a) = 0 implies _nmwﬁ w) = wi(k) = 0. It is enough, then, to
show that if U n_:..__“. € Q w:m wi(h) = 0 for all pure mﬂ.mw_m”m W on-

Q,w:mnsuo.

‘!!
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Suppose, then, h = h*e X, h #0 .
Let c}. be the commutative n»..m.._.amvwm generated by h. m;om _
h # 0, there is € SpA such that A(d) # 0, 1.e. £ (h) #0. By
1.7.6, 5 is a pure state ouwf which ﬂsmﬁmmounm has an mxwmbmuou
to a pure state, w say, on a (by 1.7. 9).
But then w/({h) = &:& # 0. The result follows.
| QED.
1.7.11) Corollary The involution a - a* in a C*-algebra is
unigue. _ - _
Proof. Let a=-»a' be another involution. By 1.7.3 and 1.7.7, w
is a state with respect to AQ;. *) if and only if W is a state
with respect to (&, ').
By 1.4.7, if W is a state, we have, for ae ([, wW(a*)
Similarly, w (a') = Wi(a).
Hence w (a*) HEAmJ for all states, and all ae¢ C‘
By 1.7.10, a* = “for all ae (1.

I
&

(a).

QED.

1.8, The Gelfand, Naimark, Segal Construction.

We shall discuss, in this section, a certain
connection between states on a C*-algebra, and representations,
and related results. _

1.8.1.) Theorem (Gelfand, Naimark, Segal) Let Ol be
a C*-algebra, and W a state on ¢X . Then there is a representa~
tion A‘,&\ﬁv of A with a cyclic vector {l¢ # such that w(a) =
= A.D.\:ﬂwv.b..v for all a €& Q . Moreover, the triple TK.\:(.DL
is unique up to unitary equivalence: i.e. if (%, T', ') is
mnoﬁgmw such triple, then there is a unitary operator {: - F
such that Ul = f1 and UTW'(a)U" = Ma) for a11 aeX.
Proof. Let N mme. | w (x*x) = 0 w . Using the mnﬁﬁmﬁu
inequality, it is easy to see that N is a left ideal in Oﬂ

| Let K be the linear space X/N. Let w ..Nm K, and xmm~

YeN - We define

(3> = Wixey).
By Schwarz' ineguality, we see that this is5 a smpw mmmwbmm .
sesquilinear form on K. Using w/(a*) ncﬁmu (which follows m_n._oa.
1.4.7 (i1)), we obtain (¢ P =N %> . S0¢, > is an imner
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product on K. Moreover, __M__ Am mv W (x*x), x mm ‘defines
a norm on K because w (x*x) = 0 waw“_.wmm X€N, and so m

For a € X, and mm ms we define
L ,m mm

where mm is the class oowﬁm»b»ﬁm ax, xm.m This is well-defined

By

£

because N is a left ideal. To see that H.m is vosu&m? we .compute
_ < _

__ﬁmm__a =KLy § 0 Ig §P =W (ax)* an), xe

: o= w Ax*mﬁmxv __

Define %:ov = w({x*bx), be . Then % is a positive wwbmmﬁ

functional on Q . Hence

e m| € ¢4y vl , forall be CL.

That is,
| wixwx)] € w ) N bl
mm_nﬂ.ua b = a*a, we have "
| w (x* a* ax)| £ w (x*x) [l a*a |l
= Wix*x) |[la :N
. = AM~mV :m__r ’ . . <
ie. H_m m:E £ alf :m __.._c ...mﬁm SO bm is bounded on K. o
It is easy to see that L H_+H‘~H. nH. L.,
a+b b ab b
Lg =4l ., ana L. 1ar > = Aw £ dv mowmﬁw@mx
a, b & O .

ret L& K be the class containirig 4 . Then any £e K
can be written as m = L, {1 , where x m.m . .

Let & be the ooavwmwwom of K w.r. ﬁ the norm : : :._t .
Then & is a Hilbert space and contains K as a dense subset. Since
Ley is bounded, it has a cb»aﬁm bounded extension ﬁ_ say ey,
to %ﬁ which wﬁfmmbwww is a representation of Q in m_\m. | |
It is also o“_.mmu. that J1 is ciclic for ( m‘n T ) ; and the
oonmwwﬁowwou of ﬁ& )ﬁ e Hm ooawu.mwm.. .

To prove gpasm:mmm. Hmw Hm& \:\ b ) be msoﬁumw

triple. Define U : lvm\ﬁ by U ‘:‘Amv_.b. =T(a) L2 .
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Then

) 2
hu Wia).) Iy 1 (@) :a W (a*a)

I T'@ __

So U is isometric from a dense set in u«u._ to a m.mbmm set in u\m .
It wwmﬁmmowm mxnms_mm to a unitary from %ﬁ\ to %ms with the required
properties. | |
. QED.

Given (I and w P uﬁ\ \z\\ Dv is called the QZm__,ﬁwu..UHm
associated to Q and W . The uowmﬂ.on ﬁ& \ﬁc ' DEV is also
used to emphasise the dependence on (W ,

It is worth remarking here that, in general, R.c is

not a separable Hilbert space.

be representa--

. . - . h_
1.8.2) Definition Let ( mnm,. \ﬁ& vc..m I
tions of a C*-algebra Qm . The direct sun of the representations

{ ,&u 7 } is the Hmvﬂmm.mnﬁmﬂ..g T& m ) with 3 = & xu , and

’
~ < xel

It is denoted A% :o& :%._J\x ).

1.8.3) QOHOPHmHM Any C*-algebra n& is Hmoamﬂwwompww
isomorphic to a n$|mummvwm of operators on a Hilbert space.
Proof - Let S be a family of states which separates points of mﬂ
{i.e. wW(a) = 0 for mwu_:um_m implies a = 0 v._ﬁmd { %Pr~ qﬂr,V 
be the QZm representation associated with wWes (1.8.1) Let T& A0
be the direct sum Xv amm&oa W= eeww 4_ o

suppose 1 (a) =T(b), a, beX. Then T, (a)’ =M. (b)
for all We S,

Hence T (a - b) = 0 for all w €& S, This implies that
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B

(L, M, -~-b yAL,) = 0 for all wes, 1.e. w(a-b)

=0 for all
W e 5. Since S separates points of {{ , we have a = b. B
Thus \:\ is H_ - 1, and 50 A is isometrically isomorphic ’
to T (&) . |
QED.
1.8.4) Theorem - Let W be a state on a C*-algebra Q_,
and let ;‘mﬁﬂ\. W) be the associated GNS triple. Suppose f is
a positive linear functional OSQEHWW ._om W, i.e. W-§¢ is posi-
tive. _H_Ummw there exists a unique T € ,%o ?&V with
P *a) = (MmN, TT(@n), Tel (' ana 05154
Conversely, if 0 € T4, Tel (A)', then f (a) =
(L, TTWta) L) is a positive linear functional with §£ s cc ]
Proof - Let § $W be given. Let a denote the class of a in A /N
as in 1.8.1 ( N={x¢ Q_e?*i =0}).
Then _ | | _ K
| ¢ (b*a) | ¢ < P(b*b) f (a*a)

£ w(b*b) w (a*a)
sl

]

ffoal,,:

w

Hence, .HQ defines a bounded sesquilinear form on K = Q\z‘ and so

defines one, say &.. on %m. the completion of K w.r.t. I /. |
By Riesz' lemma, there exists a unique TE€ .& (#) with
g = (8T for all §,7 € 3 . |

But \T b, a) = .T cu*mv. Hence, taking b = a, we have (4, T my&vw 0.

Using Ew;t , we get, as above,

s, T oyl € Nl Hall,.

It follows that 0 £ T € 4 ' { since K is dense in &«u ).
Furthermore, since &4 = T(a)(l , we have

Pra) =@, Ta = (Toa, rT@d.

Also, for a, b, ¢ € Q.. we have
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"ble.

3.
(M ®, {fa) =T @ T}% () .0)

f (b* acy - % ( (a*b)* @)
=0
Since ). is cyclic, we conclude. that _H.m._.: .
ewm.ooa<mﬁmm is trivial.
| QED.
1.8.5) Theorem -Let W be a state on a o*m_u_.o.muouw o 4

r

and ?R..S\ ) the associated GNS Hmwhmmmnwwwwon.

Then A_u‘m,ﬁ\v is irreducible if and OB_US\ if W is pure on A .
Proof - By 1.6.6, (#,T) is irreducible if and only if W(Q)* =
= ¢4 . But by 1.8.4, TT()' =¢4 wmmuQObHMu.momuumcc
implies that = Aw , some 0 € A £ 1. However it is easily

seen that this last statement is equivalent to w being pure.

QED.
- We can now improve 1.8.3.
1.8.6) Corollary - Any C*-algebra (X is isometrically

isomorphic to a direct sum of irreducible representations of
itself.

Proof - As in 1.8.3, but we take S to be the set of pure states
on Ol. By 1.7.10, § separates points of mx; Then we have wrmw

& is isomorphic to QU\ By 1.8.5, each ( »ﬁ&.ﬂ\ev is irreduci-
we

QED.

1.8.7) Theorem ~ Let w be a state on a n*nmwmmvwm vi
and let & ¢ aut &l . Suppose w is invariant cbmm_w_n.. i.e. wix(a)) =
= W(a), forallae (X : | | |
et (¥, 7, 1) be the GNS triple associated with W . Then ‘there
is a unitary operator U on &\w such that ufl= [0 ' __mum, c:\_amvca =

=T (& (a)), forallae Q . Moreover, U is unique.
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)
Proof ~ Define a representation ﬁuﬁﬁqq ) of mﬂ wé.qﬂxmu =T (*(a)),

a €& (X, and consider the triple ﬁ&.ﬁ_\\~b ). Since x (&) = (A,

&

{1l is cyclic for Jﬂ. .
Furthermore,
@, oy = (L, Weegaynn)
= W(x (a)) = wila) for all ae& CX.
By the unigueness of the GNS ﬁHHUHm (1.8.1) there is a unitary
5 on # such that v{l=L2 anda U T (a) U* “Ma) =T(a(a)).
Suppose V is another unitary with these same @wowmwﬁwmm.
Then

b

UM (@ =u W) v =T (x(a)) L

=vT(a) v*(L = vl .

since {1 is cyclic, we have U = V.

QED.

1.8.8) Corollary - Let nx be a C*-algebra, and let G
be a topological group. Suppose @@Iwnxm is a representation of
¢ in aut Ol . Let w be a state on mH.HﬁquHmuﬁ under each Qm ‘
i.e. Cgﬁﬁkmﬁmvv = W (a) for all ge¢ G, ae . Suppose further that .
for any a, bé& mx.. the map 9 — v’ (b¥ nxwﬁmw } is ooawwumocm.
Then there is a strongly continnous unitary Hmwwmmmswmwwow
g —» U(g) of G on mm~ where A%m~4ﬂ ﬁhw,v is the GNS triple
associated with w , satisfying U(§ Vlﬁw.n {1l for all ge G, wsm
u(g) M (a) Ulg)* = dgma: for all g€G, a € (X.

Moreover, the dﬁmv_mwm unique.
_wmmwm - By 1.8.7, for each ge G , we have a unique U(g) satisfying
Gﬁmv;ﬁw = {1 and dﬁavHﬂﬁmv Uf{g)* = \ﬂnﬁwamv y, for all a & o,

7o see that g —» U(g) is a representation of G, we compute

utlg) uh) Wa) (L = ulg) T« (@) ) (L
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Mooy @ = Moo, @
U{gh) \—_\Amvb. , for all ae (X , 9, h & G,

Since br is cyelic, we obtain U(g) U(h) = U(gh).

It only remains to show that U(-) is strongly
continnous. Let a;b e (. Then

(M L, vie M) = Won* g (a) )
is continnous in ¢, by assumption. Since Ul(g) is SDHWmH%\,WOH.
each g, we see that U(- ) is weakly continnous on %? , and
ﬁ#mﬂmmOHm.mﬁHOSQHw continnous,

QED.

1.8.9) Definition - Let (L be a C*-algebra, and ¢ - o €

aut U a representation of a group G in Aut ({ . A state W is
called extremal invariant (with respect to O«mv if @ is an
extreme point of the convex set *.% state on Ol # %ixun ?
for all g € D.*

1.8.10) Corollary - With the assumptions and nowwnwos of
1.8.8, we have %hmﬁ foel g9 ¢ ¢} U mﬁ. ( O w. y' = £ A
if and only if & 1is extremal invariant.
Proof - Suppose W is extremal invariant, but %w £ €1 . Lot
P be a non-trivial projection in u\w\ . Then P {L # 0, and

Pl # (1 . Let w) be the state

wy (a) = e, M@ P ), a e X
hpog?
and W), the state |
wyla) = (0 ,M@efr) , a e
oL i® |

where P + Q = =
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6{:75

Then W is given by the convex combination

Q 1 %.

w= el w + fonytw, .

Moreover, wj and W, are both invariant and are easily seen to
be distinct. This contradicts the extremal invariance of w .

Conveserly, suppose %w = 4 ¢y but W} is not extremal
invariant. Then W = AW+ (1- A )w, with W, w, distinct
invariant states, and 0 < A < {4,
Hence w 2Awj= @ , say. By 1.8.4, there is T &€(X)' such that
£ (b*ra) = (W(b)LL, TMa)(2), a,be (X . Since f is not a
mualtiple of w , T x\s i . Furthermore, the invariance of

implies that T commutes with each Ul(g), i.e.

f under &
¢ j

e {unl gec

Hence T € .ﬁ. r 8 contradiction.
F

QED.

o
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2. Operator Algebras.

The last chapter dealt mainly with the abstract structure
* rv
omo:mwmmwﬂmm.zmzmbﬁﬂOQOﬁm»QmeosmHmmUHmmowo%mﬂmwOHm

on a Hilbert space, and to take advantage of the Hilbert space

structure. We begin by defining several topologies and then
prove the density theorems of von Neumann and Kaplansky. We
also give a characterization of continuous functionals and

states. Finally, in section 6, we discuss some of the theory
of subrepresentations of n*lmwmmvﬁmm which will be useful for
the algebric treatment of superselection sectors (chapter 7).
Except for section 6, £m,vm¢m followed the lectures of Landford
(1972) . The standard text~books are those of Dixmier (1969 b)
and Sakai (1971) to which we refer for further details and
developments ( - see also Lanford (1972) and Naimark (1964)).
If H is a Hilbert space, B(H) denotes, as usual, the

algebra of all bounded operators on H.

2.1) Topologies on B(H)

We shall consider five topologies on B(H), the first three

‘of which are probably more familiar.Let A € B(H), and let (By )

be a net in B(H). We shall define the various ﬁOﬁowomHmw in
terms of a neighbourhood basis of A, and also in terms of the
convergence of the net (B,) to A - the latter being usually the

more ctmvenient.

2.1.1. Definition

The norm (or uniform) topology on B(H) is that given by the

open neighbourhood base
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MNiase) = B DK | a8 <e} ,e>0 .

B, + A in norm i£f {[B_~A[l =+ 0. !

2.1.2. Definition

The strong topology on &w h%nv is that given by the open

neighbourhood base

n 2
T (a; Axiw. lu?&w@o_ .MH fw..m:,w: <e}
Hl“

where ¢>0, and Ax.uw is a finite set of vectors in ﬁﬁ.
1

B, > A strongly iff :Awswvx__.vomOHmmowx m“m‘

2.1.3. Definition

The weak topology on 3 (}) 1s that given by the open

neighbourhood base : L

. . n .
na; )T, y7Te) = (Be (M) | | T (y;, a-B)x) [<e}
i=1

where >0 and Axwvﬂ ' nmwvﬂ are finite sets in i

B> A weakly iff Amsﬁmglwvxv + 0 for each x,y in ;h.

2.1.4. Definition

The ultrastrong topology on &Awﬁv is given by the ovmu_

neighbourhood base

oo ‘ hs 2 .
Nasx)” re) = mehdb] T Ia-Bxll <3
i=1 . i=l
a2
where ¢ >0, and (x,) is a sequence in »ﬁ with '} =xw__ <o e

i=1
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4, _ -~ _
_ o 5
B+ A ultrastrongly iff § |[J(A-B ) x,[| ~+» 0
o : ) H"“_- o i .
¢ | i
_ for each sequence (x;} with M:x»= z o,
2.1.5, Definition
Hﬁm.ﬁpﬁwmsmmw topology Q: muawﬁv is given by the open
Jnmwowmouﬁwoom Ummm
Na; ), (v, e = e R 1T (v, a-BIx,) | < e )
i i : j21 1 i
where €>0, and AMHV. AMHV are sequences in &Aw with
2 2
T 15+ 1y, 11 <o
B, + A ultraweakly iff HWHAMMﬁablwgvav + 0
Voo | 2

L2
<

for each pair of sequences (x,), ﬁwwu with J [[x, 1l + |ly,

Y :

gaﬁuﬁv equipped with the norm topology, 2.1.l., is, of

. . _
course, a C -algebra. Moreover, the norm topology is charac-
terized by convergence of sequences. For the other four topo-

logies, however, one has to consider nets, not just sequences.

It can be shown that these five topologies are distinct if

x _
Aﬁ is infinite dimensional - otherwise they are all the same.

Evidently, 2.1.1. defines a finer (or stronger) topology
than the other four, and 2.1.4 is finer than the other three.
Both 2.1.5 and 2.1.2 are finer than 2.1.3, but 2.1.5 and 2.1.2

mwm.bow comparable. It should be emphasized that the ultraweak

topology is stronger than the weak topology, i.e. if w9+w ultra- -

weakly, then B+~ A weakly.

Wy




o .nh...
Let K= o &;“ , where each MK..“P .....MAV.. o 5
Define, for each A mmwﬁkwv..wwm operator A on uﬁ by wﬁxwynﬂvxwv.

Then bm&ﬁxp.
2.1.6. Proposition

A net Aw_v in mw .%mv oos<mnmmm,ﬁwwﬂwmﬂﬂosmpm (resp. sHﬁﬂm|
weakly) to A in mwauﬁv if and only if . Am ) nos<mhcmm mﬁﬁosaww
(resp. weakly) to A in %W K.

oo 2

Proof: (x,) € %ﬂ if and only if 7} :x.: < @

—_— i - {=1 i .
For such ﬁxwv.

~ ~ 2 ® . 2
(B ~ A) (x;)!| = [1(B -a)x. ]| . .

Similarly, - : _ | . _ o

(lyy) s 5 - a) (x,) ﬁ MT.H f._agéx%a_. . __ ‘ -

QED.

2,1.6 is a useful device for aou4mnw»5@_mnacpmam_om =cwwﬂmr_
convergence" into ones of Hmmmmoﬂw<mwm mﬂnosa or smmw nos<mnmmsnm.

The next proposition (whose proof is simple) mmwm ﬁrmw on
bounded sets "ultra-convergence" is equivalent. to the oo&wmmvosml
ing strong or weak convergence.

2.1.7. Proposition

Let (B) be a bounded net in B, ie. |8 ll<M, some finite M,
for all a. Then B + A ultrastrongly (resp. ultraweakly) if and

‘gﬁf’

only if B A strongly (resp. weakly) .
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as.
Suppose A ~A, B +B in one of these wQGOHoawmm. Then we
can ask whether w“ > bw or A B~AB in the mmam_ﬁowoponw._awmn_
is, whether ﬂww maps _w"b.*bw, m: (A,B) - AB are oouwwscoﬁm in
these topologies. In general, they mwm not. The situation is

as follows.

s is continuous with respect to ﬂwm_dowa~.swﬁnm£mmw_wb&
weak topologies, but not with Hmm@mmﬂ ﬂo_wwm ultrastrong and
strong topologies. (The Hmﬁnmn_wm.mmawHHmH from the study of
the scattering-matrix in which wnm :b»ﬁwhwnm is a :owlﬂhw<wmw
problem even w#osm& it is oObmwwﬁnwmm_mHoa the strong-limit of
unitary ovmﬂmﬁOHmv. o

‘m Hm_uowbﬂwm ooawwsnocm &rﬂ.wm .WFWmumHB.ﬁoonomM but
only separately continuous w.r.t. ﬁwm_oﬂwwwuﬁo@owoowmm. On
bounded sets m is jointly oonwwucocm srwrﬁm.me ultrastrong
and strong ﬂowOHoaHmm._Wﬁﬁ not z.ﬂ.ﬁ., ﬁwm GHWHmsmmw and weak
topologies. For the relevant nocbﬁmﬁmxmawwmm. we refer to

Lanford (1972).

2.2. Von Neumann's Density Theorem

We shall see that although the topologies 2.1.2.-2.1.5.
are different, nevertheless many sets in @wﬁ%ﬁv have the

same closures w.r.t. each of these topologies.

2.2.1., befinition

Let Rchi(H) be a self-adjoint algebra of operators
containing 1. %c. ig called a von Neumann mwﬁmvwm if and only

it A is weakly ¢losed in @ (4.
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. * I
Remark: won Neumann algebras are also called W - algebras.

Evidently, a von Neumann algebra is also a C ~algebra.

2.2.2. Definition’

4.

et M be a set in u\wa&l . The noa.anﬁmuw of M(in &w&‘m.;‘
. ] )
written Qﬂﬂ~ is the set <3n_hwmmwa¢wu_ AB=Ba ¥ A€ M}.

2.2.3. Proposition -

_ X _ - _ .
Let MeH(d). Then (M UMy is a von Neumann algebra.
Proof: Trivial.

2,2.4. Proposition

et MNcB(H). Then, if MCTN, we have mo> \5vm5m mem’

pProof: Trivial. : : o _ "

2.2.5. Theorem (von Neumann's Density Theorem, Bicommutant

Theorem) .

Let \N. be a self-adjoint mpamvnm in %u?&v containing M
Then the ultrastrong, ultraweak, mﬁnosm msa weak closures om ﬁz

are all the same, and are macmp to %\
e "

Proof: First, we :o_mm ‘that ﬁ\ ﬂ tﬁ %(t since %e is |

a von Neumann algebra.Secondly,

—— LS W ..IIZ

——

e cq oc i el &a = R
| | :«Ef - __ |
'If we can show that ﬁ‘ = mw\ then the wuoom is- nosvwmwm.

]
This follows if we can show Epmw%‘ is swﬁnmmﬂuoanww mmnmm in %r

i.e. given BE i , & sequence (x,;) in 4 such that J| x, | _As, . B f
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b
_ o, _
and ¢ >0, there exists wm.ﬁ such that J| wxu,....wxw__ < e. As in
2 _m_.,.p.m, we think of CJ._V ‘as an element %, say, of aﬁ.. each
- . i _
u\mw_ =, . Then we must show that Bx is in the closed linear
span of {Ax |aek}.
Let P be the projection of o, onto this closed linear
set. We need only show that PBx = Bx. Evidently, A commutes
_ ol
with P for any ac%, so Pe A (the commutant being taken in
ww.ﬁ@ %‘, ), of course).
1) -~ )
We want to show now that if BE€ &W ' E.Hmb BE R . Let
¢ m&a #.). Then Cc =} MMGMu. where E,. is the projection of
i3 .
0] wmc onto %mw considered as a subspace of @_\ﬁ.\. Writing C, uthOMu
C; is an operator from \RL to u‘mw , i.e. iy 72: since
" »\mrn KJ =M . We have, for y = @.u..vm ® u&:‘h
.»g o«
(Cy), = ] C.. v.-
. i =1 .Hu. ]

Hence, C € %\ if and only if ) ac, i ¥y Mnu.u E\u.. for all i . |
3 :

and (y,)€ @»@ . That is, ce &’ if and osE if C, mﬁ\ for all

. i =)
i,j. Now let B m..m\ ;, and C m%\ , 1.e. C, “_m ,ﬁ\ . e&ms_owmmwwu\

- ~ o~
B commutes with €, i.e. B € u\w , as desired.

The ﬁﬂoom is now Qoam.u.mdm because, for B m&l

~ - s )
PB x = BP x, since P€ B eR,

= 8x
since x €%.x because le¥

| QED.
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L=

As a ooummaﬁm:am of this nsmonma. we see mwnmwww that mw
is a von zmnaman mwamvﬂm wm and only if @w is closed w.r.t. each
of ﬁsm four topologies of ﬂwm wrmowma~ or Hm ms& only if mw md‘
This gives several m@cp<mwmbn smwm.ow Qmmwnpbm_m von chEmSﬁ.
algebra.

Secondly, we see that von Neumann mwamvﬁmm.oosmen_Bmuw
projections, and are in fact Qmwmwawwm@ by their projections.
This is to be compared spﬁw the situation concerning owlmwmmvwmm.
szow may contain no non-trivial projections (e.g. C ﬁo Hu the -
C*-algebra of continuous functions on the interval ho Huv To
see this, we note that mbw_bmwmﬁ can be written as a linear
moakumﬂwos of mmwmlmmuOFﬁn.mHmBmSﬁm@wn %W . Now, by the
spectral theorem, the mmeWHmH vHOumowHOSm_OW any w.u ww are
given by strong limits of polymomials in B. So if wmmka[ SO are
all its spectral WHOumonHosmp Conversely, B is obtained as a

norm limit of sums of its spectral projections. o .

We also note that B mmw.wm and only if B commutes with mHH _
: wHOumoﬁ.oum Hsm\ and so A é mur if and only if A commutes with
_me projections which commute with ww\ . mwwnm any mpmamdﬁ

of %& , which is also a von Neumann algebra (and therefore a
C*-algebra), is a combination of unitaries, we see that wmmm. if
and only if A commutes with all unitaries which commute zwﬂw %W.

(This is sometimes useful since unitaries are invetible:

AU = UA is  equivalent to UAU L = A).

2.3. Continuous Functions on an Operator Algebra

2.3.1, Proposition , |

Let %\ be a von Neumann algebra, and let %” R —»¢

be a strongly




v
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continuous. linear functional on mw . Then there exist vectors

X

: » 1< 1 < n, some finite n, such that ¢ is given by

amm.

n
o(B) =)  (y;, Ax,)
i=1 i i

In particular, ¢ is weakly continuous. 1In other EOHmm~ )
.Hm strongly continuous if mbm‘osww »m_e is weakly continuous if

and only if ¢ has the above form.

Proof: The only non-trivial part is to show that if ¢ is
strongly continuous, then & has the above form. So let us
suppose enﬁ.+ C is strongly continuous. Then e:HﬁﬁN__N%AHwyi @

is open wnmw\wb the strong topology, and contains 0. Therefore
n
Mv.
-1 i=1
in ¢ ~({z€C | |2]<1}) = i.e. there exist x,, l<i<n, in »m. and
2 . _
¢ >0 such that ) _ﬂex»__ < ¢ implies that |¢(T)|<1l, T et.
i=1 S _ .

there is a strong bmwmvosuzoomrqaﬂonau , e}, of 0 contained

n .
et K = o 4,, and consider the set Vv in K given by

vt oy, =mx, TeR) .

1

Evidently, V is a linear set in X . we mmwwum the linear
map £ :V > € by mﬁa%uvv = ¢(T), swmﬁm_ﬁwwv_n Aaxwv. Now, wm
__AMHV:M < §%2¢, we have esaew_Aw ' H.m.__mﬁAwwvv;Am . Hme_
means that f is well-defined on Vv and is continuous, and so can
be extended, by continuity, to V the closure of Vv in K. ‘But V
is a Hilbert space, mnm a continuous linear functional on a
Hilbert space is given by a vector in ﬁum.mmmam_ampmmu_wmaamv.

Hence, there is a vector v €V such that f(y) = ?Lﬁ% ’ for

all ye V. -

Let A m%.. Then A_bxu.,u ev, msm_ S0 m:_mc_m_.: = ?wau..u_ VRH
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W

= ¢(A) by the definition of £. Writing v as QMHV, we have

..5 : . .
¢ (2) = M» e Bxy), all 2ek.

T

QED,

 Remark: The assumption that % be a von Neumann algebra
is clearly nsamommmmww — all one needs is for R to be a

linear set of operators.

This result extends to ultrastrongly continuous linear

functionals with the obvious SomwmwnmeObm.

2.3.2. Proposition
Let %. be a linear set in %v 1\? , and let ¢ be a linear | F
functional on#. The following are equivalent:

() ¢ “mw+ € is ﬁwwwmmﬁwosmwm_conwwbﬂocm-
(ii) ¢ "mw+ € is ultraweakly no&wwaconm.

(iii) there mxwmﬁ_mmasmuomm_ﬁxwv~ ﬁmwv in 3 with
2 : L2 _ e
Il <=y Illy;ll <=, such that
$ (A) = Ma_ GJ.... Ax. ) for mﬁ..w m_%( .
i=1 R _ _

Proof: The proof is trivial once we have shown that -
~(4) =8 (4ii); but this is exactly as in 2.3.1
with a@ﬁ replaced by e»m.

OED. . .
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2.3.3.proposition Let K be a convex set in CARE

Then the strong and zmmw__ closures of K are the same.

RS &

Proof We have KCKCX , and K.

If we show that X is weakly closed, then Sm_ have
the equality K'= ®” . Replacing K UMAMW which is also
no&<mx. we assume that K is strongly Closed but not weakly
closed and will obtain a contradiction. |
| Let A¢k” , A ¢ X . K is strongly
closed and oon@wx. g0 by the Hahn-Banach theorem Ammm-,mOH
mxmngm~_ﬁmbmonm (1972) or Dunford and Schwartz (1966)) A

may be separated from K by a strongly continuons functional:

i.e, there is a strongly nonﬁuvcoum.msﬂoﬁwo:mw

¢ on - B(#,)  such that: |
Re %1: > miow Re d(8) | w_m_x-ﬁ

wwsnm ¢ is strongly continuons, by 3.3.1., it is

weakly continuons, and, since A € R, there is a net .A 8,.)
in K with B, —» A  weakly, and so ¢ (By) mv_h A) . This
owmmwpw_qounnmapoﬁm the above wumncmwwﬂw..sm conclude nrmn K

is weakly closed.

OFD.
2.4, Kaplansky's Density Theorem

Let R be a *-algebra of operators,
and let %‘ ‘be its strong closure in . mw;@ 1f .
A € MM\ there is a net ?n in R which con-
verges strongly to A, If A is self-adjoint, can we choose
the A, to be self-adjoint ? Can we choose A so that,
in any case, wu converges strongly to A*, or such that bmﬂ

converges 1o .)b W
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&,

arm possibility of making such choices is the content of

Kaplansy's density Theorem.

E 2N

2.4.). Theorem (Raplansky's Density Theorem)

Tlet QN be a self-adjoint algebra in

——

ump , and let _%W mmwowm_wwm strong QHOmsHm.Om,mw. For
any element A € ﬂ there exists a net A, Hﬂ..ﬁ such that:
(1) 0 Al < WAl forall o ,
ava A oo=<mwwmm wwwo&www to A, |
auwwv A% | .ooawmwmmm_mﬁnosnww_ﬁo A%,

Hm;me mmwm:meOH:wﬁ_w& may mm taken to Umgwmwmnmmuowsw.

Proof Let us assume firs that A Hm_mmwmlmmuOMWﬁ.

We smm mpmo mﬁvvomm wrmw Il adl w 1.

: oosmu.mmﬂ Eqm mﬁbﬂﬁwo:m £, a3 _H i &..w R a»qm: 3\
£(t) = nw (1 + w wnw m:m g(t) = (1- <\1ltll|1JV\w.
We see that -1 € q(t) € 1 and that £(g(t)) = t. Both £
and g are continuons.
Py realizing A as a real function in C(K) and noting that

oA i =] implies that the mcnoww03 nmvﬂmmm:npdn A has

modulus less wwmu or ecual mo one, zm_owu define B = nﬂ>g, N
which is self- mmuow:w vmwo:nm wo the C*~algebra am:mﬁmwmm 3% A,
and satisfies mnmv = £(g(A)) = b w e. A= mwa 1 +m ) H..
m»:om B belongs to the o*lmwmmvnm nm:mﬂmﬂmm by A, a fortiori m
belongs to mw . a:mnm is, wrmwwwo&m. a net B in mw__ss»nr

| _nou<mnamm mwﬁounww to B, _ . | S,

‘We claim that we may choose mxmwwmnmmuoHnwy




o

E

_Hm_._“__o,m_ X in Bl e i) .

53

Since mw mou¢mwnmm_mﬁﬂonaww to B, it also nou<mﬂnmm smmwww

wo_w._mmuom m» 00=<mnnmm smmww% to w = B, mam 50

. W Amw+ m”v. converges weakly to B. ewmﬁ is, w is in ﬂsm

weak closure of the convex set of self-adjoint mpmamsnw om
A . omy u.u.u,. B is in the strong closure of the self-
mmu0urﬂ elements of R, , and so, as claimed, we may mﬁﬁﬁOy
se that the ma are mmpmuwmuOMBH . |

m :H. Then A is mmwmlm&um

C Let A, = ;+ B)

int and [ Al ¢ 1 . To see that A converges strongly to

M, consider
A-Ay= 2B (A+BH ™ L ooB (1B
SO E ) (108 - B, (0 B9 (1039
2 (482 (3-8 )+ Bl BB B (14577
= 2 :_;Q-Q-wt??%p-
4+ 2 B (1rBS) T (B,-B) (L+BF)
-1

Mow, (B~ B) _;+_mm_v
Moreover, || (4 + muvup= £ 1, and || 2, (4 + :H:

Qn

converges strongly wo zero, -

and so A - B converges strongly to zero, as required,Thus,

for A self-adjoint, the proof »m_noaﬁwmnm.

.

For the mmnmnmp case, nonmnmmﬂﬂﬂ and (X, the
mmpm:wmuoﬁnw mwamvﬂmm of onerators. o: %mmw »@ given by
matrices Aw.uv £1,j £ 2, anl ywu.m mw. or WN ' ﬂwmn_
vmow»<mwg. It is easy to see that (X is ﬁwm strong  closu-

tet A ¢ § . Then [/ O A |is d'self-adjoint

*
A O

element of mu_. with norm equal to : Al . Hence, mm the
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preceding proof, there is a net Abwuv of self-adjoint ele-~

ments of (X with norm less than or equal to [ A |} , conver

a»ra strongly to [0 A

#
ACO
That is, for each xey € ¥o i ,
Q .
Siv (xey) = Sﬁx + wSS & Eme + »mmﬁ

converges to [0 Al |x} = Ay & w x in m:w@ o
* . |
AQ b4

xR
zos._~ﬁ>wug= < || Al implies that

(o4
| A n = WESCAL) Bl < IHAD
Vhere Fy and E, are the projections in 46 @ I onto the first.
and second components, HmmﬁmowmémH%
Moreover taking x = 0, the abhove oon«mwawsom irplies that
R : o ¥
Ny = A strongly, and, taking y=0, Hsnwumm that >MHu p%m

: »*
AmH:om Aw. v is self-adjoint) converges stronglv to A,

and the ﬁHOOm is complete.

OED.

nemark . The conditions (1),(ii)and {1ii)of 2.4.1. im

. . *
ply ﬁrmﬂ_wm converges strongly to bmh and that A, A, con-

. : : *
verges strongly to A A.
In general, wa will need a net wﬁ to lead to the strong

1imit noint, but if m@ is separahle we can actually find a

bounded sequence A satisfying the noumwwposmac_ﬁamvmumAﬂmm;‘

2.4.2. Proposition Let % be a separable Hilbert space

and & a _vogmmm sat in &QS .Bhen the topology induced on

& hy the strong topology of  is metrizable. In fact, it is

B,
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' given by a norm.

proof . We asm__n find a norm ||| - || on %u_g\\vmaow that
a bounded net A oonﬂmﬂam_.m strongly to A if and only if’
.fxe: i A,- A 0| = 0 . To construct || - 1] , let TL be a

countable dense set in ¥ \ M.OW . We define

o Com S N
mal = /2, 2 lAx, i g o I
= 2. Fe S S
Clearly i - W 1s a norm én’ mw S.ov : for example, |[|Af| =0

implies that Ax/ = 0 for all n,and so A = e__munom.ﬁxs_m is dense.

Also (|| AlN&UAY . S
Ve want to show n&_mn if we_h is a sosnmmm_umﬁ in wVS‘C
then A, converges strongly to A if and only if [|A, - alll»0

Put By = A, - A, and suppose B — 0 mﬁ_ﬁ_o:mww.mum |

e il £ M, for all «;then
T MR i Bom 2 2770 Byya )
A L SN .

o

¢ Tom 20 2T 0B YL+ Lo 2. < WBgN

oL M= NTA

The first term is zero since WB 4. \=>0 for each Yy
and the second term is bounded by B\MZ. since | @a&eﬁm M
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Thus i we i wn_: 7;\Mz for any N, mnm mo
Qi BB = . That is, the strong noaqmwam:nm of w

to 0 implies wrmw {ll B, i —= 0.

Conversely, Hmw B, be a net s»ﬁu sw ; < ™M and
suppose [l B_| N — O . This Hav.._..._.mm that IR x, 1l = O
for all n.Since the B, 'S are uniformly bounded, and 1=
is dense, we conclude that _fwasz —~ & for any x ¢ b,

i.e. B, converdqes strongly to zero.

NED.

».4.3. Theorem. Let R be a self-adjoint algebra

of ovperators on a separable Hilbert space, and let A be-
lona to the strona closure of ﬁ‘ . Then there is a se-

gcmnom..wu »:ﬁ such that.
(1) N was £ :.w TR for all n,
(11) A, converqges strongly to A,

* : o *
(111) Ajconverqges stronaly to A .

proof. By wnvwmnmxw.m mm:wuww theorem (2.4.1.},

there is a net A in with wQ‘, < ,/y; , and

A, > A ».» > A" strongly. By 2.4.2., [lA, - A :T.vo
anda Ml w - A :_ 5 0. Thus, for each integer n, there 1is
an oy such that i Pns.. all £ .W. , and E) |>§ ...w

setting A, = A , ve have I Al < AN, ___Pn)a_lw o,

and WAL - A _:

* *
ﬁ:l...,v A stronaly.

uﬁ&.:. by 2.4.2, b.:-...v A and

OFED.

.

&

™
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2.8. Positive Continuons Functionals

We have mHHmmm% discussed w:m mnnsowsnm om
ultrastrongly and mwﬂo:nwﬂ continuons mc:owuosmwm.
We want to nosmwmmﬁ here vOmMﬂ»<m msor mssowuo:mwm. _
We will see that these correspond precisely ﬂo ﬁrm,mmw .om.

density matrices.

o 2.5.1, Proposition let mW\ | be m_memImQQOHnd
mcvmuamvﬂm.om_ ¢w~ %ﬁvv _@- nouwmwvwaa &. ﬁm:m_umﬁ_&_ be a
positive awﬂﬁmwwﬁosnww no:ww:qo:w kummw.mnamwhonmp on u& .Then
there exists a wmncmnnm Ax%y of <moﬁmnmw»= H such that
MJ =.x»=~ < oo _ _ g mum.Wﬂnv_dwmﬁ | |

L

_mOH all A m QN . JIE ﬁ is mwnonmpw noawwbnonm. the mmﬂsmnnm_

of x 's may Um QUOmmu mun»wm._

i

Proof . Let & vm swwnmmnnouaww oo:ﬂpnconm and

@omwwwqm. Since ﬁwm norm topology is finer w#m: the spwﬂmmwwo:n
topology, ﬁ . mxﬂmamm ﬁ:uaamww to an awﬂwmmﬂnosau< con-
tinuons functional on mws Ty, the norm closure. of MW__ .
This extension is also positive, We may, therefore, without

loss of generality, suppose that mN\ 1is a n*:bwmmrwm.

By 2.3.2, we may write Av?iu @.Mﬁ » Where
x=(x),y=y) €@ H , and Rx = (ax,).
_. We Qonw»mmu the positive linear functional on
,QN:_‘_ “given by ;4hﬂwv w_~x_+ w~_M ~w,+.w~v._ﬁmw_wgm;mw
he positive. Then | . |
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P o= (xR + Ay 4ty R0 4 X Ry)

= ( x,8x) + (v,Ay) + 20
Since (x,Ay) -= S?mu& - nv gv =2 0.
mm:om_ Afﬁwv 2 2 | #uﬂwv~ i.e. AT majorizes

. )

Consider the o%owzumsdmﬁmom of x + v in’ @ »&u , i.e. the

;oHOaznm of w B (x+vy) _ Ae R w , and the.

- HmvwmnmdﬁmﬁHOb of &N defined by Hmmﬁﬂwoﬂwwa A to wmwm;owowwn_

'subspace. By the ss»acmsmmm of the CNS QOSmﬁﬂﬁoﬂwon~.w:Hm
Hmﬁﬁmamﬁwmwwou is equivalent to the GNE HmvﬂvnmSﬁmwwo:
associated with the functional Hf . Since HT amuOWHNmm y

% , We wnos. by 1.8.4, that there is a positive onerator

N
W

T on the cyclic subspace, oogacﬁusa with w mon each A & mﬁ

_mzmr that

?3 Hfii‘fi,\:m S?L;r L2l 2 (xey))

1

cetting 2 = (2 ) = T/2(x + y), we have

- o
by = 2Lz, AT

L=
as required.

Hmn_.&;_ is_strongly continuons, the vnomh_um

exactly the same except that & @hs  is replaced by a

[

finite direct sum, , | - . o . . o "

0ED. .
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This result says & looks rather like = a
trace. 1Indeed, we can now show which functionals mum.n»«m:

by "density matrices",

'2.5.2. Theorem Let mN\ vm_mmwmsmauow:w
msvmuqmvhm of mwﬁ.vﬁv , containing ., ana 1let _A,

be an ultrastrongly continuons positive linear functional on

%W « Then there exists a positive linear operator

of trace class msoz_w?uﬂ

bwm = 1 f A

for all A € mw\ . Conversely, if  f is a positive
linear operator of trace class, A ——>  Tr( Ru A)

is an ultrastrongly continuons positive linear funcétional

on H(H) .

Proof . By the preceding proposition, Au

can be writtem as

o dm =
some z, € 4L wen 2T - o (1) < B

b

-

(T

A

Pefine the linear operator %v, on H, by

g ro= 2. g ﬁ_ﬂﬁ_rx ).

vsd
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men 19X ¢ 5 ngatixn = S Uxl , so f 1s

bounded. Furthermore, .m is positive because

(%, px) = D (g8, x) = LIS, 9 0,

LA

Let ( x“_.....sxuv be any finite otthonormal set in %ﬁ

Then _ _ o |
W,_._AJ% NL M _Aﬁ: :_
= ML :n: 1_.,\”_._ SNzt
& HT A

i
ava

=
o

This vocsg- independent of fn, implies that mv is of ﬁﬂmom

class. Hence, for any complete orthonormal set Ax v and any

A ¢ mN\ , we have

dm = 2 (z,az)" Nﬁwrxt??pwpu.

l. Ta_>wﬁ.v_u e ::_i

o

.

i.e. Auﬂvv Tr (A % ), as required.

|
B

oonﬁunmmpf suppose § Hm a vom“_.wnqm wnmom class

overator. Then % can be written as % NL ‘ E ' where
2 _ .
y.r 2 O are the eigenvalues of % mum m» the
corresponding projections onto the normalized m»mmscmonOHm._ﬁ

T, , say. Then we :m¢m

’ ﬁxu %».?wiv

B



i
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put %= AT, ,sothat J 0 EIe D% e

since £ is trace class. Also, for any complete set

x ) in s
A s B pAn) s L (R, F0AE (8, A )

(x

. ﬁ.r

1]

H

Mm; h m>\ \y.w» u

Thus A — T A m\>v_ is ultraweakly continuons, and,

by (2.3.2), ultrastrongly oouﬁwnco:me

QFD,

Remark = The %p,m constructed above are
mutually orthogonal, so we have a refinement of 2.5.1 in
that the xp.m can be chosen mutually orthogonal.

\ﬁ is called a Qmumumw matrix. We note, that, in

general, Ro is not uniquely determined by #v ._

< a———

A5 L
although this will be the case if mN\ - 1s equal to

G(sL) .

2.6, u»mqunn_nmwummm:wmﬁuosm of a C*=-algebra

The purpose of this section is to prove the
theorem of Glimm and Kadison (1960) which will be used  in
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chapter 7. First we need the polar decomposition theorem.

2.6.1. Definition  pet ¥ be a Hilbert space,
and let W ¢ mwﬁ¢bv ., Wis called a partial isometry if
there mﬂm wﬁvmvmomm N.v in &@ such that _2@“ K — L is
Hmoawwﬂpo_ouwo L, and W : xt - { OW . K is called the ini-

tial msdmvmnm~ and L the mw:mw msvmvmom.

w<wm®:www. W* maps L »mosmﬂﬂpnmwww oswo K, and
maps. v onto 0. | | o |
yHﬂ Hn mwmo ‘easy to see wrmw 2*3 = ww~
the ﬁnOumonHos onto. b

the ﬁﬁoumoﬁwon Om »ﬁ

H»-

onto X, msm zs* =P
oon<mummwwy tf S_Hm an ovmﬂmnOH such that 2*2nvxs

some X, then W is a partial isometry with initial space K

and final space WK.

2.6.2. Theorem AmonH Umoosnowwwwonv.

| Iet A € mw ﬂ \Kuv . Then b can be written
uniquely as A =w | a| srmnm _w_wm the positive square-
root of A*A and W 4is a partial isometry with initial space
_maﬁmw to the closure Om_wrm_wm:nm of _ m___msm final mﬁmow_m@smp

to the Closure of the range of A.

Proof For any X e ¢ + we have .

ook
M

e
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__; R _b:_, JAx) = (x , AMA x )
N CHLI SN NN

Thus there is m.s:»qsm,:bunmﬂw operator, W, from the closure

of ﬁsm_ﬂmdnm_Om ._ A __ ﬁo_w:m_nHOmlwm of the range of A
_aw4m:r#wwz _+>___! A. We extend W ﬁo_mvaHﬂumH Hmosmww¢ by

,mmmwden‘E% = 0 for y orthogonal to the range ~b_.

AFD.

__.Nmamww : This way of writing A is called the

‘polar decomposition of A,

Suppose U is unitary and commutes zwﬁmmwhwsm:
A=U A Ur=vuwut ulajur - =uvwur | al
is another nolar decomposition. eym.nnwmimnmmm”wznpumm that

W o= Uw u*, i.e. W mwwo commutes with u.

2.6.3. Definition 5@#.&¢¢\4ﬂv vam,Hmvawm:wmwpos

of a C* - algebra, A . mﬁdﬁomm uﬁuﬁ 1t 1s a subspace

of %ﬁ " invariant nnmmﬂ_qﬂﬁnxv. Then  ( uﬁh\ 1y ), where

iy { &) 1s defined to be T(CU)M o1, defines a
Hmﬁwmmmawww»o: of GN_ ~called a subrenresentation of Asﬁﬂqu
B Y T RN R g\ 4
Fvidently A%oh.qﬁv~ where ﬁﬁ mmxvnrqqﬁmAv» %éhw

1s also a subrepresentation of ( ¢, I ),
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u m 4, ummwn»ou | Hmw ( »@_ﬂﬂwv and ~@¢@ﬂ4

it ————_——

_am. any ﬂao Hmvﬂmmmnwmdposa of a n:.. mpamvﬂm a . They = are

o

aid to be gwmqu:w if no nﬂ&umﬂammm:#mﬁwan of one is unita-

rily equivalent to a mswﬁmﬁnmmmnwmw»o: of the other.

2.6.5. Theorem Let (b, 1) ana :& M) he

e

tvio mwmuo;ﬁ Hmﬁummmswmﬂo:n 0m a n - algebra, . .E.,m: ‘the

<on zosamuﬁ mub.m&ﬂm ( )_\hmm 4 ) AOC is macmw to \(% v @.4 X v

_ ¥
_ H:..OOH we shall first show that Aﬁ@ % 2.\ :Qv_u

| GC mvﬁ\h v‘ H:mmmm let B ¢ _mwgrpmv ,:u v belong to
r:,mu_\_,_\wv :Nv __ bm in u 2. m‘ we write B = (% S \with X: K‘".wﬁﬂ

o
-+

Yy :I«F _.._ m x.\iv_xo»gq. Flvku_.q:mbz
be \m,_\%‘_ﬂ_&.xs 52.»8 that X e *:3 «mﬁ\ QQ ,

i
§
4

and & ﬁ.cs_.. _u__ _>_\:3m.. | .H_ﬁ:: = T, ::a for all me o @,

no:m»mmﬂ. S \:‘ QL :b;vm A& P\.\ﬁ Sm ex=
tend § to an operator in mmua?u% ,FL by mmmwvwnﬂ. 5 to ?_m_ za-
ro on u_«: , in .%J & mm..&_ ~ . Then we can sH»ﬁm_"__m .f@ 19 :3

= M, (A) S , all Ae (T .

since (J is a C .._m“_.amvn.mﬁ it is generated by its ﬁnwwmnu\ ele

ments, mo_r_.,w m,.m.n . and the remark following it, ve see that

W & i, (a) = Jm% \:\N (n) W mOH mwu. me s.:m_

re ¥ is the vmﬂgmw Hmozmwﬂw given 7< the UOHmH mmooscoﬁgb

on of § . Taking adjoints, we obtain a. @ﬁ\ (n) 2
* _

- W ih%ﬁ@avv‘mﬁ..bm.@..

Hence
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MOT, (&) wew = w mem ()
e sé me T, (A1)

In other words, 4?@ ﬂ\ _, 3*2 u.m. & %@  defines a
subrepresentation of ( A i, & T, ) ww the i,
the initial snace Om.s zgo:ﬁ.wm ao:wmu_.umm_ in mx.um ' _mn.m_ SO

T, & .:mw .7 W W x,:.mw »‘P 1g _m. mﬁdwmﬁﬁmmmnwmﬁuow Om_
( 3, BLORT - .

Similarly, T, ® I, P W z*L\m_% Mx\.,_w is a
mcvﬂmwﬁmmmnwmﬁon of ¢ P@»_ \:\» ). But then W effects a
:Ji.mué equivalence between wwmmm msshmvﬁmmmbﬁnw.»onm which is
in nocﬂﬂmmpnnpos with me mmmcamm disjointness of ?ctﬁ_v and
( xv :m ), unless w =0, | |
e conclude that § = 0. In mxmnﬂu._u_\ the same way, we see that
T = 0 and that ﬂv_mﬁmmowm B belongs to ﬁ ﬁ_Pa:,mn\_,_\ N _ vk_._ i e.
(woe o w, e o mea) e e’

The converse Hunpam»os Hm nHH<HmH and so we wm<m_

!

e, (&) = () e, :ﬁ..
as claimed. _ o .
Now suppose w m,.‘_.ﬁ %...\_,ﬁw m@, _v_t . Then, 3 von.
Neumann's density ‘theorem, _m is w.: _ﬁ:m,___smmw closure of
Mo, ﬁQv . It is easy to see ‘that this »uﬁ.wpww that
neu. with € € T, ( Ohvz and De \:_NHQV.: (applying
von zmasma: 8 mmam»ww nrmonms mqmuu to _\sﬁ Qv ,m:_m_ ﬁm:ﬂm._

mmuom

mem (a) c HNQ%_@_S“QM;
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A

oosqmummpf ﬂmwm > ®B € T Qui mw‘_ﬂ V._ By the above

mua&:muﬂ., \564\ mhu: \5«9; m.u\q ﬁﬁﬂv. and mo_

A®B commutes with LACRIA mmu: , i.e. A®B ¢ ﬁh@j\mm@“i
_zm conclude that |

3@@&&2 = i)' em ()"

OFD.

2,6.6 Theorem (Glimm and Kadison (1960).)

o * S
Let oc_ msmE _um ‘stateson a C -algebra,
(1 , and suppose that their associated GNS Hmuummmzwmﬁut

ons Aﬁ_r._.bv ,(%,,7,) are disjoint. Then : w, - wyll = 2.

proof . By definition of the ONS umvwmwmnwmﬁ . &
ons, the moﬁ.ﬁ _._E_f_. ?w ; os” ﬂ%)ﬂ ﬁﬂc is given dw
the Q»mmmﬂm:om of two <mnwoﬂ states.

(wy-oy) \_ﬂ%ﬁ;, = w, (A) - ,.J?:

u..mb,_.ﬂ_ﬁﬁbu 2,) - A.,.L.u..\ mbv LN v |

-

where R.N. is Eam OZa @%awwo <m.n+.ow u.: u\mur_ 4= H.m....

_ _ It mou.posm that W, - W, Hn smmwz oo:ﬁ_.ssosm.,
and so mxﬂm:mm. by oo:ﬂ.:ﬁ.wu- _s to a mou.s ,€ on ﬁ@ ax \O.Q
Ve QH&.B that the norm of Hm the same as Egm norm of

Wy - Wy, . Itis clear that the norm of Y is. not
less thah _._mw_mw__ mm. wy - cQ.m , 80 we _:m.mm _c_nwm_ show that

if ﬁi\:: & lwy - w, : for any Ae T e T, an )"

with I All =1 . But von Neumann's density theorem




3

Y

67.

;.H%amﬁumm_wvmn A is a strong limit point of M, &7, (&) and

y.mo~ vM_mmva:mww.m.mm:@ww& wrmoumas there is m_umw_mwx_ in

T &, «Gﬁy » with a,&n\ I« 1 , such that B, con-
verges strongly wo_w. Hence AV«&WV ao:<mnamm to. dkm%wmﬂ
Y(Ba)= (wi-w, ) (By)  and  (w, - w,) (B.) [ < Hw,-w,l,

_ The result follows.

__zoz._Am@“NJA%v . and ﬁmﬁanﬁw v are nHmuoHuwh

o m.o by 2.6.5, \3 & 1, ﬁg\b:n Saﬂﬂﬁ_& M, (&) ! . This algebra

oo:wm»:m a=4&-4 . Tus
220w -wl= %) >]Y4(A)] =2

since W, (1) = W, (1) =1

Hence Jf w, = w,ff =2

QED.

3. The Canonical Commutation Relations

3.1 The Heisenberqg Relation

Probahly the first thing one ever mlooam
ters in quantum an:mauom in the commutation relation = of
mm»mmsvmwn. This relation is asimply me‘eumamﬁ; P& =ik
where 0 is an operator nwvnmmm:wﬁ:a w:m position, m:m__v. |
the aoamswss_Om a single particle moving in one-dimension,
For a single particle in, say, wl&.._._.:m:mwowp.m. \nE.m_wm“_.m.nHo:__

hecomes

-
-

(@R " it oy, K [@y,@ ] = L7, Pl .n_o

L1
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with r ¢k 4¢3 representing the spatial directions.

_onm_ams now ask what these relations mean ma-
wwmsmwwomwpw. and whether such relations uniquely determi-
ne the operators 7P and R .

According to their physical interpretation, we require the

p's and 0's to be self-adjoint operators, but to specify m:m

operator, one Bsmw_mwmwum its moﬂwom and jits domain of de-

finition. For (densely-defined) hounded operators this = is

no problem as they always have a natural extension (defined

hv continuity) to the whole Hilbert space. We note ﬂsmﬁw_pb

this case, there is a well-defined vnroduct PO and NP which

is also a bounded operator.

So let us suppose that we have two hounded one-

rators P,0 mmwpmmwpsn
(e, ?) =k
Amuva now on we set = 1)
By Hnmcnwwou~ we see that
.ﬁos.w“_ = in 0Pt

for: o ot

Q"' - PR

Q (@ -7a") + (QP-TAE"
wthS:Q£&¢ Tpﬂgbs_

L mey Q" |

"

(&"") ¥]

1h

‘as required

4

L
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g ?

But then B S .
. em Q@ mna@ A
o S [@%P) - QTP -RRTY
£ 2 pP0he™
¢ 2 |IPnuen nae™
fe. M & __m______ﬂ__ & ..mon_ _m%_m._.

This is clearly a contradiction.We have:

3.1.1 @rmonma

a:m Hmpmﬂwoa mo~wuu i has no solution in
3 5

We are mOﬂomm_ﬂo oo:mummw unbounded operators_and their de-

LA B licate domain considerations.

3.1.2. Definition. We say that self-adjoint ope

rators (0,D(Q)}), (P,D{P) satisfy the Heisenberg ooaacwmﬁpou
relation if there is a dense domain D C D) O ] Hd such

that QO DeD (P), PD C D (0), and such that,on D, we have.

o - uo _

o : S 3.1.3, U@mp:pﬁnozr_Sm say w:mw.mﬁaamwﬂwa ovmnmwoum

.mo p{o)), (p,D(P)) satisfy the weak mmwmmsvmna Hmwmﬁpos Hw

there is a mmnmm domain D 0 caou D 23 such E._mﬂ

4 o -~ {of,Pq) - (P£,09) = i (£,q)

& for a1l £,q in D.
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Do there exist O and P mmwpmmwwso these defini-

tions? The answer is yes, as we see from the following

&

Schrddinger representation of vemwwwou and momentum. We ta

e M= L3(R,dx) , @F)x) = x4(x) on D&} :_ (inbaiian o)

p is defined in terms of Fourier transforms:
~ a Yoy )¢ . o
Aﬂ%_gu»w@hﬁ_o: 6:¢nmmdm_wgﬁt_mf <o}

Of no¢www. wm m_m Jwﬁgmv , for exarmle, then Pg =.i mm
- _ dx
arsm mmmwumm AD Unovs Aw n(r)) are mmwmimmuowbﬁ
“and, if we take D = AWA%V_. for mxmadwm. wrmu 3.1.2. (and
hence 3. H uv is mmmHH% mmmu ﬂo vm nmwuamwm& |
We can now ask swmﬁwmm ﬂwm owﬂampnamﬂ Hmvhmmmn
_.wmw»os is ﬁuwasm in some sense. qwm answer is no - there _ S
is an cﬁoocﬂwwdwm number Om different solutions _ Let us a
show this sw nonmnnnowwna some of them. | o |
For ocw mHHrmnw space, we take %m Py Dot .,\Vf o v
pefine (0f) (x) =x £ (x), all £ e H: . Let g be mwmmmﬂmsa |
w»mvpm‘_suw: aﬁov o (0 = g{l), and n,m wﬁ  . For msor q we

define
(Pg) (%) =-ig'(x)
os<»oﬁmww 0 i3 a bounded, and it can be shown

{see, for axamle, xov»aaos Awwqpuumwmw P has an ﬁnQOﬁw_
nmUHm :cgwmn of distinOt self- magounw mxwmumwOSm. These
nowummvaam to mvma»m<psn houndary conditions of the form ﬁ
a(l) = mna ._..:3. 0go € 27 . call these extensions - _ 7
7. P, has a discrete spectrum with eigenvectors

[-1 : .

expi (2T n+B) x
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| Take D nwww_ c- mgnﬁowm on —”o?.m_s_w»n:_ <mnwww m.n_
www.m:m_vo»vﬂm.wm = P on D and it 48 easy to see ﬂsmn.nymmn
satisfy the mmwmm:umna_ﬂmpmd»on on DN.

We conclude that the Heisenberg wmpmnuou mmmm_
not ;u»gsmww specify 0 and P,

Ve remark in vmmmwsn w:mw from the mvo<m mxmavwm
we see roz_HHUORHm:w it 1s to mnmnumx_ﬁﬁmnummww ﬂrm aoamwn
of an operator. In ﬂrum_mxmadwm. this corresponds to mumown
fving boundary conditions . Indeed, consider the operator -

-id/dx with no boundary conditions. This has mwux?u_m € ,as
an eigenvector with eigenvalue 2. mo_ﬁnm spectrum is wrm;

whole ooavpmx_ﬁwmbm_

3. l.4. Definition . Tet w be an ovmuwwow~ ~and

let mm,U~>VL The <mHHmuom om A Hu £ Hm ﬂ?@ :o::svnmww<m dsa

her: \G.HQC ha - Am b m: m:m

If A Ha mmwmnmmuoH:ﬁ mnm mm oab V. then
Abv = Am‘ﬁb (£, wmg vmv

If £ is a 50u3mwuumm mwam=<mowou\ ﬁwmn Ve nbv o

(and oon<mﬂmmpws ==wmmm mm =0 ),

3.1.5. unovOmwwHon

mn o p,D amnumm< the immw mm»mmuvmwn nm

Hmﬂo?_.za? Q mm p, MNfl = 1; we :mé

ve(0) vglP) w 3
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Proof. Let £€D, || £/l = 1 Then
{p£,08) - TBE,08
= :vmaowmv - nO”mLuhv

&1

= -1 (£,£) by 3.1.3.

Hence =~ 2 Im (P£,0f) = ___m __u = }, and 80
1=2 |1 (p£,00)] £ 2 {(pe,00)]

£ 2 fegll ol

ie. Ioen? foeg?s 3,

CIE ﬁ 0 mmﬁmm« ndm mmp:nmuvmu.n ﬂmwmﬂo:. SO mo v..\w and

n - for any real o % Hence

lo-oy 12 Je-py 242> 3 , __
Takina & = (£,0£), @= (£,Pf) ogives
ve (0) vplp) > 3

| . as redquired

OED.

This, of course, is the well-khowH uncertainty
relation. |

Let us returh to our example on 1% [0,1].

- mu.mdx

TLet m:.s . Then v (p)) = 0, and so ve ) v (P, )

0
<

- ot ssor ::nmnwmusww here _ . . _

THis would appear to aonwummhaa wsm uwggoam un&ueﬁﬁan
However, £ (%) = m“..w__,_\x ﬂ D. Indded, we cannot enlarge D

to include this vector - otherwise we would contradict the

proposition, It is false that




q
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(nf,Pf) - Avm.omv_n ».Am~uv for ﬂ?umuﬁmﬂﬁwaswmn £.

SOHm ambmHmem Hm awﬂ D mma»mm< ﬁdm smmw mmH.
amzvan wmwmﬁwo:. then U om::Oﬁ oO:nm»: mn% myam=<mn#owm
of N or P,

We have seen that, in general, we do :ow.rm<m

uniqueness. Powever, under extra conditions this can be.

proved,

© 3.1.6. Theorem (Dixmier (1958))

bmw o ﬂ be QHOmmm mmsamnﬂpn OUmHmnoum on a
mmumwmvwm znwvmnﬂ mdmnm. a:mn ﬁo vv is c:meHHHM mncp<mn.

lent ﬁo a direct sum 0m nosnamwbamﬁ ﬂmvﬂmmmsﬁmﬂwoum of wﬁm

_umwbnmbvmnn H@Hmﬂ»o:m pm mam o:HM if n:mnm is annm doma-

,Hu .U C U_?S_ _3, p(p} mao? wumﬂ_,_

@)y Ppcp, @be D,
(11) ﬁv~_+ ONV M D is mmwm:apmwpw_mmpmrwmuouzﬂ

(144)0P - PO = i on B

These no:mww»onm ensure ‘that P and 0 are mmwm
-m&o?a mnm rhtp, 0OFD are mﬁm:ﬂ&? self-adjoint.
M posteriori, (1i1) says that the number ovmﬂm¢0H for wym

harmonic OmopwumﬁOﬂ is e.s.a.

3.1.7. Theorem (Tillman (1963,1964))

Let Dav_sw closed wwaamwﬂwn 01mww#owm

on a mmvmﬂmvpm Hilbert space with p{nY N} H(P) dense such




74.

.

that

S

(1) (0£,Pg) - (P£,0q) = »nmﬁﬂ.&pm\a m.u?&:@@?

(11) (o + WE* = (Q « iP)

Then P,Q are self-adjoint and equivalent to a

direct sum om_moruam»:amwhHmwnmmmnwmﬂuoum.

A posteriori,. AH»V savs ﬂrmﬂ ﬁwm :mﬁzoswn os-
._oHHHmwou creation o@mnmwon is the mQJoHnﬁ of the annihila-
tion ovmﬂmwow._ _

woa 3n00mm of 3, H 6. and 3.1.7, we refer to
.wwm oawaunmw vmumnw (see also wcw:ms Awomqvv. and for fur-

ther &Hmoamm»os see Fmch ﬁpoqwu

B‘!

3.2. Von Neumann's Unigqueness Theorem

LB

s

HWm ﬁnm<»oum vwnmnﬁmﬁw should have: mﬁmmw
ced to Hsmwomwm the subtleties Hs<ow<mm with dsm Heinsenberq
_ﬁmwmﬂuon.zm shall recast these Huﬁo a more ooa<mﬁ»m:n form,

Ve have seehthat, formally, [Q,P]= i

implies hon,Wu = in o™l and so
2. ,_vu = o™t
. . . _
n. . ASIHV-

dumming over n glves ﬁmpmo. mu_ = ~a012Q,

i.e. peld@. el®® (p +a).

and so

tlence - ﬁn »mo »mo ﬁw + mV:

A
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mumn.

o

Thus elPP 12Q = o120 ib(P+a) , im0  ibP _diab

@

We have mroza that the mmwmmnvmnn relations Hawww. moanHH<

ibp Hmo Hmo _ibp iab

= e e ",

that e

U»mmmnm:wwmwwna_z_w_w.,w mnm m mmwﬂH:q mnvuo~ sm_nmm _ nzmm;
_Wimwm relations are. monamwww mncucmwmnw

The relation e > .m»mo »mo m»vm el 15 called the
Weyl Hmwmd»on mswwnsm w:m mmgmmvvmnn relations into nSHm
moma »m wmnsnuomwww <mu< no=<m=»m=n because we now only smmm 

to oosnumn1 woz:mmm‘,w: ﬁmnw~ csuwmqw ovmﬂm+34u. Tet us

‘mOHSmenm n:pm.

3, n_H_ _ummhswﬂ»o: A wmﬁwmmm:mmﬁpon of the weyl
K4 : HmwwwHOb_ nmou onhe mmnﬂmm om mwmmmoav is a nm»n of Bmvm
s —> Em? ——> V(t) from \m into unitary o
_mOﬁmHmﬂoum o: a mpwvmﬁﬂ mvmom ﬁm m:nw.ﬂwmﬁ
Awy m__yrtv _cﬁmv mzm t l¢v_<ﬁww MHm_uwwovaw continuons
Hmunmmmsﬂmn»o:m.Om.am
_ Lt _ o
:: c.m, ﬁ: = e v(t) U(s), all s,t.
nmamﬂw .n_p. For n degrees of mnmmeie_tm would
have maps 8 llw camvs t —— v{t) as representations of
the group R and mmnpm@.;n
c@_ vie) = oISt yig) u(e)
- 2. We have chosen U(s) to correspond to e%Q,

m:m_dﬁnv_no_mww@. Hrwm_oo=¢@nwwo: is not universal,
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s

u. We have Hmﬂapnmm that U(g) and V(t) be strongly QObﬁwbsocm

&=

80 ﬂrmw we can recover O and P as their generators by awou.

nes theorem. For unitaries, weak and strong continuity mnm_

equivalent.

3.2.2. pefinition A nmnnmmmanm¢H05 (U,V) of n:m

P ]

zmwp nmwmw»on is nmwpmm Hnwmmco»vwm »m the only closed masmvm

ces of % invariant under the camv 8 and V(t)'s are ?uw and

wo.

ujm.u. ummwuﬁﬂpos_awm Schrddinger representati-

of the Weyl wmwmw»oz_pm‘ﬂvmw given hy: Y = buﬁamsqu“
for £ € $ we set |

{u(s)f) ?*njm_%mx £(x), (V(EYE) (x) = Fx+t). _ )

3.2.4. Theorem A¢o:_zm:§mws_ﬁwmuwvv. : . | o

Any representation {u,V, M ) of the Weyl
relation is mac»¢wwm=¢ to a direct sum of irreducible repre-
sentations.

muszmmn zamywuu mx@ Auwmwv <Aﬂv camv.

s,t € .

Then it 15 easy see that
(e, ) Wiat,t'") nTxﬁw (ts' - n._mm’_z (s+s',t+t')

w¢www:a_m_m -s', te wnw. m:m@ﬁmwna W no.ov = i, we get

-1

(-8,-%) =W Am_nv»_u zhm,wv K site R .

o



. -

R

o

£

7.

The strong no:w»uswsnw of U and V implies nsmw
s is uo»nwww continuons. .E.Em. for any % € %%& mmwgsm
can define _ .
Ap - M w_ﬁ_u._s z (s,t) ds at

as a mnnouo Riemann integral. We nwoomm %am-ﬁ = mxv_..m_.?mﬁ&u

and let us write A for bw...

Clearly A = A* . We claim that A is not the zero ovmnmwon..

mchOmm the oo:nnmnw. ‘Then
W (~s', ~t') A wWls', t') =0
o % 1mu_... Amw + WMU

&’ W (~8', =t') W (s,£) W ( s',t') ds dt=0

2 . .2 |
- (s + t%) '
Vwm_ - Zﬂm-wmvﬁms%%no

. 12, .2
“anu. (87 + ) it -it's

e ettt e (£,W(s,t) g) ds at = 0"
for all £, € £ .

Hence F(-t', g') = 0 for all &', t', where
F .m.E._ is the Fourier transform of exp ?.m ﬁ”_mm.,.nn:_

2 function with zero m.ocn.»,_mn

(£,%(s,t)g). But the only L
transform i zero; Thus (f,W(s,t) av_ = () _m,:. _m S _mbm_ _m__o

w (s,t) = 0, which is wuﬂo@mugm. We oo:ow:mm w:mn > u_ o
as o...,m»amm.

A calculation with Gaussian integrals gives

A W(s,t) A=21 ‘& exp ..W. (s2+¢2)
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mmwﬁwza s'=t = 0, we have wm_

projection.

.!B_-a

vm& %Pn_ ran E. .K:m mow since A # 0.

m £ w Um an orthonormal basis Om ,?P and |
let ﬁu Um wwm owOmmm mcvmmmam Om &o spanned by vectors of -
the form Wis, .S m

mawwomm. R x 3 ?mn

(Wis, )£, Em .w v h v :,:m S E £or 7 W{s", t")E £

7 )
G mzﬁm.ni W(s' }vmwv_
| _»_,._,_nﬁ‘: m w Am._xn.; E muv
=c' Am mmm ] mu:om W E = const.E
=c R m_a __v__
= () g

1t follows that %ﬁ and Kuh are orthogonal.

of

We claim that 6 ¥, = ¥ . 1o see this, let
xu U e &.u‘m_& . Since W : &_x!v_%mx , we
_ . o
mmmwvmﬁsutu:& ?ﬁ.bm_ﬁs.uzvm\ﬁ . As above,
we can define E' in terms of W' and conclude that E* #0.
Let £' € ran E' . Then, since W' is a restriction of W,

we have that B' is a restriction of E. Thus Ef' = m_._. . This

contradicts £' & u&m which is ortliogonal to m.\. ._xu_&_ 2M,.
Hence u\ﬁ_.u mo .* _
m»:o.,m .sn = W ﬁ Xv ﬁ&mm ﬂpmm ﬂo m

representation of the Weyl relation o: _xx wsm wﬂoom is
complete if we .. L |

- &



qm.

can show that eca acts irreducibly on g& : This mou.uosm. fn.

we can show that any T in %.i av which commutes swwn m<muw

o

&0

W, (s,t) is a multiple of the identity But if T ‘commutes Eﬁ: __

za,ampmoooaacﬂmm_ﬁ.ﬁwmn.mm:nmema mwﬂ_mmwm.m_
Fg TE, = T £, . mnﬁ,ms has a ovm.musmsmHObmw Rmumm. wu&..
50 _H.wu. = yma , some A . Since &o& is @m_bmwmﬁm_m by (a_.,.‘x_.

and e_oogcwmm with Zs ¢ it is clear that T = A Fx .

“QED.

3.2.5. Corollatry Let (U,v, %) and (u',v', %)

be two irreducibe representations of the SmMH relation.

Then they are unitarily mmsw<mpm5ﬁ.

wHOOm bm »b ﬁwm n#mowm? we construct m and

Lél ran E from the U and < on xw . By the wnﬁmmcnwvuﬁﬂ?
_Sm noaowsmm ﬁwmn,%¢_»m oumlmwambmHObmHh and if f is wnw
wowsmwwmmm_¢moﬁon in %ﬁx v@ is spanned by <mo#0ﬁm of the WOHB_

Wos,0f, s,teR .
In the same way, Ku_ is spanned by the W'(s,t)f'.

Let m_w, MWW...mH W(s,,t,)f and define
Ig = me W Am.._.,n ) £',Then
| H_m___w = 93 ay 0 (sy,e) ", Wisy ) EY

Mm» a5 €y (£7,£)

where n.s_G. dependes only on mw..ﬁu...mu;n”._..

n

f
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= g a, C.

=g |l

. .. i %ﬁb S . I .
Thus I ¢ »@ —> ig isometric with a dense domain and

. . )
range, and so extends to a unitary from - #, onto .

ZOHmo<mH.

T wis, nva = W' (s,t) Mu 8 W' (si.ty) £
s W' (s,t) Ig

e, W (s,£) =T Wls,t) T°1, and so (U,v, ¥ ) ana (U', V")

are unitarily equivalent.

QED.

©3.2.6. Theorem (Von Neumann Uniqueness Theorem)

Let (U,V, mm ) be a representation of the

Weyl H@Hmwwo:p.ermu Ac.<.u® } is equivalent to a direct sum

of copies of wdm Schrédinger Hmvﬂmmmsﬂwﬂpow.

Proof By 3.1.4 and 3.1.5, we need only show

that the mownmmpnamw representation is irreducible.

As in 3.1.4, this mowwgm i€ we can show that %\wo = van E

is one-dimensional, where E, 1s contructed from U, and

v, ., the Schr8dinger ovmnmwOHw of 3.2.3.
let g € 12 :m._mx ) . Then :im t) g) (x)

u

o
mﬁm~=+M&vg glx + t).

" Thus

| _ o . Am + t° 2, : _W.. -
a, @  (x= .m; M P ol8 (x+gt) glx+t) ds dt

By

§a




e
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-1 S S ,
. X ey 3 . .
a2 a Z | 4\.»\_;_‘ %’m ? . gl(t) dt

.H_HHW." MMs
| 12 L.
. - o5t ‘
F, g(x) = lml e *  qlt) at.
\_._..H\b ﬁ\ H\b
F H | 2

o is ﬂ:m ﬁﬂoumow»os onto wwm ¢mnﬁowx4nw\a __mxv Ml X in

H_m (R , dx) , 1, m. ran _“. Hm one- mwsmumwo:mw

OFD. -

Remark We see ‘that E, is the @Houmoﬂwc:_cswo the vacuum

or " no - mode™ state of the harmonic oscilator.

3.2.7. oououwmhm An irreducible Hmvﬂmmmswwwuou

‘of the 2mww Hmwmwwon is~ nmomammnppw on a mmvmﬂmyum mupwmwn

space.

We can reformulate these results for a finite

numbher om mmanmmm of mummmo3. The - onuw m»mmmnmnom is that

one must m4mwsmwm n - mpamsawosmw nmsmaums »:ﬂmaﬁmpm.,

We :m<m seen that, in contrast swwr.wwm
Heisenberq nmpmwuo: the zmmw Hmpmwwos has an mmmm:n»mpww
unique most»o: - ﬂsm noruamwummﬂ nmnnmmm:ﬂmdno:. |

. eo mmm zrmw havpens 1if we relax our nmaswﬁmam:ﬂm~

oo:mwmmu the moHHosH:a :
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L=

M= 1 s, xeR | 1am m £(x) [ 2dx < o =) .
a > » 2a ) -2 . N
»@ has inner vnomcow
1 a . .
< £, > = m z= \_ T (%) ax) ax
and defines a Hilbert space.
Pefine:  Uls) £(x) = &% £, fe i,
V) qlx) = g(x+t) , aedb .
14&391ﬁwﬁ 11 and V are cn»wmﬂw and satisfy the Weyl relation “
Ti{s) V{(t) n.mwwmw vit) 11(s}. Eﬁmﬁ_mwm t+he dgenerators 0 ml& &
P ? They do not exist !
Tndeed, :Amv.mum.dﬂﬁu.mﬂm.50¢ wo:ﬂH:sOdm. To see this; we
compute || (u(s) - 4) m”=m for £(x) = e™* ¢ H, . We Find
N v(e)f - £ () 2 -2 if 8 # 0, otherwise we have zero.,
similarly, V(t) is not continuons. Therefore U(s) and V(t)
cannot he written as nrm exponentials of nmwmlmmwo»nw o:muw
tor on »ﬁ . . : . .
We also note that M_mpyx | Ae K m is an
uncountahle collection of pairwise orthomonal vectors in mm ;o
i.e. %m is non-separable.
3,3, tnfinitelv-many deqrees of freedom _
&
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El‘"

e want to nmumnmwuum the Sm<p ﬂmwmw»ou to allow

mow an »:w»u»wm :s;rmn of degreas om freedom,

o

e £»~H :ow consider this in nm:mnmpw¢< but s»ww osu<_ooumwmmw

renresentations over A% ﬁ_m V

3.3.1, Definition:

A Hmﬁﬂmmauwmw»oz of the canonical
commutation relations (CCR) in Wweyl form, over ,% Txy Hm a
nair of mans £ + U{f), a » V(a) Ffrom Aﬂxﬁﬁ V Mswo Gﬁwﬂmﬁq

deﬁm#DWn on a I"lhrert njmam %@. snch that
(1) T(FY) MUFR) = T(Ey + £5), Vim) Y(o2) = Vigi+ az),

(11) s > U(sf), t + V(tg) are stronalv continuons for

v | ~ fixed f,q € _awa%sv_.

Aﬁwpv QAmy Vv {g) :Hﬁm‘nv Vi{g) U(F) ﬁjmwm

(f,q) m £(x) q(x) d"x.

The continnity assumption allows us to recover -
the aenerators of U(sf) and V(tg) which stH satisfy mww_

"aisenberq relations on a suitable moﬁmws.

Fxample let mﬂ he the Foch snace over ﬁwhﬁe;v , and

let 8 (£), 1 (a) he the ornerators

s (f) = ﬂw Amxﬂmv + mAva. :ﬂnv nqq1lm*nnv “ala))

% which are mmmmnwumHH< nmwﬁnmmqu:d on v , the set of finite-

o narticle vectors in F . (For a definition of Fock space and

the creation and annihilation operators see, for mxmsvwmj_




e

Fmch (1972) or Hepp (1989).

Py

Then 1{f) = axp | leﬁ.m.w. Vi(g) = exp u,ﬁ..um.:
define a representation of the CCR over dn% m%iv
This is called the Fock representation.

It is natural to ask again whether w:mum is only
cne {un ﬁo.mﬂzuqmpm:nmv Hmjwmmmswmnp05. The answer in this
case is no. That is,von Neumann's theorem does not extend to the
case ow Hlmunuwmuwlam:w degrees om freedom. Ve shall see
this hy constructing an uncountahle numher of inequivalent
renre m_mu#_mﬁ» ons. |

bmﬂ e:.u_ and T (q) be as ahove, and define

6, (£) = 0o (f) + mﬁwmﬂxv dx, a €K

My, (g) “ & T (o)

. . >
Then T1_(£) = exp T 6,(F) = U(f) otad i and v, ()
= V{a) define a representation of the CCR in the sense of

wlwl.u!.

uc Uo”- mvuwamuomu...ﬂu.oa

- The representations A:mﬁﬁmamﬂv~av~<m,mw )

are unitarily equivalent 4f and only if a=h,

WuoOmm

'1f a=b there is nothing to prove.
Suppose a # b, but we rmqm mncﬁ<mwmsam.

armw um. wrmum is a gupwmﬂ% e F o mﬂ guch wrmw



s
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* *
T UL T = U£), and TV, (g) T =V, (9) for all £,

ace %ﬁmﬁ ‘.C_ . By definition, :m_um.c.m:

S— Jdafrax 5 1) mp&mmx_
w.m... T U(f) ¥ l_cﬁmv exp 1i(b-a) Mm?& dx

Let £_€ % such that ___ma__ g2 >0, and

Mauﬁxw dx - .LMMMIL .mmn+8_

Then it is easy to see wrmﬂ.e_ﬂm:v + 0 wnﬂoqu<
on N5, and so (since Do is a domain of entire vectors _mou
a Amzvv exp »eﬁmsv converaes, on Dy, strongly to g. This

implies that G.ﬁmnv -+ & strongly on W . hence

*

J_\.__dﬁm:vd,.» +TT = { stronqgly .,

On the other hand, dﬁmmv exn Hﬂvnmum mw dx
converges strongly to m»4q¢ = ..m . This is a
contradiction. flence T does not exist, and the Hmvummm:wwr

tions are inequivalent,

OFD.

We have {ust explicitly constructed m:_csoocuﬁmva
vwawmw of inequivalent representations of the Weyl CCR. We
remark here, without proof that these are all irreducible.

At this point we might also mention that the
relativistic time-zero free field of mass aﬁ_eﬁhvs.mna me

conjugate 30§m:n53~4ﬂﬁmva define a Hmvnmnm:wmﬁpos_ON_w:m
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- _3mwu CCR, ewpm wmvummm:wmwwon 18 inequivalent to nsm:woom_ _ i
umﬁﬁmmmnwmwpos mvo<m. This can he séen hy m:ospum that -

o (£) + 1 #EY mnnwwupmwmm 1o vactor whereas ¢(f) + Hzﬁmu
does. | | _

" We also note that each value of the mass wwqmn
an inequivalent representation. This is to be mx@mowmm_mwuom
mmnrgmmunﬁmm w Hmvwmmmnwmﬂ»on_om ﬂdm.vow:nmﬂm Quosbmanr. |
massm. The energy ovmewon has spectrum ﬂou U waw cmws‘sva
_wasu<mwm=nm for mwmmmnmdﬂ masses would imply the same
m:mwnﬂ apectrum, which npmmnuw is not the case.

@_aﬁm.zmwu relations can be nm:mﬁmwwumg in many
_@»Hmoﬁ»onn. Em mention o=H< the formulation of Mackey HHopoy
in iwpow the c_m and v's wum defined -over an ahelian nwocd
and wwm Qnmww in 2&#03 case there is a unicqueness ﬂsmonm3~
and the mowscwmwpou of Seqal (1963,1967) in which one
nonawmanm a mwaﬁwmaapo form over a vector space ms& szpn: _ | &
vields a vmmuﬂpmcu procedure for the cuantization of free
fields. B . |

wow_wnnn:mw results wam_mmwwwum ve refer wox

mech (1972) and the Upvaoﬂwmdww therein.

4 - The algebraic Approach to Quantum Theory:

Rather than nwoWﬂtw thaory in terms of wwmpmm
and ooaaawmw»on relations, 2m_smuﬁﬂww consider a theory of
ovmmu4mvpmm10m_oo:ummy if am.mmdm.m»mpmur_wrmn_wrmwm.swwﬂ
define ovmmﬂ<mvwmm. rsn_sm:sm&w‘wa consider the ommmu¢mvHWm_

ner se. Tn the conventional treatment of vom Neumann, the
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fond

observables are Hmnucmm:nmm iby the mmpmamméoHnn oamnmwowm on

o

a Milbert mvmom. It is this we wish to generalize. Em
‘should emphasize wrmw our ohservables are mathematical or
"ideal" observahles. Ve do not pretend to oouwummﬂ the mow
of ohservation or the actual measurement of observahles.
Indeed this 1s a somewhat oounno<mum»mu subiject. We Hmmmw_
the interested reader to the Varenna lectures of 1970

Ad.ﬁmvuwumw (1971)).

- 4.1 8egal's Postulates

Ve a»m:_wm describe a ;m%mﬁmaz.arum is
wnWJOmmm_wo consist of a ndwumnn»oa om_zovamn¢wrwmm=, wum_
the svstem 1is. sunposed to Tm capable of beina in certain

B states. e shall consider ﬂwm observables .as being given,
- and we can then define the "state of the svster” as the
wnozwmmam of the expected values of the observahles, e?mw,
is to say, a state is an assignment Om_mﬂ expected <mwmmh
to each ohservahle,

If A 18 an ohservahle, then, for any a ¢ aﬂﬁ_
we sunnose 4-A to be an ohservable - it has an expected
value in any state equal to a times that value which A
has in the same state. In the same way, we assume that
P} + B is an ohtervablds - whe

ym is supnosed to he that ohservable whose UOnnerm <mwsmm.

ever A and B are.

are esqual to the nqsmum of those of A.
ﬂ;uwwmnsonm, it 18 simpler if we suopose our oraﬂn<mdpma,

! wo he vossmmm - that is, they can only assume values from
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_

a bounded set of real number ﬂmmvmnmwvn oh the ovmmﬁ<mvwmaow
course). This ig& no Hmmﬂﬂwamwas inasmuch as unbounded  ob-
servables can be considered as & limit or a colleetésn of
hounded mumm.

Following Segal (1947,1963), we make the moHHoswuq

nostulate,

4,).1. Phenomenological Postulate : Algehraic¢ Part,

A physical system is a collecticn of
ohjects omHHmm (hounded) ormwn<mvumm‘ for which operations
Om_gswwwuwwnmwwos by a ﬂmMM lcsvmu. scuarinag and mmawﬁwm:

. mwm_amm»nmﬁ. and satisfy w:m usual assumptions for a stmmu_
space.

As Hmamﬂrma ahove, a state of the syster wmwmasw.
to each ohservable a real numher, called the " exnectation
of the ohsgervable in the state". Ve define a state mo_ be
this assignment. Ve expect, intuitively, that a state F should

have the following properties :

1. Linearity, E(MB) = F(A) + E(B)
Flad) = a F{p)

for A,B hounded obhservahles, a ¢ K.

2, Positivity, mﬁymv >0

3. Boundedness, _mnﬂv_ £ Cpr

where Cy is the maximum value that A can have. B




)
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Let us consider further this notion of maxirwm

value.
4.1.2. phenomenological Postulate: Analytical vmwn.;
To each ohservable, A, Hm assigned a
"hound", written all,in such a way that
(1) [ A)l> 0, and || 2| =0 1£ and only if A = O,
(1)  lanll = Ja |4 all and fa+nlf < y2fl + jBI
2 2 -
(111) 2% = pay

The interpretation of | Al is Cp. Them 4.1.2. is
not unreasonahle, |
Segal amwmm some more nostulates and is then
ahle to recover many physical notions. Wowever, we shall
make the following postulate, which is mﬁﬂmznmﬂ than mmaerms
hut which appears to he sufficient for all systems oOJMHmmﬂmm_

in practice.

4.1.3. Postulate

| A physical system corresponds to the self-
. N * . .
adjoint elements of a ¢ <« alaehra with identity, with the
.
bound, || Al , given by the norm of the C - alagebra.

A few remarks are in order here,
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i

1. It is mathematically convenient to allow an operation of

«
@

multiplication by ecomplex numbers.

* .
2. Te property 4.1.2 (iii) is just the C - property for
self-adjoint A. However, our postulate is much mwﬂosﬂmw

than simply demandineg that the ohservahles form a real

* .
¢ =« algebra. Indeed, it is not known whether a real

*
C = algebra can always he considered as the self-~

* .
adjoint elements of a complex C - algebra. The studv

*
of real ¢ =~ alagebra is much harder than for compleX

*
¢ = alaebras.

3. Tt is convénient to agsume that the ohservahles are
corplete with respect to the norm. If they were not,

we could comnlete the alaebhra.

- %*
4, n C = alaebra has a product. There is no justification

w for this assumption. Mnreover, the nroduct of self-

adjoint elements need not ha self-adjoint, s0 the

product is not even defined on the ohservables.,

5. Tn any event, we have a more general scheme than that of von

Meumann. In fact, we shall see that a aeneralization of

von NMeumann's sheme ig necessarv according to the theory

of sumerselection rules,

6. For fSeaal's original vostulates, we rafer to Seqal

{1947,1963) and Emch (1972}.
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4.2, Exact values of Observables

S C a D

4.2.1. Pefinition A state of a svsten, (L,
: % . o
is a state on the - qumrwmﬁmﬁ. That is, a nositive 1li-

‘near msnnwwo:mw with norm one,

ewm set of states 1s denoted :c_ﬁuw+._

Ve recall that a state 1is a mixture Hﬁ it is &
convex QOBvHBmeOﬂ of twvo wammﬁosn mwwwm. 2 state Mm U;Hm
if Aﬂ is not a mixture.

Nwm m:_mwmzcww. consider the n* - algehbra Nﬂwﬁ:oaw
Mmmnﬁwmfv ,NWNumv__Om_mwp.0033mQWm03mHmﬁ0Hn_o:_ %ﬁ .
Then every positive continuons functional, W, on _xwﬁ%mp_ mmw
the mOH? | | |

:; = _332

for moam.v_v N, n m &Wm@ﬁv ._aH_U.As . armﬁ Ha. mww
states mﬂm Qwam: hy mn:auw< zmﬁwpnmm. The nure awmwum mwm

the <mnwow awmwmm~ i.e. those of w:m wOHB

(A =(¢t _.mw.ﬂv.__. ﬁm&p.

if Q.. is not equal to Qﬁ_ then there will _%
states arwas are not Q»¢m= Uw mmm»&%.amﬂ#ﬁnmn_mdm Jcﬂm,
states mmm Qw<m: 7% ¢mowoww mnmwmm.“ﬂnwm mmaww_ dpmnqw mon
an mwmsvwmv. 80 we see wwmw ﬂr»a no:asm ua more qo:nwmw
than von zmssm:s s in srpaw the states are assumed to 7@

aw<m: hy mo:amww amwnpnma.

 4,2,2, Definition ILet A & A ¢ Q ke an

- _
ohservahle, m;m let w e mw..T he a state. awm <mn»m3nn om




‘for some Kk & K. ﬂow_wsm m,m_@x__am;mmmw:m_w.__.._ ‘ o o

o1.

A in v is defined to he

Y T #
AN (A"Y - w ()
Ve say wzmw_b has an exact value in w if .Grﬁbv =0, the
exact value 7@%33 w (A). E
we call the set of exact values of an observables
its physical mvmnnﬁsa.
4.2.3. Theorem
. arm@ﬁwwmwomw_mvmnwﬂﬁz of an ovmmw¢mwwm A
15 equal to ¢ (7), the spactrum of A.
Proof Let. QP be the C - alagebra generated hy
the observable A. Then u} is ooaacwmww<m_m:m 80 is isome- N
wﬂwomww< »mOBOWU:po to the uniform alaebra C(K) over the _w

Qoaﬁmnw umcmmowmm nvmom ﬂ : mn,&x

ret we CC* , and suppose 1y, (2) =0,
Then 1if v, | is the measure on_x induced hv w -, we
have R |
(M =0= (-0 ®)?
& L __»sz - A>U“ 3 u x)
ssmwm # is the qmwmm:m wnm:anﬂa Oﬁ A
l,muaomw_

1t follows that £ (v ) e A>U,zs

 every where. In 3mwn»nnwmﬂs wwmﬁm_»m. KE # asos wwmw 8 __ __ o A

» ( k) = w (A). But _a,ﬁwv = ran. u M m._e Abv £ Q.ﬂpv,

Conversely, suppose A e _A>v. qrmv y =R (k)

o am =80,




an

- evervwhere. nﬁ.aﬁoam there smn.m _AH._: mm K _m;oj_ﬁ:mm__ K(K,)

ouL_

B £ - is clear that W mmm»ama m anmnm on ,} mbm

G\:_& = 0, Any mwmwm on .} can Tm mxnmummm ﬁo m

state on Q._ .__ and so = A = w (A) - vmwo:am to the v?\mu._nmw
spectrum, _
. OFD.
4.2.4. Corollary With the notation of the.

theorem, let w (B) be exact. Then W 1i=s pure on by

Proof

bm in ﬂwm .n_._mou..mu: m?v w Cﬁ.. :&-mHE.Om.d

= (A) = b ?»V .Then mow m:% UOH<303»mH uo . wu:C _:_A__v
.wn:g ?wv mﬁw vou.u\:ouﬁ.mwm »d A mﬂm. ma:mm Hu C(K) sz,os
contains functions sr»ow wm<m &wmon.mnw <mwsmm at xu. and _Am .
_E,Em wrmwm in only one k m - K with »:& = a:: In- onrmn
words, the m»:mwmnou .T& has L - 3mmmﬁum. oum.@mmuom

M, Hmm;.mmpﬂmrmgoﬂ.o:._mn.nm.:mmoSHm Uﬁﬂ_m_.o:_ ,} .

. '4.2.5. Corodlagy The physical _”mﬁm_nwug of A is:
equal to the set ﬁs;___ Jow ~ pure on hb; .
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_ow4p01mmmn05 h.w.hr

By

NED.

4.2.6. Corollary Let mw be a commutative C -algebra
‘containing A . Then the physical spectrum of A is equal to the

set M cb..?u; _ ) UGHW on @ w.

proof

| 1f w is pure on mw ", then is m_d:mw
‘racter on mw.;ﬁ and so is a character on A . Therefore. o

"W (A) is an exact <mwcmfgno=<mﬂmmw%;_sw_».w.hy_wm_ W (2)

)
.Qe

is exact, then W is pure on A . But a pure state on

@x = can always be mxwm:mmm.wo a pure state on ,@w.:p_

e . ... ... |ogEn.

4.3, Simultaneous Measurability (Segal (1947}, Emch

(1972})).

4,3.1. ummpnpnwon. tet 1 be mHnopumowwos‘cm_”
ovmm?mgmu and W a state. We say that -w ‘is dispersion

. freeon T' 1 U, = 0 forall Adn T'. . . S s
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We have seen that 1if U, (A) = 0, then w is mumvmﬂu_
sion free on K, |

Suppose that we #wéﬁ_nso_ovmmn<mmwmm. To say n:mﬁ
w:mw are different 1s to say that we can find a state in
which they Qummmn. We can say that a collection of states
mvwnumwmm the system if it distinguishes between the ovmmwn

vables,

4.3.2. Definition let % he a family of states

on m(m , and muu_ ¢ (I a subset. % is said to be sepa
wawua for &w  1if, for A,B m.ww. ’ W (A) = (v (B) for
all we d implies that a=B.,

msvﬁowm A and B are two observables. What does it

mean to say that they are simultaneonsly observable? It is

:mw:nmp_no.nmas»nm that their exact values can be simulta-

_.umocmu.w realized : i,e. We can find states W mE_u: that

W, (A) = U,(B) =0 . This should hold for sufficien-
thy many states. Furthermore, if A and B are simultaneonsly

2

measurable we would expect the same to be true for A .ﬁb+wvm‘

etc,

4,3.3, Definition Let T' be a collection of

owmmﬂ<mUHmmg We say that T' is w collection of simultane-

onsly awmwsRWVHm,ovmmnqmuHmm if and only if there exists a

‘set mw of states separating for and m»mvmﬂwwo: free on

_ariﬁAAJV , the hermitian elements of u} édv. the ¢ -
algebra generated by .AJ .
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4,3.4. Theorem . : o B

s,

| Let A\_ be a collection of observa-
bles. Then |  is simultaneonsly measurable if and only
if ,wpfm m._\; is commutative.

Proof

nﬁvUOmm %A (") 1s ooﬁé&mﬂ.«m. armn mf Eum

wmoamﬁn»omwww “_.mOBOHﬁan wo ﬁﬁ CAV . For mmow X .m K,

‘we define W, ,vyﬁ\_v D\\_ ._._‘.Uw ; oot : :: n__m,?_v

where &  is the dmwmm:& nﬂw:mmog of A. nwmmw.“_.w w,is a
state on u}‘ﬁ\;. and mo has an mxwm:mwos wo Q mdumm:ﬁww~
cc_r is m“_.mﬁmnmu.on mwmm on uwa S‘_ zonmoﬁmﬂ. the set |
Pooyg Xe K} is mmwmnmﬂbn for - (&4 2.& S e .
- Conversely, mcwvomm that % is a &mﬁmum»os mnmm_
and mm@mumduna family for ,VWA Aﬂ |
Let A,B & %Yﬁ _ V , and mmﬂ.:m A w_ mn }

by

As B = 3 ﬁhw + B2 - (a-B
Then, for w & % , we have
8 A.F 0 wv

((p+B)° -.Awwmuuy_

w
* §+3 , - E:?&..& }
w

NH sl-'-h- -hlb—-

wmey? - wa-n? |

since w is mpmvmnm»o:_ free on uﬁmdﬂ_v_
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ov

w (a) W B

gy ¥

Hence, for - b B,C € wf\ﬁﬁ ._Av , we have

WA & BIo © = WA o B) WE = WA W) ()

= W) W(B,C = WA (B, C))

This holds for all (v ¢ fm , which is separating, so

Aw o B)o C = A emaw r c),

i.e. " o " is an mmmooumw»,\m nnomcon on w? v _._. .

zoa‘ swﬁrocﬂ loss oa generality, we Bm% suppose ﬁwmw

?7 _ﬁﬁv. is an mpamvwm of Oﬁmnmwowm on a E.vaﬂﬂ space. It
_Hm easy to see that by meH:a uﬂﬂoua HHEHﬁm "o " is
| mmmonwmnu<m_0ﬁ _uwn.ﬁ_p. T{vmt -, the mﬂﬂosa nHOmcﬂm,_ o.». uy\
But, _8\. the spectral theorem, JF « :_ﬂv_m contains the mﬁmoﬁHmH

projections of k{ﬁﬁwﬂv , and nrm mmmooumﬂnqpﬁ% of " , "

implies that these vﬂoumonposm commute ﬁ:ur each other. Hence by

.wrm mvmoﬂnm_pﬂ:monma. .uPa G\J o u.m.nogscnmwﬁ\m._

~ QED.

mmamﬂw | osm E.a:n think ﬂ:mn »m A and B are mu.aﬁ.ﬁm:monmu,<

ovmmn<mvwm. nwm: whenever A has an exact <mwsm. 's80 does B.

.. {10
m02m<mn. E..»m :mmm :on vm E._m ommm. Take A EAH ov , B = _o ) ,

mdset W= gle, (Ve )+ L (e, (re,).

Then (WI(A) =1 is an exact 4mHa_.__w. but w(B) = u\m wm_ n”.__uw._.__

: T




o_.,\.._

What is true, however, is the following.

ol

4,.3.5. Theorem

let l_.J be a set of mwaﬁwmwamosmuum.

_ammmsﬁmvpm ovmmﬁwmvwmm. Suppose A € T  and W {A)- is __ ”w_ﬁ

exact value. Then there exists % such that { (A) u_E___AE__.

and %u:wv is an exact value for all B €],

. Proof

| ____ L ww hu __b._ i uyxﬁl_l_v “_.m oosBaﬁmE;\m. _ .ww __

b.u.a. W - is vanm on ,ﬁ the nsimpmmvnm generated by A, s0

e,

can Um mxﬂmummm to a pure mﬁwwm | vo “on QF ( .ﬂ,w
- m< 4.2. m. %:: is m: mxmon <mwsm for mu<

L’y m._x_

" OED.

‘4.4, probabilistic Description

| | Hn »m aos mnnmpn:ﬂmouﬂsmnm no »:wﬂcmsom gm |
uoﬁ.on Om uo:.:.. vuovmw»wnnw &mnupvsﬂosm mop. mn_.acwnmnmocm
ovmmzmauo:m. Hnmmmm, let AJ be a mmw Om mhaswwmﬁmosmp.w
Bmmmsﬂmvpm ovmmnémvu.mm, and Hmw .}Aﬁ; be the C ..m“_._.umwwm - o .,m

w:mw omumﬂmﬂm. Let cc be any state of the mwmﬂma, (Y.
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mw.n 3. a~.,mx qgvpm commutative mnm S0 »m
pmoaoﬂv:»n to naxv. K ooavmnn By HmmﬁnwoﬁHOb._tu mmmw:mm
a state on C(K) which can be written ncw the. m#mmw .w

Markow wwmonmsv as

t(A) = &m» A(X) n:; (K), wm>pﬂ
for some Hmnﬁpmn probability measure \V»& on K.
H-mﬂ qu...Il‘.y m id-\— r gm Hmﬁ HH.-I....‘H
vm Borel sets on n:m real line., We define the uoHnﬂ

probability mwmﬁnwvsn#os of the ovwmwﬁmvwmmeH,...*»n in

 the state W to be .

%».ﬁ_....:.»sﬂs:H:.:.H% = MLy SSRTARI I N SOR

This is the probability that A, has values in I,

A, in I,, ets, in the state w .

M .
For ﬂrm case of one ovmmm¢mvwm~ b-_mu» S AHVMHW

just the probability -that y :mm values H: I:in ﬂrm mnmnm

fw
one can show that the expected value of A in w _Hm_mw<mu

W . If we write _mf (A) . for nwm case I uﬂns »u

by _ o _ _
mm£~ m A amu :; E:ﬁ
as we scaum mx@mnw o R

We :owm wrmn the ﬁﬂovmuﬂwwwa mwmﬂnwvcﬂpos av

\
is indepedent of any Hmmwuumn»oa om A as a mauoﬂpos.;

Indeed, the nrmnmoﬂmnumn»n mapnﬂ»ou of . mw«r» ,»m au4m=

by Cpam»n»v ‘In the mmam‘smm. wwm,uopsw‘m»mﬂnwvswpon_

18 uniquely mmﬂmnavsmmJ
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5 - Local Quantum Theory

. =

" 'We shall present here the axiomatic scheme
of Haag and Kastler {1964), which is concerned with a rela-

tivistic quantum theory of observables.

5.1 The mmmmlmwmwpmu axioms

" We shall, as in the last owmvnmﬂ~wmms5m that

* .
our observables generate a C -algebra, (X . The first axiom
represents the idea that each region of space-time gives rise

to a family of obervables.

5.1.1 v0w¢ﬁpmnm _ ao mmns Hmnuou md in

zwawo<0me mvmom.. M o ﬂsmﬂm nonnmmwo:mm a sub. o mpnmvﬂms
a (), e L . zonmo<mn.~ mn~ is nmummmwmm vw a:m
Y ((9) -/ runs over. §4
By definition, a nmmpos »m a Uozsmma open mmw

in M _ al »mmsﬂ»m»mm with ~N» . On vdxm»omw oﬂonumm.
such regions noap& ﬁm considered as being too general. For
‘this reason, we may gestrict )  tovea mo=UHmnooum "w.m1_
the intersection of a hackward cone with a forward oo:m.u _

mnn»onw& gpeaking, osww the mmpmsmmuo»:w Om mﬁ
are ovmmnqmvwam‘ but we m#mww use the sonm for msw mHmBm:w
of X K Thus X ﬁhcv Mw_wvm mpomvnm of ovmmuﬁmUHmm”,
associated with the region ¢ -_e:mwmwmam:nm of Mmm;?ﬁvmum_

called local chservables, whilst those of (( are called




o guasi-local.
L . The next axiom has an obvious interpretation.
| & : : . . -

5.1.2. postulate (Isotony) 1f (J, and UJ, are.
regions in ™M  whith & € Sm , then L

oY) € a().

Einstein's ww»no»vum of omﬁmmuudw states ﬁwmn.nm_
w:wmwnmp unmucmunm can propogate mmmnmu ‘thas wsm mﬁmmm of
ligth. That is, observables mmmonnmwmm with mwmnm Hﬁwm Hmmwo:m.
should be mwaawﬁmnmonmww BmmmanmUHm zm 5m<m seen nwmw nsum

) is equivalent to saying nwmw n:mw commute .
ﬂ
_m.wwu. _momwcHWﬂm.ﬂnﬁsmﬁmw=1mmcwmwwﬂw¥
1f _c@ and qu ;mﬁm_Mﬁmnmuwpxm.wmwmﬂmwmm
regions, nwmu_._mﬂ_ﬁaev_ ‘and. - mM_mRMv :aoaaﬂwm,“_ﬁumﬂ_ﬁmm_
1£ae M (0) andBe (X () , then AB = BA.
mownnwwm_ao¢mn»m=om_om the ﬂ:QOHM_»nzmxvﬂmwmma.mm_
follows..
e - ' 5.1.4. pPostulate (Poincar§ Covariance)
Y

H.oo._




‘Then one can consider the set of fields smeared with test-

101.°

| 1 L o

There wm m amvummmawmn»oa o of mu , the _ R I

restricted ﬁoH:nmwm group, in. »n# a -, the mswosoww5wm3 | o .
group of .nH » such that

o (L) ﬁHA v - X (A R»+ a)

for any region nb_ -, and L= (a,A) & mw»

The next axiem is nmarwwomp~ mum_mxnwnmmm classical

field theory ( - in which case (I  would he oo;?nwmwu¢mu.

m H 5. ﬂvomwSHmﬁm_” mH Hm wwnapww<m. That is, -
vOmnmmmmm a mm»wrmﬁw Hnnmmnonvwm Hmvﬂmmmzﬁww»os. |

_mcﬁvOmm_ﬂwmw we have a nzwar¢Sva field theory.

functions with support in moam_wmnuou.:ﬁm__. By forming

bounded functions of these mHmHmm Sm“oocpm.mmmanm a HoomH

- algebra ﬂN «hmv . (In ﬁwwm.smwﬁ»ﬂ.wm_:ow_mwmmpocwﬂ to

show that these axioms are obeyed by free fields = with
5.1.3. _mcuwmvpm_nmmousﬁwmnwm for fermi-fields}). ermzm0wnﬁ_
is that there may be many field-theories which lead to the
game 04 ﬂﬁmk 5 (cf£. Borchers Apomovv These meoam
vnw wsm aavw»m»m on w&m mvmww@aw mwﬂcowswm of wsm ﬂN«QJ\m
The elements of ([ can be considered as ovmmucmvpn _mm@
the fields in a field theory are wosmmncmvpm= ( - suitable
modified for mmnawnmwmummv. |
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We should remark here that the nNNAMt are often
taken to be von Neumann algebras (araki (1963, 1964a, 1946,
1964 c, Hommv~ Borchers AmeQw; Haag and mowuomw_ﬁwmmuvv. One
reason for nwwm lies in the difficulty of a mmw»mmmoﬂouw_mowa
Bcpmwwos of the :@0m»wu<uww_0m_m=mnaw= within the wvmnwmow
approach. An attempt was Emmm_vw Doplicher (1965), but there
is an implicit monww:ﬁuﬁw assumption which does not 30Hm_w:_
the case of a free bose field. The point is that, by 5.1.4,
we have a ﬂmvnwmm:wm¢»o= o (a) of Space-~time translations,
but no energy-momentum operator. The automorphisms o nml |
may be implemented in some representations of L, but nmw.
in others. zoumo<mﬂs_m<m: swmn_»n is implemented, the | |
nm:wnwwoum may not satisfy e:m_mvmnwnsa condition of ﬁOmHnH4m
energy (see 5.4). |

We note here w:mn o Aﬁv can never he an Hu:mﬂ

_mcwosonvrwma of (X Ammmc m:m Kastler (1964), Fmch aumqmuv

This reflects the global :mwcﬂm of Poincaré wﬂmummonamwwonm.
m:m the essentially local nature of ﬁﬂ

- For further ‘discussion of the axioms mnm nvmwu
intuition, we strongly nmnosamza the lectures of Haag Amemy,

1970, 1972). (See also Araki (1969)).

5.2. Superselection Rules

_ noa-»mwn a mwmpm ﬂ#monw mmmoHHuH:a fields
suww spin zero and o:m::mpm. mmm and let m,a and. ms
vector states with apin ‘saro and oamw:mwmg Hmmwmaw940w%f_rmmr

M be the vector state given by wsm.a:@mn@ompwuo:_Om_
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Under a notation of 2 n , the mrwmpom should be

unchanged. However, is wnmammouamm into

1= 0 20 )

Mo say that a :onmwwos Om m m has no ovmmu¢muwm

effect, Hm to say that eN mbm @w mmmnnwvm the same mnmwm.

{ s,.p@v u:N\._w&.vﬂ - . 5 -
for all ovmmn<mvpmm~ v. | |

This is clearly a ummwnwoﬂpos on the ovmumﬂonm
sw»nw are supposed to be ohgervable.

Wick, Wightman and Wigner Awmmmv vno@ommm w:mw
the Hilbert space of mnmwmmﬁ um noﬂwm be decomposed wao m
direct sum, W= m.\ KUR such that each m:w s Bmﬁam@_ into
itself under the algebra of ovmmn<mvwmm. In the example mvo<m‘
we would decompoge mﬁ as m Qu wh , where gﬁo 18 the
‘subspace of states with odd half-integer spin, and mw mrmw
with even half-integer mu»n. ewm: o:m mnvvommm w:mw ( m A % w

= 0 for every observable A , and mﬂmnmm mc\ o m € mﬁ
The mcvmvmamm %ma are omHHmm mcvmnmmwmon»oa

mmowonm‘ m:m the mwmwmam:n nsmn ﬁvm QWmmu4muHmm :m<m such

a direct sum structure is ompwmm a m:vmnmmpmoa»os nswm .__ L .




% | | | By a oosm»mmumn»os of gauge invariance one is lead

ﬂo ﬁ:m ormnmm mcvmﬂmmwoonwo: Hspm. The &h z»HH oonnmm@o:m

: Y
no w:m mcwmvmnmwom m»mmmnmnw nwmnnm _.zm SwHH ooamwmmﬂ n:pm

=?

.Hn mmwmhw for nrm.mnmm charged bose field in the next chapter,.
o erm concept of superselection rule can be "expla-
w:mm: in wrm_mwamwﬂmwo_mﬂmamsonx ~ the sectors oonnmmmObm 
_.no.wummcw<mpmnﬁ Hmﬂnmmmnnwwpoum of the algebra of obsevables, |
O ._w (We will see this in the next chapter).
We are thus led to a study of the Hmvnmmmuﬂmﬁ»o:m.

of I .

* Tt B:mn vm_:owmm”w:mﬂ_ﬂsm amﬁomvw vm wcﬁmﬂmmpmwwHOb wnww_
is not ﬁnw<mﬂmmwpw accepted: | |
' o _mmm~ mon mxmaﬁwms Mirman (1970) and, however, zpnx‘ Wightman
. ~ and spnmmu (1970).

. ##% It has recenthy been shown by Strocchi and Wightman (1974)

that this follows from the usual laws of acmbﬂsa.mwwnnuomw:mawmmf

5.3, w:mw»amp Eguivalence

ooampmmu wrm ammmsﬂmam:w om num mﬂmwm r;_.oi T,
pb mnﬁmn»am:n s»HH oonﬂmmﬁosm ao wwm Bmmmsnmam:ﬂ of a
m»:»wm number of ovmmn<muHmm ww....as. 1Hnw nmmnwﬂuua mxmmnp-.
_wc S amunmw values p ,...ﬂr. and with ‘some munon NWm,u mmw.: |
o - Then - | B s ,
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_ 8 Abwv ‘u.ml _ A m .monpuwﬂoo.aﬁut

We oms:@n_mmnmnapnm.e uniquely mﬂos.wwwuzamﬁmr
Indeed, as far as this experiment is concerned, we can only
conclude that the system 1is in some mwmdm w' with

__ w' :pu - P, | < e

Thusg

.__”EJ_Awa - w Abwv | < 2e, i=1,...,n"

8 zm mmm ﬂrmw an mxvmﬂuam:n nOHHmmﬁosmm to a s»_u_

.:mpasvosnwoom of ﬁwm mamwm W |
zqs. mmmoopmﬁmm :mnsnmwpw to mn% Hmﬁﬂmmmnwmﬂwou

{ b@,N: V Om ﬁ% w is ﬂ:m set om mﬂmﬂmm nw<m3 by . no=<mx 0031

vwamﬁponm Om <mowonm mﬁmﬂmm. Ve oOﬁwm mmw wrmn two nmwﬂmmmuﬂmu

ﬁwosm are v:mmwomwww equivalent if we amstﬁ aHmwusmcpm: between

wrma_muvmnwamswmww%.

5.3.1. Pefinition {Haag and Nmmﬂwmn_ﬁpomavvf

azo nmvwmwmmwmﬁworm AWN» 7) and ﬂkom n') of
mg‘ are mm»m wo dm @rwmpampww mncp<mwm:n 1ff any W* -~
_nmuawvonuroom 0m a oo:4mx ao;&»:mﬂpo: Om <m0ﬂou states in onm.
nmwnmmm:nmnpoa nonnmpnm a no:<mx ooavw:mﬂwo: Om vector ‘states
i1 wwm onrmn umvummmswmwuo:. | | _ _
Hn wuﬂsm osﬁ ﬁmmwp Aummovv that m:w wﬁo

mmpﬂwmaw vawmmmbﬂmw»onm are physically mn:p<mwmnw.

IR ¥
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This is vmﬂwmvm a justification for mavwmm»upsa the mvmnﬂmnﬁ
< | mvvuomo: mosm<mn, these nmunmmmnnmw»oum should" nounmmwosm
to different mcumﬂmmwman»o: mmnnonm. so these are mpw
physically mac»<mwm=n Does this mean nwmn we mwocwm monnmw
‘about the study of the - 4mn»oam mmonOHm m The answer Ammma
(1972)) is that, in vauopvwm. we ooawm nosm»mmh- osww the
vacuum mmonon‘ vaﬂ for Emwsmamﬂ»nmu no:<m=»m=om we amwm
»mmmw»nmﬁHOSm s:»or amm: n:mw we asmw ooam»mmﬂ many sectors.
For mxmavwm_ sm Bmwm w:m »mmmwwumnpo: that osnmumm ﬂrm
_=Hmuonmnonw w:mnm is. oaw% n:m vacuum. Humpaa nwm HmvonmﬁONw

_SQ 5mw :m<m. mmw. an o<mﬂmpp oymﬂam +3. zm nrmﬂmmonm have

_@t.ommwo noumummw wsm +u mmnnon. Om oonuwm. ﬁrmﬂm is memsamvH< a.
. _Qwﬂoumu e#mnmm 0m -3 onnm»mm nvm Hmvonmwowws U:n we mcﬁ@Omm

W R

| o suﬂrus ﬁsm HmvonmwO&w. As we have sald, we amwm ﬁdm »mmmwuumn

. ._ __m___dwou n:mn ﬁvmnm is onww.wsm,m5ﬁﬁsnaﬁmhﬁocﬁ HmUOHmnOH%. Again,

S ' ‘we recommend the lectures of Haag (1966, 1970, 1972) for a

discussion of this point,

5.4. Energy and Momentum as Observables

So far, we have not introduced the so-called

spectrum condition, and the notion of a vacuum' state

5.4.1, Postulate (Spectrum nosm»wwonv.

There exists a state o on ({ invariant

::mmu space~time translations a(a), a m_ﬁb , and such

 ¢3»m no vm mo mmu msmw mm :on to have muw mmmmnﬂ o: mxnmﬂwamswm
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that a + w (A a (a) B) »m oaunwscOSm for all A,Be GN

( vmpvy oo v. is wvm QZm representation 0m RO O awdm:

by w, and if ﬁf (a) 1is the n:»amu% ou@nmdou in »ﬁ ua%wosmsﬂuso

ol (a), then the uo»sw spactrum of the generatorg of U, (a):

= m»mv. should vm_»n.nwo_QHOmmm monﬁmﬂm light~cone,

_.am = | * m ;A____Aﬂ‘jV >0 _y_ﬂo_w o}

mﬁu:_m mwmﬂm_s _»m nmppmm a vacuum mwmnm..

Remark ewm nn¢mnwm=nm of w acmﬂmnﬂmmm the mxwmﬁmsom Om ﬂ:m

hmv. mbm w:m oouw»sc»ww noamwﬂ»os mcmwm:ﬁwmm the mxpmwmsom
&waam 2. - |
| nHmmnww. »m hy. _ pm the nZn n%nHHo <moﬂ0H~ w:mb
ceamv hM“_w HWM y 1.e. P L o This Hm sww W wm nmwwmn |

a vacuum state.

5.4.2. Proposition (Araki (1964 b), Borchers

(1966))

tet w be a vacuum state on X, with

mmmoowmwmm m2m.aoﬁwwﬂnnﬁmunuxuygﬁ ﬁﬁuth }. Then B(a)e ﬂnQv=

Proof

Let Ac X , x e (). Then we have,

(L, v @@ x )=, v v @ x0)
. : . = (1, 7 (¢ (-a) A) X L) |
(fL, %n(a (-a) A) (L)

#
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Hence, for any W ¢ %m:m&p
m_ _.?& ( p , Wia) va) x O ) da

= %ﬁ (a) A.D._. xc {-a) m(n) .D ) m_m_

By the spectrum condition, wrm_mhnmﬂ_ndﬁmmnww

is zero if mmﬁ ﬁwm_mocu»mw.wﬂmSmmOHs_bm.%u_ » has support

(el

.awmﬂmmm w:m.mmno:m;wn zero if ﬁu has support

oswmwmm dﬂv
outside V. = - ¥V, _ _

| _ It follows that ({1 |, T(A) U(a) thv ~ considered
as a mwmwwwvnﬁﬁou~ :mm_wcvaHm in V. N .ﬁw_gﬂ_MOW.: |
Since { ()~ , awy_cyﬁwu_xmhvy.pm_aonummﬂ and continuons in a,
we conclude that it is a nOSW#mnny_ _ ‘ .

Thus, for §,T ¢ (L,

(o, (S* T) Ufa) X @) (7 ()2, m (T) UCa) X 0 )
= (mS) 2, U(a) X U(-a) T (TR )

= (2, m (S*T) X 0 ), setting a =0

(r (8)Q, X 7 (T) Q)
That is,
(7 ()0, (U(@) XU(-a) = %) 7 (1) a) =0

Since Hm.o&nwun._Smﬂaoaawnmm that
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U (a) X =X u (a), _mww xen (00!

and so U {a) e ® (C)".

QED.

Remark - This theorem tells us in which sense energy and

momentum can be considered as observables.

__m.aIuL nonmppmmM .Sw&? the notation of the

wrmOHm3~ the following are equivalent.

(1Y w is extremal invariant

(11) U (a) £ = , all a, £ ef implies £ = A R, Xe€.

(111) = (X) is irreducible

Proof

)y & (1ii): ve have U(R") ¢ " (o,

and 80 1t {(Q)' C U A__n:_, f.e. m(Q)'N U %_:.u T{OX) !

But w 1is extremal invariant iff m (O)'N U Ry = ¢,

This holds 1ff ® (O) is irreducible.

(11) = (111).
et X €€

we have

(). Then, since U(a) € 1 (CO",

Qi

At

Lo
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U (a) X @ _n_x_cxﬁmvzn_.u_ M § , all ace ﬁ:-

‘Thus

X1 ()8 = 7 (A X0 =nmra
for all A mAH«_
Since @ is Qﬁpwo sm.zm4m x=x1,.
and so 7 Anxv is irreducible. | |
(iii) wnv Aw»v zm €»HH only mxmﬁow the proof.For the mmﬁmwww_
see Kastler Awomqu

mm.mrw.u..»n 1s not difficult to show that

B 7 A o (a) A) ~1(a (a) B> 0  weakly,

- al-bwo-

for any B € ..ﬁ‘_ ay".

Since’ _ ﬁnxv um »Hnmmsnuvwm ( U% rwwow:mmpmv. we

wm<m n Aauva m mw A»ﬁv arﬁm for any cs»n <moﬁonm m n e »ﬁ.,

we rm<m. wmw»:a B no vm ﬂrm vHOumnwuou o:ﬁo, E,

e, m (o @A n) = (Ea(a (@AEIE )+
as mm_..vsy IR :

It mOHHosm that for any wunit <mwwowm & ”m:P@r

e im:: e o (e () An ) s B
as Jal »e . o
et £ be such that U(a)E = £ , and
take n = § Then we have _

Le, nA)E )= (0, 1 () 8),allaed.
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_m;nm_ " AQ; is »nnmmno»vs. it moHHozu Eamn 3

is. vwovonﬂ»osmw te 0.

QED.

5.5, The wmmw_e.mnwwpmmmn:emeHma

.qmrmtw_ _momwaymwm abmmﬁwu<»dwu_
| o ﬁﬁ% w be w.oo<mﬂ of M by regions
(., . rhen CC is Qmumnmwmm by the fmw :.&

_ . This axtom wawppmm ‘that the algebras a (e
..mo not . Umnoam ﬂwpcwmw if (0 1s Bmmm mamww
__ awm mowpos»:a is a weaker <mnmuon..
if o »m a vacuum mwmnm on nﬂ then
m AO: is amsmumnmm 3,, the 1 ( Q..gu_—
where " Hm wrm QZm umvﬂmmmuwmﬂwos Qu4mn by w ._
In this case, we' mmw wrmw mmmwwu<»ﬂw holds »: nro vacuum

sector., -

Qonm»mmn_wdm get of vectors T nnxnsvv:n.y.
It is =mn&wmw wo wrﬁ:w Om m:ns mnmﬁmm as wmwnn "localized"
in the reaion 3 in some sense. . o
Taking wvo c¢losurxe, we obtain a Hilbert nvmom \Nn@\ wm we
vary mu , we auarw mxumon to get a oowwmowuon Om Hilbert
spaces giving the various ponmwuumm states. This is not, nsm

case, as the moHHotwaa_wmeHma of Reeh and mowwwmmmn mrosmn

S

-'*‘.ﬁ

6.
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Kids K, .

5.5.2 Theorem (Resh-Schlieder (1961), Araki(1964 b)).

Let W um & vacuum state, with mmmco»mwmm
GNS constructs ?R - c ), mnm mﬁﬁﬁOmm mn&wpaﬁn% wowmm

in the vacuum sector. Then, for any region (/ in M e is

- cyclic and separating for n ( (X (()).

" proof

H.mn Q vm a ﬂmﬂ.ou. eo mwos wsmw Q. Hm eyclic

o fer w Q.Q:. we need only show that (&, m () )=0,

for mpp A mgmhnw. implies € =0. o
Since  is cyclicfor T (&), we need only mwosnsmn
(€, 7 (A)8) =0 forall Ac (X (), inplies that
(€, m(a) 0 ) =0 for all ac(X. |

tet (§ ¢ () be such that () c () . 5." TR
belong to Qﬂhﬂv _. and let m_w_.,...mnm ﬁ_e . mmﬂ

m;mw_. mm_r Byreeney 8 - m:-»v = (g E.AEEH;FV.H...Eamu;uwvmv.

.

Since Qa is nHOmmm‘ and contained in % , which 1is ovmu,
there is a neighbourhood Zp X.oowaX z in %h_s such that

Q0+mw_.hg mou m»m.z»,wa »A.B.

But then @& ﬁm y ng.....e :ﬁ. a,) € Q:& and so,
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by hypothesis, F (ays @y = 8j,.+ee00) = 0 for all Amp.mm...muvm_ d
ZHN -..--oo-uﬁ ZH.—- . . .@
.H..HOS.WANWH,_- :
F=0% et?,P qﬂﬂwpv mpﬂm -mwvm Miay ..ot ) F

Ty )

Let z, € € , 1'¢’1 ¢ n, with Im z; € V,,

.HSANw.t vamu.<+......« Haﬁnb - Nﬁawq € V,. Then, since P has
its spectrum in .».ﬂ ; we have Im wH.m 2 0, Im(z,-2,) P 2 0,..etc.
Thus m._ANuK mm e ._.NH:.; defines an mm“_.w.ﬁu.n function in the | <

region Im 2, €& <+.~,_ Im nu.m - NHV € V., mﬁo.vﬂvwow

vanishes on wwm_vocuamﬂm Ha__uw. = 0, etc, .wm NH (=3 zw;_

Re z, e 2m. etc.

It mo“_.wo.am E.Hmﬂ P is ummnnwnmpww Nmﬁo. ‘as an mnmwu\wwn mﬂno#w05~

| in Im uw & <+~. mwnl and so Emw. a, - mH......,; = o mOH all

a, € %w;

zg”., by wwm mmm:zwwm ‘in. the. <wnﬁca_ mnowow_.,

Aﬂﬁm;J is amumumnmm by the T ,mﬁn )+'a)), a e R

?,.
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We conclude that
(&, n (a0 )=0
for all A e (@ and so & = 0, and ig:h:; is dense in
_%m , as Hmaﬂwﬂwm.

eo show that 0 is separating for m (O ¢ 3: , we

note ﬁwmw by ﬂ:m vﬂmommpsa. 0 wm separating for ﬁnxﬁﬁuvv.
for any Hmmuo: @ If we choose &_mﬁmnm.._.wwm with respvect to
mw.._nrm:; by Hmnmwwnwssxa,._nwaﬁ@vvﬁ ﬂanﬂﬁm_v%. awnm 2 is

separating for = { & ()
OFED.,

Remark The last mmnw.&w_m:mzn:mOHmB has important

no:mmncm:mmm. Hw A mﬂmﬂsg and vam = ﬁr.wwmn m(A) = 0,

1£ T is faithful, then A = 0. In other words, no local

ohservables can annihilate the vacuum. This is a severe

restriction on the mﬂmmvﬂmm nHﬁmi. Indees, this means nwmw

we cannot talk mvosﬂ_nwm_nrmﬂam mow,m.ﬂmnwom 3 as an element

of _mﬁﬁcv . For, wﬂmmsamvHWr m:or mb:ovmmw<m3wm should

give zero on the vacuum, £SHQU_Hm impossihle nzpmmm_uw is zero
“In the same way, one has mummuonwa in formulating

nwm.uow&m:_Om a vmﬂwwnwm.mmwmowoﬂ_Ammmnmmma Aumqmvve_HﬂwanH<mes

msa:_m.mmwmowow_mmocpm.nonﬂmmﬁosm.ﬂo an ‘observable C such that

5.

Cu c = os__.u,__ ce, p.n.n 1s a projection and 8o says "ves" o

_-Hno_—
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ﬁ»w»u co=0, =:o= on the vacuum. _ . = L&
We see by wwm mmmr anrwnmmmn theorem that the o:H<

possibility is C = 0 !

.6 - The Charged Bose Field and its Sectors

"In this nwmvﬂmﬂ‘ we shall discuss. in detail
_.w:m free o:mﬂawm field and its charge sectors. We will see
:wrmw these ap<m rise to Hnmnnu<mpmnﬁm~ »Hnmmcnpvwm Hmvwmmm:

tations of the mpamvnm of observables, and are vswmpnmww<

&

ki

chH<mHmbﬁ. The observables will be mmmusma as ﬂrm gauge

invariant mpmam:nm of the mnwwm mpnmvﬂm.
Oﬁn first ovumnﬂwdm SHHH Um to awqm a @ﬁmnwmm

mOHaﬁHmeon om the charged mwmwm

6.1. Definition of the charged field

awm_m:mﬂamm mHmHm ‘can be nwwnasw of as a Umww,
of - mumwmm representing the =vmuwwowm= m:m =m=awﬁmﬂ¢uowm= .
_Hmmumnw»¢mww. We anOmm the - ﬂmﬂﬂwnwm= ﬂo omwnw a osmﬂnm +H..
and: the. =msawﬁmnnpqwm= Q:mﬂam -1. The monx space on srwow
the nsmnnmm mpmwm acts arospm oo:wmpu <monowm of mHH nvmnamm.
bmn us Hmnmww n:m monampumB mon wsm mumm nm:wump

mumpm. Hw mowm on mﬂ\ n&m mwaamwnpn Fock mﬁmom over
r? % . &r).
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e

The creation and annihilation operators a* (f), alg) are

et

defined, as usual: e.q.
mﬁav \%AW.H\...l-mﬂdv = j waﬁuﬂv ﬁuﬂ ﬁooocwmu.vg.m

The free :mcwnmp scalar field of mass m is an<m:

as the ovmﬁmn0H|<mwsm mpmﬁﬂpvsﬂ»o:

6 (x,t) = (219732 p X ey 4 TGN ) g3

. 0 . 0 . Mi}'MJ
~where (k,x}) =k t - k . x, andk =u (k)= k% m“.
In smeared form, this becomes, for f ¢ ° W,

. o (5 = 27V2 @M v a B )

. where m.@mv_ = AN (w (k)yk).
| o

We have used the Minkowski convention for the definition of

the Fourier transform :

T (p) = {2« v...n .H el (P,x) £ (x) .an,._.

Let and F bhe two distinquished Fock
spaces over u.m :_.Nu. muxv. |

The Fock space for the charged field is

eﬁ u_“» + b rw
Let a* + (.) m:m a+ (s) be the creation msm

‘ +
" annihtlation operators oa mw ’ nmmcmnw»<mww.

el

VR
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We interpret m.».. (+) a & a8 the __ovmnmwowmu ﬁnﬁmmﬂnm_ o

a particle with ormﬂam + 1, mum a, A. '8 a_um that m_mmm_wo..

.

yving a mmuﬁ»nwm with owwnam + 1. nwawwmuww we wbﬁmuﬁnmn
. % 8 ﬁu {*) and % Ba (.) as creating m:m mmmﬁwo
wwsa owmﬂam_lw.

_ ﬂmw D+ be the set of finite particle vectors in

F- .Forfe ,%a (R") , we define the charged

field 6 (£) on D = D+ @ D= to be

e _uw-w\w (ar @+ da a )

where F(k) a/\ 3 ( w- :S.. k).
: e.wv _

Its "complex conjugate” em (f) is defined on

D= D @ D as

0y (8) = 273 m+_.”.w__.ﬂ__“§ ol + ? a’ (F) ).

Hn 1s clear nsmn o ()%, the adjoint %__. s (£),
is an extension of e nmv. We will define ¢ .Amv_mam
eo (f) on bigger domains so that they become mmuoHsﬂm

of each other. (the aowmgg 6. is nmavonmnﬁ .

We note E...mm “‘__A is mkusmm by <mowoum. of the
* o h * o I T @) .. ok o
form a, { _,Hv,......_ m+._ ( :v_ m+ @ a. | QH a_ Anav on

If we write Q = n+ Ba ., _wsmm_ww»m _eﬁowo.n u.,m ucmw
m._ th) 8 wu __.__A_qi._..._mu _aa.v Q

Hn pm ou.mmu that s »a@oﬁn mou w:m_ m (o v & =.
.mﬁ& Pa m A.u.. k | . ., . .
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6.1.1. pefintion.

]
. ot
Let N+ be nwm :cavmw owmwmwOHm in ¥ .
The number ovmmmnon on H%ﬁ. is
N=NBL + fanx
The total charge operator on K  is
o=xt al - {8 w.
m<ummnwww D is a domain of analytic vectors for
N mum o. on s:»or wumw mum wrmhmmowm mmmmwn»mwpm mmwmlmmucusw
N wmm m»nmnémwcmm 0,1 m......~ srmﬂmmm o has
muamn<mwﬁmm o + 1, 2,000 .
ou.mmp..._.w\ m+9~7...m+91 R a_ Ei....m (g 2 is an
“
munm=<ma¢0ﬂ for N and Q with m»amzdmwzmm n+m and n-m,
v respectively.

| We see, meoy_wsww. Auamv. oﬂwmnmm_w.nwmunm.ow
+1 and destroys a charge -1. )
Accordingly, we say that Awamu_omﬂuwmm_osmwwm +1,
‘Similarly, Awﬂmv owwnpmm_a:mnnm -1.

mLpgm. mnowomHWHos_

o tet % € u. m:m msﬂuowm % _contains
less wrmn n particles. Then, for m € % v,. _,,“_ o

LN
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Te & @z dnPl & 2 (7 (w1 R

where r(k) = f2m % (W, k)
S =

proof.

am will show that

_T%.ai :w__ < {n1' __m__ _:ﬁ

and

-

| (a, (& & = ) .an._*._ £ ymr et , W
for 6 € L ( R r d7k) . The same proof holds
for 1 & m”_ m_nm_ I&a. |
nommpmmu”ﬂ#m mwwnw inequality. Let
o+ N 1 t o
&@.3.. @ms & mf... ® ... & @..\e,m . . We have.
oy @ @d P I°

it

i

(P, ta) @e )@ @elyy)

L _ * . .. o
(P, a,@ a, @ ® 1 % ).
By wwvowvmmwm. % has at most n partieles, and [-To)

@m & %u & y\mv . 30Hmo<mn. a, nnvm (6) is m
bounded mmpmnmmuo»:w ovmnmwou.. mwoa T ,”r ::uo X.. with
norm less than or mnsmw to ?+5 = ¢ __

_ . oy
similarly, a; (G) a,(G) i voss%m Y. = Y,

with norm less than on mg:mp to n = ¢ 12, |

The H..On.m wm wrmnmmoum aoavu.mwmm o:nm we :m,qm vnoﬁmm wrm

following lemma.

R’
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6.1.3. Lerma

Let A#A* be a bounded ovmﬂmwOﬂ.on a

‘Hilbert space u\f . Let &um. be a E..J_.Umﬂﬂ space.

Then A & 1 is bounded on K. ® p\ﬁ and
faedll = lay.

Proof

By the mvmowﬂmu w&mowm;. there are measure.
spaces ax.\»vs {y, V) such that __@&c = H ax,\>v~
W, ¥ 1ty v ana A am e £, p.
Then = ¥, ® Y, ~ H_.uc_n_uf_ P &v ), For
z € ¥, & 4, we have
| ae i =z ] 2 = m_ii z(x,y) _ m\ﬁxv o:a;_.

XxY

< fal? 2y n

AW

.w.sn.. it a =_ - = A = _ msm so |ae I (P4 WAl .

Taking 2 of n:m form up av_nu. it is mmquwo_mmm”nrmw
hae 40 = fal

QED.

The proof of 6.1.2. 15 now noavymmm.

6.1.4. Proposition
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| The operators %am. + &o_nﬂ and
1 C § 1) - () are essentially sel£~adjoint on D for
all £ ¢ ue_n:m: .

Proof.

By 6.1.2, D is domain of entire vectors for
b 1 b
QED.

(For a discussion of analytic vectors, essential self-

ymmuownwummm etec. see, for example, Simon (1972)).

Let us denote by m (£) the self-adjoint operator

W ( &.mu_ + &nﬁm:w and by W (f) the self-adjoint

-

operator W, ( ey = % oﬁmvv*.

m.u.my Proposition

tet £ ¢ A%a ﬁﬁmrv , then the unitary

groups generated by mamv and eﬁﬁmv commute.,

"“1 -~

=

.
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f Proof.
b
m (£) and <V«mv commute on D,
By taking expectation values in elements of D, we can write
the unitaries as exponential power series, because D is a
domain of entire vectors. By the first remark, the unitaries
commute on D. Since N is ‘dense in QA\_‘ the result follows,
We hote than on D, we have
! $ L) = gD+ 1w (D)
“ and
. | QRO = B - 1.

We can now give a precise definition of Avﬁmv.

6.1.6, Definition

Let £ ¢ _us.,m TNC . The n:m_uamm field
% ﬁmv and »wm_aosucamwms %& (f), are the operators os_%A
with domain

DU = D (HHB) =D(EE) A D (E))
given by

&5. S m:: + 1 m(f)
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and _ - o B

PR TOREE R 1R

-t

6.1.7. awmowma

let f €& %_ﬁfw u . Then Av?n; and -

% (f) are normal operators, and are adjoints of each other.:

Proof

By 6.1.5, _m:m ﬁwm_mmmndﬁwu, _E,.m.,._uﬂ_ma.. E_J.mﬁm
is a measure m@mam nx \% ) m:ow wwww uﬁ,c ﬁ (X, s>g mum m
and <f are macw<mwmn¢ to aspw»ﬂpwnmwwon by HmmH Emmmsﬁmvwm
_mﬁbnﬂwongm. t.et us denote these also by % msm 5
Then the operator (D %57 %Q: is
equivalent to :uﬁmv\/_u A\Jv. m +re~v. mbm G:v (£)), N
% (£)) is equivalent to ::mv N Ef. m{:ﬁ
But Emv n UAJV is the set

Trm 1? _ ( d + o im) u ¢ vww u__TmH.NTm-Técmbﬁ
fhat is, DI mv N Eat is the mos&u of the sﬁﬁmﬁomﬂo:

e

operators m + .T<~\._ Which are normal msm mmuo»mwm 0m each

other. m:nr properties are wﬂmmmﬂfwa mnmmw saﬁmnw mmc:wwmbnm.

. QED.
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Remark . Thig theorem justifies the

notation %: 53_..

A technical result we shall need is the

. following.

Let £ ¢ %.nimc , £ £ 0. Then

ke _.m.ﬁm_u Sy __Tuw . “_,._.m.. m (£) % = 0 “u..awwu..mm_ %u 0.

Proof

_ Let m [ _%E :N\C ' m*o be mu<m=._hm...+.. us
define G (k) m.:z \ 2 lir | 2 , where F is as in 6.1.2. |
Let mmboww the time-zero free :m;wﬂmw

fleld on 4%, and Jﬁ.+ the time-zero momentum.

Set

._.H\m
B o= 2 _hﬂ :3&¢+ 4 ® T (o)

on D, ] _
fhen B 18 e.s.a. on b (as in 6.1.4).

zonmo¢mn. on D, we have

Tew, 8] -

Because D 18 a domain of entire ¢mo¢oum mon m;
and B, we can =mxvoum:¢umwm= this relation to oosapﬁmm that

U(s) = mx@ is .m.mv and v(t) & erp tt B amém a um@nmmmnwmﬁpoa
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of ‘the Weyl relations for one degree of mnmmm_oa_._
By the von Neumann uniqueness theorem, we have
X va» ¢ K4, mx@? and
Uls) 2 & e , for § € I, some index set.

}

Now mﬂmw_ % = 0 18 equivalent to U(s) @_ = .% for all
s € R, i.e. 1 1is an eigenvalue of V(s). |

lex.

This implies 1 is an m.n_.am:,wmuam om_ e i, sﬁ.ow is false.

QED.

Suppose V ¢ vw :N,J —> 12 ( R%) u._.m,m "one-

: _ : L o :
- -partiecle operator. There is a natiral action on @k .|_..

 given by
| ;.\_H?u q,_@#t_w_@sd
That 18 T, ) @ K —> X 1s given by

.ﬂ._. (v) = love (veve e

¢ WVl < 1, then KT ) | < 1, onsmggmm.ﬂis
_ 4 =

is unbounded. -

3on..mo4mu._ if v is unitary, so is 4\_+ (v).
We can then define ;__J+_a_5 & .ﬂ. (v) on A which is also
unitary. | e |

tet {(a, A\ )} ¢ mm.f be a Peincaré
wnmummonamﬁ on. _ |

we define the action of (a, >v on ‘L2 ( % muxv by

_im:_\: vy mim _ﬁ EN %3 _

w2 1= w (k)

L0



o
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where (a,k) =a’k° -3 .k and D..w k  is the mwmﬂ_mp_. _

componente of the 4 - <mm¢on_\):wwﬁ k= (oo k), k).

One verifies that u{a, A ) is a strongly continuons.

unitary representation of &ww in ﬁm ( ﬂm. aw k).
In X  we define the action of @We by
(a, A )=»T, tuta, A © T (uta, A)) = u(a, A).

6.1.9. Proposition

Let £ ¢ .%ﬁ?ﬁj , and let (x, A )e P}

Let mm A (%) = £{ A =1 {x~a)}., Then, on D, we have

_ A | -1 o
via, A) (£) uvla, A)E= %ag )
. L a,l :

‘where Aﬁhwmv denotes AVQnV_oﬂ ﬁﬁ* (£).

Proof

The wwoom.»m straightforward,

QED.
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We would 1ike to define local mw.@mvn_mm associated

. . _* _
with the fields %gm % « Howewer , these are not self-

. adjoint - we must use their real and imaginary parts.

6.2.1. Definition

et (0 C M be a region. We define
the local field mwmmvwm_.‘ \,Wx m%y , to be the von zmgmuw
algebra generated by ﬁ:m_ unitary operators s»ﬂm_ nmsmﬂmwoum_
| w (£) and .Jﬁmv as f varies over bmﬁ 72
It 1s a clear that if (Y, ¢ & , then
JUd) ¢ F(J,) . 1t s not difficult to see that if
U, , ana mwm are space-like separated, then

mﬂ:b; and Mﬂ :bmv commute, Moreover, we see that

Xa,A)A = ua A) a v
defines an automorphism of mw (K) which satisfies

o{a, A) .wﬁ:o\ = ¥ 3&% + a) .

6.2.2. Definition

The field algebra amw is. the norm closure
of the union of all the w«ﬁh& , where (7 is a region in M.
Clearly O (a, N ) 2 am.. — Q\ .

e
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We should remark that w:mum_pm another Hoamwwumﬁpon
which is also Boincaré covariant but which is anti-local

with respect to the one defined above (Wilde (1971)).

6.2.3, Theorem

uMﬁ Hm_»Hmmmﬁo%der

Proof

We shall only skekch the proof.

Let my be the O@mwmﬁouy<mwsm& distribution
obtained from Au by taking its time-derivative.
If m € %_n;«ﬁ, let £, € %,m (R") satisfy

2y wikd, k)= Flw X, k) / w k)

Using the fact the D is a domain of entire vectors,
we see that o .

# - * -
exp 1( nvﬁv_._. Av (£))  and exp ( mv:”.u.v - hv (£,))
commute and that | -

eéxp 1 mv_._. (Y® Il = exp WA %_A.m: &:m:wmuﬁ WA ﬁvﬁmww:&:wu.:.
m»:om.u »m.m core for the self-adjoint operators

H140H¢mm_ and since Avﬁmwv is a limit of operators of the
form m { Av.nnv - ﬁv (9)), it follows by the semigroup
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no:<mu.dm.b_nm_ theorem .:__mm_ 2.9, xmno.. S.omm:_. .nwmﬁ ﬁm\ nmbnm“_.bm

all the oﬂm.n.mno.hm of the form “ exp 1 &+ ﬁy@ 4 . . S &
¢® exp 1 §_(£) ]} where £¢ % (RY). .
- et A = &pe:: mm%w.. . | -
G- | A YD) e

(the commutants taken in &wﬁ@nwv , resp.)

- Then | . | o

FOD (s %,

‘But ﬂ+ act .»nummcouwp_ﬂ _os_ mw H_- i.e.

X= HFhH, He=h(F

._ | N moEosm that o S S I

H.m..” QN‘ is wnummzovam. |

QED., _ .

6.3. Gauge Transformations and the Observables

tet 0 £ 6 < 27 , and define the
unitary operators ot “_.m_ on 12( R 3,a%). e define ul( mv
on K to be S
v o) =T '®y 0 T 9.
Clearly & —> U{(€@) is a mnﬂoua; oong:sosm

,_nmunmmmnwmw»a:_ of the won.cm.

6.3.1. Proposition
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& D, we have

: . u(e) o v (0 2ol $un.
and -

se)  dln Ve = e prin

proof
Obvious.
" QED.
“  6.3.2. Definition
mv:
T HQ
The anmbmmonamnwos Aﬁﬂmv - Auﬁmv~

&u (fy - mrhm @u (£) is omwwmm a gauge nnmsmmonamw»ou om 

the ftrst kind..The nmcqm Qﬂosm;ﬁmiwwm torus.

E

We note that nsm anmﬂmwon of GA e v is

sowwpza owwm& wmms @ the charge ovmnmnOH.

”m.uLu._mnmmom»nwo:

. tet 1 ¢ ™M be a H.mmn_.a.:_._ 63@:
' eI Ve TF (@), a1l 0 <o < 2.

) let £ & %ﬁ:mi , O0£8 < w.._,_\ Then, o.:...
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proof

. L | &
This follows from the fact that, on D, we .
wm<m. | | |
. . 2 .
U (#) m.@ U(e) = 2cosO m (£)
and - ) .
o * )
u {(©) _éamv u(8) = 2 sin & )\N\ (£)
and then by exponentiating.
OED..
zoz-_ﬂmanm:nwms m»mwm theory mcaammwm ﬂ:mw.amc@m
wmmSmmOHan»oum should vm«m no vwwmnnmw consequences. In
: . 7
other sowmm. nwm ovmmn<mdwmm m:oswm bhe H=<mﬁpm:ﬂ under m
™

gauge nnmsmmoHamﬂpos. a:wm leads us to the next definition.

tet (" € M be a region. The local

observahles associated with _ Qm are the mpmsmnwm

Gy = Hyn{vier o €@ < 2my.

‘We deftne (X to be the C*-algebra

generated by the (X ( Oy, . | | - m

o,
|
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6.3.5. Proposition

For each (J, (X ({)) is a Von Neumann

mHmmUHwﬁ The mwamvnmm &ﬁasmwﬁﬁ®\m satisfy the mmma:mmmemH

axioms 5.1.1, - 5.1.4., where xla,A) is given by

«(a, A) A= Ula,A) A U, A).

_mnoom_

. It is clear a#mn‘ a A_Qwv is a weakly
closed wmt.mwmmdum“nosnmwnwwm.‘§ ~ Mmm..»w is a von Neumann
mwnmvﬂmy.

The axioms 5.1.1, 5.1.2, 5.1.3 hold because

- v : : _
they hold for the ,% (@), axiom 5.1.4. follows because it
.:onm for the ‘w%gmbv and _ca e v.noaacﬂmm with Ula, A).

QED.

'6,4. The Charge Sectors

As previously remarked, the charge oumnmnmﬂ
Q 1is the generator of U{ o ), and has elgenvalues 0, +1,+2,..
Let .@Am be the mnvmumom_om K with
Charge m. .
Then
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Since Q commutes with U({©) we see that Q
maps each ”_A\m into itself. Therefore we can define a R 1
renresentation | uAm.\zw } of 94 U%

Ty O - ot MK,

6.4.1, Definition

The representations Auﬂm ﬁx..m.v.; Tl g Lo,

are called the charge sectors of the charged field.

Suppose we have a vector Fu__uAnﬂ. This
defines a state on ﬂH . Suppose now we add mosm_osmﬂﬂm.
to ocﬁ_mﬂmﬂm. but in a very remote region Om_mwmnm. This
should non make very much Q»mmmnmsom as far as Hoomw C o
_ovnmw<mvwmm are concerned. sm Bwn:ﬁ expect, then, wsmw n:m
different charge Hmmwmmmuﬂmwnonm,mum ﬁ:%mwompww.maﬁwqmwmnw.

This is the "particle behind the moon" mnm:;msm of Haag and
Kastler (1964)., We shall prove a somewhat stronger statement,

but first we need two lemmas.

6.4.2, Lemma

Let Dmﬁwm:\l and £ € ® vsrmﬂm
mb and QN are space-like. Then, for any z, z'e uﬂavﬁmvwn
- u:va:“.: we have _ | | S
(z, 8 ¢ 8y 2y = (b 2, a2n, | o
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i.e.  (f) and A veakly commute on D( & (£)).

b
Proof
We know that both el F(F) ang o1t M)
commute with A, for all s,t € R, f
Hence :
{ e"18 ,mﬁv zZ, A u..u = (z, A els mﬁmv z')
and
(=1t :.mu z, w 2') = .u, w m»n.fmV z').
| The result follows vw:wmxu._a__m. m,muu..ﬁwnpﬁhm w.r.t. s and t at
| _ _ _
| s=t=0, and adding.
b . . . . . S | . | | OMU...
6.4.3. Lemma
S |
let £ € ,«ﬁm (R*), and 1et £, be the
mvmnmrnﬂubmwmwmuom £, 1.e. mm.?..mv = f (t, x - a). Suppose
I vy I, =2, where rtx) = 2M1/2 w12 2(yx.
. . *
Then, for 2€D, nv ,ﬁmmv Av_nm_wv 2 converges weakly wo_uv as
la| - oo .
o Proof
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*
Let z€D, Since % Am_mv Av ?mmv z is uniformly

bounded in a (e.g. by 6.1.2), we need only show that

— -

(z', ﬁ* (£,) mv;mv z) —> (2',2) as lal =0,

for z' in some dense set. We choose z'€ D.

*
Writing Av and %Hu terms of creation and
annihilation operators, we obtain

202, 'y P gy o= (2, a, T a, rp O L 2

”»

Pt 2, (F) B a ((a) + (2%, a%, () @ oo (F) 2)

*

sz, 1 ® &y a Do)

where F_ (k) = et ka Flk).

The second, third and fourth terms all converge

to zero as | a| —» oo by the Riemann-Lebesque Lemma

{because they all contain a term of the form m+nmmv z or

m+Ammu z'). The first term can be written as

(z', m*._,a.mv a, Ammmu ® ¢, z) + (z2',2) mmm .w.m a3k

using the commutation relations.

Once again, the first term converges to zero by

the Riemann-Lebesgue lemma. The last term.is equal to 2(z',2)

because of our normalisation __w_fw = 2,

QED,

o

&



o
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6.4.4. Theorem

If W is a vector state of (J{ in the
representation { @Am .ﬁw ) then any W*-neighbourhood of w)
contains a vector state .ﬁ_ in the representation Aukm‘nﬁvg
any g, q'. In particalar, the armnnm gsectors are physically

equivalent.

Proof

By a *@_r.nj_m - argument, it is enoudh

to consider a' =g + 1.

Let . be a vector of X in the

representation Akw.ﬁmv. That is, & has the form

wi{e) = ({z, ﬁﬁ.:v

for some z € %hw._ 2l « 1,

H-.m.ﬂ J‘ﬂnaﬂyu.-oc-\ymv\mv vmmzﬁl

neighbourhood of W ;

\jh w7 bu.s-o-oosbmv‘nm v “ ACC.. m g*._u *

Lo (A - walce, J=t 1]

We can choose h € D N %A@ such that

Wy = Chy Wy w

belongs to  Yl{ W 3 Ayseens, »w,._m\uv. This is possible
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because D N uAm. is dense in .%A@ and p is mw:»_wm. . ?
, € (V)
some region % . We define a positive linear functional

on X by

Assume, for the moment, that wH\ eue, A

wmh;un?mmv?dﬁi;&a%f.
where £ € D) Am%v__ some region Q& , and f satisfies -
the normalization of 6.4.3,

Mow, by 6.4.2, W mgh ) can be written wm_

Py ) = (Mg Py b, Tompw,

b =1,....p, and _ a _ sufficiently large.
¢
By 6.4.3, we see that
} | <
wvm {X) — w (X} as _w_ —> o _
for X = *“a b“_.__-so-s.wmu-
in other words, for large __m | , the state

G() = m,um («) \%um {41) belongs to
j (w', @u.......#mu. m\uy___ i.e, O belongs

..WO. jﬁ& swu.‘-c‘ wﬁsmV-

kumsm;mnonmagmﬁwmHmmwn»ogou »H....wvm QAQ? _ .. ;
Let 3,..._._&“ ¢ (L . Then, by definition of (U , there |

. ) : |
is a region (7 , and elements w”_.......,w_ 3 X () sueh 7

P
w_:mw = u&._m.e :hm_moupmbm?

Phus, given W ,we. construct a G as above, and
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jh ) n N.P.-.H_‘.-...-swwaww....m “- WQ.W
I R TR
lwa, coagrl ¢ lway ) - sapHl

+ 2 ww - Al

3
£ 3 €,

That ..—..m\ q & ﬁn&u Bpu.wnm-_-»w‘ wmvo

The result follows.

QED ...

vemark Tt has been shown by Fell (1960) that

two representations of a C*-algébra are physically equivalent
if and only if they have the same kernel. Using this result,
we see that Aﬁ* and \Qw_ have the same kernel. But then
q Tl _
¢ 9 .
the identity representation of L .

has the same kernel, which is zero since 1t is

Hence each ( QAM ' ﬁ\pv is faithful. We have _ﬁw.cm

proved the following.

6.4.5. Corollary

The reéepresentations .JAF.Aﬁwv are faithful
representations of & .

®his also follows from the strong local
equivalente of the sectors (see 6.5.)

fla would 1like to discuss the »HH@QﬁQHU#HWﬂw

" of the charge representations. To do this we shall use the
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notisn of a " mean" (See uovH»mrmn, Haag and Roberts Apumov _ s
e recall that our gauge grouwp is T, the moncms

which is represented on X by U{ 8 ).

6.4.6. Definition

The mean of an operator X & %y (K) with
respect to the unitary representation U of the gauge aroup T

is the ovmumwon_ahxv. where
m(x) = MM_AHQQ ) ¥ u(e) 4ae

&

where the integral is a weak integral in mw (K.

( me . de is the normalized integral over T). | g

6.4,9. Lemma

(3) 0(0)m(x) U(B )= m( U(E)IKU(O)*)=m(X).
{b) m @ ﬁﬁﬁ -z %QAK\V is weakly

continucng on bounded sets,

proof

(a) ov<zn@mj
(b) We shall give an explicit alternative

.
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proof to that of Doplicher et al (1969),

Let X, —> X weakly, with | x,l <« x
for all _s some K. Let. A gy =X =X, . We must show
that m(A, ) —> 0 weakly. |

Let 2z, 2' & AA‘ . Then, for fixed o € T,

it 1is easy to see that, for ¢iven ¢ >0,

[ et vy oy, viprr o] < €
for all \m in some neighbourhood N (o) of & and all
Y >V o), some W (o).

Now, by varying -~ o over T, we obtain a family

of V(o) s and N(&)'S, The N{of )'S cover T, which is"
QOBUmow- mo_wrmnw exists a mwnpﬂm collection nxwh....ﬂxw
such that T = PW\ N( Qwu
4=
Let Y v_c_ﬁ0@v~ 1 <4 £ k. Then, for any & ¢ T, ﬂm have
[tz', vtx) A, vle)* 23] < ¢ :

hecause o€ N{( oﬁu., }, some 1 £ 9« k.
Hence, : _

s..am-s m Ab‘v ) wv_ < € ’
and the result follows .

QED.

6 oﬁow- Lemma

o
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et 5 be. a nsrmHamvum in ﬁu Tx.v such wwmﬁ S G

n (5) ﬁ..u\w . Then Mﬁ) GAJJ .w = &W n CA.—; ;.

where the bar denotes the weak closure.

" Proof

| It is clear that # DJ AU w C mf NnU .
ebrn € B N v, Then A € ‘4" and so by
xmvwmsmw< 8 mmnmpww w:mouma- wwmnm is m :ww wev @vuu.mw
with = A, : £ =y | R msow E.pmﬂ .w ey v. amm_n“_,uw

By 6.4.7.(b), m(A, ) ——> a:: ammxz.
wﬂw A€ HMQE.. and mo ‘m(A) = A. mmuom Eﬁw v.llhvw weakly.
cince m(A Y € muu ) GG.J. _sm oosowsmm that »mz&) U (T) w ,
-

OFD ., -

6.4.9. Theorem

_ The representations ( _A wv r 4= 0,41,...
of _th._ are irreducible. |

proof

By definition of A« Oy,
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| QAG: d.ﬁe, A E..__..,_tna__aﬂév )
(ustng U (8) “Fl D ryute) = F()), ana so

e

X =m(Fy = 4N um .

Py 6.4.8, we wmdm

G - 2 AN 1 I
But, by m.m.u. bﬁ %u :A.w mum S0
,_ QH_ Ea._
e see wwmummoum Epmw \K. T2 cR‘ mOH mmow ma

Eowmo,qmu.. 9] G_V ¢ @

o MR B g i
o But Awm } \vﬂw : Hm in the smmw closure of ﬁ\ ﬁ r&
_mmmom ( K, ﬁw ) is irreducible. | N

Remark We have now proved that the (0), e

satisfy the axioms 5.1.1 - 5.1,5.

6.4.10, oon.ou.Hmmx_

[| R

o

- S o n.:m Hmunmmmuwmnposm 1,_\ w r 4

ot CL are c:»wmﬂwﬁ\ “_.smo_sfwm“_.m:n.

,O..—..TH\ P
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Proof

We have, for any & r_ca o) e (X .
ret A, € (L be such wrmﬂ_»<_.l[¢. U(6)  weakly.
Then, for 2 & A& q ,_tm :m<m

(z,a, z) — %% (2,2

IF ( “_x.w ﬂz\m ) and Auf: ,:W; were Eﬁﬂmﬁwww m.m&.dwwmnﬁ. we

would have, for z ¢ ,xm .
(z, Wy (a,) z) = (wz, Ty (a,)wz)
I N R I R Sk ST
sﬁmwm Wz € %ﬂm_ , and W effects nrm_macw<mpm:nm VWﬂﬁmmz
qﬂw and zJ‘ . On the other mmum»
(z, \.:\&. Ap<~ NV. - m“_.mw. (z,2),

which gives a contradiction.

Remark It is not difficult to show that. the

representations { x¢~ ﬁw ) are mutually disjoint.
To summarize the. last few hmmsﬁnu_n the charae
sectors are irreducible, physically equivalent, van.:bwnmuwpm

inequivalent representations of the wwamanm om.ovmmw<mvpmmﬁ K.

6.5. Strong Local Fquivalence
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Another notion Om maapémum:om has been’ »unwomcamm
by moHanHm Apmmqv which is mwno:amn than m:wmnamw mnc»<m~m:nm

but weaker than ::»wmn% equivalence.

6.5.1. Definition

Let (¥, ') ana Abm“qﬂw be two represen-
tations ow a quasilocal algebra, X . They are said to be
woomwww mnaw<mwmuw if msm o:HM »m for mmow nmopos .Ww.,H
ﬁ:mwm exists a unitary ovmnmwou v: ¥ — %ﬁ a__mao:_
that U T (&) v* = T (&) for mHH A€ mq.a (). That is,

T (L (¢)) ana T ¢( ,M 23: are. :uuﬁmﬂw.._.m manﬁdmwm:n”

for each region Y, .

6.5.2, Definition

(¥ , ) and ;m‘. Ii’y are said to be wwnosapw
locally equivalent if and only if for each region () , the.
representations 1 ( & (¢°)) and Ty o X(E°)
are unitarily equivalent ; smwnm 4 Aﬁauv is the (*-algebra
generated by _w mﬂ.m_@wv | ﬁmw is a region mvwnmnwpwm
w.r.t., (I w.. | ,

‘Remark In nmnmnmpy,wwm unitary operator

effecting the ma=H<mHm:om s»ww_mmvmnm on the region U R
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Clearly, two representations are locally equivalent if they

We shall see now that, allthough they are unita-

rily inequivalent, the n:mnnw sectors | »ﬂ4~g4w ) of the

charged field are strongly locally equivalent.
The idea of the proof is simple : we write a\ﬁmv as

2 . Avamv* Aunmv and V is unitary.

% (£} = VM where M
Since Av:hmv AVnmv carries no charge, the charge must be
carried by V. Choosinag f with supp £ C h@ and using

local commutativity, we see that V effects the equivalence

Te.wﬁmmd ( ,Xm ’ :An (Y AQJV & and m%ﬂf. H..._;F,t_ﬁn#ﬁcw va.

m.m.w._awmmnma

ﬁ.

. | The H.mmuﬂmmmww._nm.ﬂ..woum ( f‘ms ﬁ\m.wﬁ @. =0, HH..

are strongly locally equivalent )
Proof

Since strong local equivalence is mu_
aquivalence relation, we nmma.ospw prove that A.R,f . ‘:# )
and ( %@a+*‘ \:$+* } are strongly locally equivalent
for any § =0, 1, + 2,.... __

Let (/ be a given region, and let

&

£ € (.ﬁﬁ ﬁ%v with supp £ c 0.

et b =vm, w2 = L (x4 () -

| "~ be the polar decomposition of d' (£). since ﬂvﬁmv_mmm no -
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kernel {6.1.8) we see that V is unitary on AA .

o It is easy to see that & (f) maps |
D ( A\ (£)) N L,Xm ~ into .Xpt_ ‘ and vw ..,pmw:a the
fact that D is a domain of analytic (but not entire) 4mmWOWm

for ZM (by the estimates of 6.1.2.). We see that 3N commutes

with U (&), all Q..m. § < 21 , Hence M maps
ntdey N Ky tnto - Kq . |
Moreover, M 1is mmpm:mmuo#bw and M > .o :u% m.w.m_v and so
ranim P b & (£}) AN _rwv is dense in %nm . It follows
that V maps .f\m into %w«.l .

. By the same arqument mﬁvn»mm to Aﬁsnmv = V*M,
we see that V* maps ﬁ\ﬂl into ;A.w . |

Thus V maps vAm unitarily onto +www» :

Now, by the spectral theorem, V commutes with

. } r f. ’

_ ,%A 2y, L.e. V & n&\ﬁ (Dy» = S ( ?\J. In particular,
vV commutes with QN ﬂnwmu- and, since Ct %) leaves
each g«& »:¢mﬂpmb¢y we have

v 5. L 95y = H:A Ay v f ﬁw i
all q. | |

OED,

Remark Tt is easy to see from this result that

the representations ( emw .ﬁﬂ ) of (X all have arm same kernel,
and so are faithful, This §ives an alternate proof of this fact
without appealling to Fell's theorem. On the other hand, by
Pell's theorem, 6.5.3. implies that the charge sectors are

physthecally ma=w<mpm=¢.
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tet A € (X . Then, since V € F o, e have
v*A YV e , and V*A V amvm_mmor %mw_ wswo itself ; . &
i.e. V* AV commutes with the nmrmm_auozﬁ._mm:om vy € CT
We see, therefore, that the mapping A —> J )= viav is
an automorphism of . . |
Moreover , 1f A € th S.J. we have d (A = A ; “_..m_.

) F(( (0% 1s thé identity automorphism of (I (({%).

We could therefore call d, an automorphism localized
in rw . |

Consider now the representation T et O
acting on \K«o ﬂ.ﬁm& w.w - M@y = 7 ¢ T (n).
Then, for z € eﬂm_ ._am_mm¢m ‘

Ty z= T, v fm 2= Tz

=V AV z = v+ 1 (A) Vz

since Vz € @A_. . 50 we have nroved that 44@. is g
unitarily equivalent to T, t.e. W, = T},
Similarly, \:\w = T, o T ¥ .

In other words, up to unitary mmcuqmwmunm» the

sectors Auﬂw.mw ) are given by localized automorphisms

acting in the charge zero sector.

A general discussion of this situation is the

subject of the next chapter.

7. The General Structure of Sectors

In the last chapter, we constructed the obser-
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all the sectors which ocecurred., The: same analysis has wmmu
omnn»mm ont by Doplicher, mmmn mum Roberts (1969 a) for a
umanmH field algebra and am:am group, G. e&mw find that
there is a one-one nonwmmﬁOImmnam hetween the sectors ( i.e.
unitary equivalence classes of Hmvmmmm:wmwwoum of the algebra

of obhservables) occurring and H:mac»<mwm:w.pﬂﬂmmﬁnuvwm unitary

representations of G

Ve m:ocpn like to consider ﬁsm converse problem

of constructing wwm mmonOHm given w:m mwnmvﬂm Om ovmmw<wvumm_

~ 4n the vacuum mmowow. As in the case Om_wrm charged field,

we think Om the mmononm Um»:a obtained from the <mos=5 mmaw0ﬁ
hy acting with o:mﬂnu omﬂﬂwuna m»mwmm. ‘These 3caﬁ vm_
no:mﬂnconmmﬁ mnm o:m ‘can mmw swmnwmﬂ they mwm UOmm OH mmﬂS»
fields or aa»w#mﬁ._arwm mampﬁm»a zma prd»mﬁmm v% mo&ormﬂa |
and re- mmeH:mm by Uonw»nwmﬂ et mp

e shall mowwos nrm‘wwmmnam:w_om uocwwnvmﬂﬁ Haag and Roberts

(1969 b, 1971, 1974). (See also Haaq (1970)).

q 1. mnmwmm of stmhmmw mOH Strong Hunmnmnwuos

wxmuom )

The aim is to find msm.mmononm._nu<ms wu
algebra of ovmmﬂ<mv~mmr X . That is,what are nwm »numacouvwm
reprasentations of (X 2 this 1s a very m»mmpncyw question
to answer, so to make nrm Uuovwmz more tractable we mvvmmp to
physical mnncamanm to mpunwm out some of these nmvnmmmunmw»o:m.
To any nmvnammunmn»o: ( Aﬁ i u of X¥ , we can associate

a family of states - the vector states given by (¥, , aﬂu
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( which are pure if ( %m qﬂ ) »m Huummsn»vwmv~ or , more o mH
generally, the mmnmnww matrices A or equivalently , 4
ultraweakly no=WH5:onn states) of ( u@ T ) Evidently, |
a unitarily mnnp4mwm:n representation will give ﬁrm_mmam_mww
of such mwmwmm4 _ _ _

| Conversely, any pure state on cL _mmmwnmm. by
the OGNS no:mwwnmﬂ»os. an irreducible representation of hmx.
sw see then, a certain mowﬂmmvosmmaom between Hmwnwmmuwmwwosm
of © (1  and states on Cl . We shall single out a family
of representations Ow (1l by mﬁﬁmmpwusa.wo:vwwmpnmw. _
arquments to mw:awm out m.oOHHmoﬁwau_ow states of Hdﬁm&mmw

{ in mwmamswmnw particle Urwm»nmu

nwsnm we are now HH%H:Q to Qmmnwpvm a theory of
cosmology, but rather elementary ﬁmﬁwwowm physics, it is
natural to assume that our =Hmvowmﬂouw: wm isolated in an
otherwise empty universe - that is, we require our states of &
interest to behave like the vacuum in remote regions of |
space. Let us formulate this concept more wwmowwmpw.

From now on, we suppose that we mwm au4m=_m acmmH|
local C*-algebra X of observables : QN is amvmnmwmm
vw C*-algebras \w «mu\ y () a region. The _Qwﬁay_ 5 mnm_
supposed to satisfy the axioms of isotony and nmcmmwuﬂw.w:m
poincaré covariance .

Let (), be a vacuum state on M in the sense
of 5.4.1, and let { 3, , T, ) be the associated GNS
representation. We shall suppose that ( %mc_\ﬂv_w is
trreducible, or equivalently, that w, is pure, and also
that ( %ﬁm , qﬂo ) 18 faithful, The Hmvwmmmnwmwwouan_}ﬁ§ Ty

is called the vacuum sactor. L : o




£
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The preceding discussion leads us to the following.

7.1.1. Definition

Let . be a state on U . we say
that W/ agrees mmwavnon»omwww with the <muﬁn5; Ly, ,
if, for any sedquence M Rwﬂm of increasing regions

with ﬁw hw4~ e \VA , we have

e

Jowa | (0= w) P QUED T = o

Al > O

where, we recall, U ({®% is the C*-algebra generated by
the S S Qh ) with Qn space - like w.r.t. m\\

In other words, W . begins to look like the

vacuum far away ~ the convergence being in norm . This

requirement is too stringent to apply in a nnmonw of
electromagnetism. Indeed, by Gauss' law the ommﬂmm within

a region is given by the flux of electric field strength
wwaghw_maw munuossmpua_mvwmﬂm - however large. We would not
therefore expect a state with non-zero mpmoﬂnwn owmﬂam to
approximate wdm vacuum in the sense of 7.1.1. However, an -
analysis of the sectors given by states satisfying 7.1.1.
(together with some further assumptions) can be carried odﬁ.
One can hope that such states are enough to describe purely
strong interaction physics. |

However, within mwpm realm one asmw mumo consider non-abelian

gauge groups such as SU(2) ( dr#ihl, Haag and Roberts (1970),
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iy

Doplicher and Roberts (1972}, Haag (1970)).
It is an open problen as to what happens if 7.1.1. o
is replaced by a weaker condition, such as ; for each

local observable A (A € (U ), some @ )

.mWQS ﬁcprcqu AAXo.n?vv
0> T
where a is a space-like vector.
‘Let uﬁ» s.nh )y and ( &é&.\ﬁw u_vm Hmﬁﬂmmmsnmwwo:w
of ({ . We have already defined the notion of mwwomo local
mncp<mpmdam (6.5.2). We shall say that the Hmvummmummdwoum_
are strongly Honmwww mnﬂw<mwm=ﬂ for a given region (/AT
and only »m_ sﬂp 7 ,M .ﬁ and Qﬂw s MK «szp_  : _WHm

cswﬁmﬂpww ma=»4mwmnﬂ

td

7.1.2, Theorem

Let A‘»w .;Aﬂ ) dm.m Hmvﬂmmmlmmwpoﬁ of | e
B and suppose |( »ﬁ T ) is mnuosaww Honmwww | L
masw¢mum=¢ to A_%pc , Tho 7Y mon mm..‘ some’ Hmauo: m\
Let w be any ultraweakly continucus mﬁmwm in ( u\m\ -q Y. q__zm.:

W asymptotically agrees with W, .

proof

Suppose (W and ; do not mmwmm,
asymptotically. Then there exists a sequence .mnmf.w. - of
»
regions with n&s - nNA+g and mm mmsuw ™M y and

P

E > 0 such that
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W
B | P
N {w-w) M OO 3 €
W @ for all n. _
ﬁ. mw the mmmwbpﬂwos_ommﬂwm JOnB Oh_m functional,
| there exists B, € OC m%hy with | B, = 1 such
that |

[ (w-we) B, | > &4
for all n.

Now, I (B = : B, and so Nﬁwﬁwsvﬁ
wm a mmasmnmm in the unit ball of By ﬁvﬁcv , which is
weakly compact. Hence there is an operator B¢ 8 ;‘ﬁ v with =

he o ¢ 4 and a net B, in { wsw such

that T, (3,) converges weakly to B. Since QWW D cww‘,
and wa e & Amvh ) | ; wWe mmm wwmﬁ_w commutes with each

. .doﬁ.gﬁgsv_v__ . That is,

.‘ Be {U T, (a(v.) ]

® "

. This Haﬂﬁ_mm _gm_w__ Be T, nQC_»n_ﬁ 1 since

| ( vﬁu ‘ T, ) is »Humauowuwma Write B = ¢ W, ﬁwwy-. _
¢c e € , el g | . Then T, {B,) converges
weakly to To{cd) .

Now, by rwuowwmm»m,_ﬁwmhm is a GUmeHm v ”»@miwb¢ 

such that |
T =v  Ww v
for all A ¢ Q:h@.mv . ,
For sufficiently waam n, J c ”ﬁnS«,_.me.,
Qﬁw C AQMH , and moy for sufficiently large o - .
,wa e N aﬁnu v . By the above nuwwmﬂﬂ_macw<mHm=wm-za
o it follows that T B, ) converges weakly to
c(4) . |

since fl W8, € 4 , the convergence is also
in the ultraweak topology, and so w ( B, ) _

converges to €.




On the other hand, is a vector state in ( ' ) so
(B ) aos¢mﬂamm_no C. y . -

_mmunm_ﬁ - Yy (B ) = 0, which contradicts

QED. -

7.2. Borchers' Property

In order to obtain a converse to 7.1.2, we
need to make a technical assumption concerning the represen-

tation %?, m )} of ON . Following Doplicher et mH.

o
i)

(1971) we shall call this property B, _
1£ {/ is a region, we denote by 4%& mhmp ¢dm_

von chamwb_mHmmwnm _qﬂﬂ mﬂ.ﬁ cwmgv . _ : e

7.2.1. befinition

A representation ( »@w_qﬁq__v_om I is
said to mmwwmmw property B if, for any wmawosf; mm _”
jhciuded in the interior of m:ow:mﬂ.wmowon Q&W -, and for
any non-zero projection E in AWa.NmQ\ , w:mﬂm_%m_mw.

isometry W &£ J&# :&l ~ such that WW* = R and z*_z = m
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This property was shown to _85 by Borchers (1967b)
::mmn the assumptions om the . mvmownca oo:muﬁwo: and mmmuww<»¢<
&w M ) (also \q must be locally regular : since 1,
is faithful,we may consider T ( (X ( (/ )) as a representation
of :\c ﬁ ¥ :b¥ v . We need to know that | extends
to a Hmvwmmmnﬂmn»o: of j ﬁgmgxy\\ We also umw_m
Hwﬁmmsn.._._oppwﬂ% of m this allows w*w = { otherwise

we would have zwz = m: some wﬂoumoﬁ.ou F}. Property B holds

:Jax .ﬂ_.v

nscmOm? E;mu E..mn ﬁ Kw )ﬁ ) mmﬁ.mmwmm property B.
Tet ( rqi )ﬂ» ) be a msvﬂmnummmuﬁmﬂou of Auﬁ ﬁ ?4 :bmv )
_zos oo:mummn 13 Ky_ ) \:\m _, 9 AP V ) as a Hmﬁwmmmunmﬂos of
Q ( Q“ ). A »m oo:ﬁmgmm in the interior of & .
e QHB.B E.Hmn E&.m »m s:»nmnu? maﬁzmwmnw to ( Q& li \,chgm:
asmmmm nwm vwoumaﬂpa: k3 o:wo \Ki _ wmu.onam to ._._\A TS ! =
= W (0. Hence, there wm an isometry W as above in B V.

i.e. noaacﬁ‘:n with Tt Qa Q )). We have then,
wh& () = T a(dy) w

\5 M) w

n

since m:& , is the final space of W. We see that W effects

the Claimed equivalence,

q.m_.m. wnowom»n»ou

- H_mﬂﬁxrjpvgﬂ:?.%v%
representations Oﬁ _mmﬂmmwwua property B, Let v vm a

I
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S

nma»on msm suppose. nrmw ( &T , _, CC (s and
( KNL \:\ Mot :bm: are non-disjeint. Then, for any Hmﬁ.o: | | "

hma_nonwmwnunn (7  in its interior, we have S .
_ﬁ.pmsazh s_mx ( ofn ana ¢ ¥, 0, MO mnm.

unitarily equivalent.

 proof

o o _ mw mmmsavwwo: (see 2.6. pV\ ﬂsmﬁm are

_msv Hmnnmmmuwmﬁo:m :&fj\ M C(¢ly) ana. Zﬁu_\:\ MCtLesn
of (- vw*,__»v G Ufyy ana (M, PO T D200,
nmmvmonﬁamww. which are unitarily equivalent.

mw the previons remark, however,
\/

A amh.>d § mx ﬁ Pr )} is unitarily mnc»<mwm:n to
( hh»‘qapﬁ t ﬁaf» )) mon any reqion (); containing Q‘ in its oL

interior. Similary,. %ﬁm TN (€ = (K, TN o)

and the result follows.

QED.

7.2.3. Theorem

. . et W be a state on mﬂ.._m:m mﬁ@ﬁ@mm
that (U asymptotically agrees with the vacuum, “/o ., If the
GNS wmvwmwmswmnwoa ( u& T ), associated to (0 ._ _

gatisfies property B, thenthere is a region Q such that . B : o

i (0%) = P Oo(¢®)

g

5



155

1l | »hx T ) ana ( %ﬁoygio_v are strongly locally

equivalent for g .

Proof

Let wﬁbs_w be a sequence of increasing
rerions which exhaust _9A_ . mwmnm W and w,
asymptotically aoree, we ww<m_ .
Jlw-ws) b (sl < 2
for large n.
Hence, mw the wvmowwa on:mHHaH and Kadison
. | s A PeN L
(2.6.6), the states w } (X (U ) ana wo M & (¢)?) induce
’ % . . .
non-disjoint representations of (U ( U, ) . These o
representations are sub representations of m, A Q(0°) ana
\:ﬂ_» mﬁ A QrMV + respectively, hence a moanOH»~_n:m.
latter are not disjoint, - |
Let ﬁw be a nmawc:.noanm»:n:o oﬁﬁ in me
interior. Then, by 7.2.2, ( vﬁ\ mp X ( hnmuv,»m sspwmnpww
equivalent to ( 3, W, M OX (U*). |

OFD..

7.3. Duality




..Btructure, The concept of duality plays a nm:numw.nmwm | _ o i
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Suppose m& __am a region, and Qﬁﬁowwh,yw‘qﬂ_v

is a Hmvnmmmnwmwwoa_om X satisfying . o
T A0Sy = Moy S

for some double cone S . Then, 1f | Kﬁ_\:\ ) carries a
representation of the translation awasv‘ we can translate

@m | into the set hmm. y It follows that
(i 7_mx thgv > ﬂﬂo ﬂ (X ﬁhvmv_._

Since 1, is mmwwmmcp‘ we can think of T as a
representation of T, (C(). The above unitary equivalence
implies that 1T extends to 2 representatiom of I, (G )",
this being awpwmwwww equivalent to \ﬂca.OA~ Rcvv.:

We #ee then, that if we restrict our attention to

-

”Hmﬁummm:nmwwoam { vﬁ T ) of v zrwo# mﬂm_mﬁuosaw%
locally mncp4mwm:ﬂ to { »ﬁo‘qﬂ ) for some _mb ; then ( if e
we mHmo have nnmnmpmwwOSm »aﬁpmam:nm& in ( uﬁy_qﬂ NN
defines a representation of A, @ ))" for any
region g . - | | o o

We may, wvmnmmwnm._WHSmwm.oozmpmmw_Hoomw <o:.zmc3ms: mwomwnmm
ﬁmmm Haag, Xadison msm Rastler (1970)).

| ~ Prom nhow on, we shall consider ({ as being
mmmwsmm.vw its ¢mosca nmvnmmmnﬂmﬂuo:. More, nnmm»mmpwf we
guppose that mN i3 a C*-algebra of ovmumwoﬂw on a

Hilbert space ?ﬁe containing a vacuum vector (L, .

We shall suppose that the local algebras mﬁ are smmwpw
closed, 1.8, von Neumann algebras. The symbol T, is then
nmmc&mmnw. but we often use it for emphasis.

o proceed farther, we shall need some more | L
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K in the work of Doplicher, Haag and Roberts.
nonm»mmn ¢wm statement of poompnﬁw. If DQ is
a realon, then Q :S and Q«%mv oogﬂﬁm. In the ¢mua§

Hmwwmmmswmwpos~ this can be mxmnmmmmm ag"
. /
T, (O (0)) ¢ Ty (X (0%))

Suppose X € qa AOaﬁﬁcubv , does X Umwosa no_
qﬁ mnx ()Y 2 1n general, the answer is no (Indeed, this
could never be true for all X & Mo deﬂ &» £ I, Anx ﬂcv

were now a von zmn;m:: mpamvﬂmu

7.3.1, Definition

= _ | - We mum,ﬂrmw a representation ( *m\ Aﬂ.g
of mjm satisfies duality for a region _hb if and only if

Tl (o) = TWa(o),

In particulay, this implies that aﬁﬁmmnﬁbv v is a von
Neumann algebra.

We shall assume that duality holds for all regions in the

vacuum sector. This means that

Q(0)= A (0°)

for any region mQ . It is wawonwm:w_umum that we mﬂovw_wmm

definition of & region as a double cone. Indeed, for the

oo free field, Araki (1964a) has shown that duality doeshold for

double cones but that it does not hold 'for a region given
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by two m_o&gpm cones, one on top of the other. We should also | (.
note that duality fails even for double cones for moam. |
generalized free fields (Landau (1974)). |
In can be seen that msmwwww implies m_
maximality of the local algebras (@)  (naag (1970)).
H:Qmmm let ,mN\ )y Q:& . Then, if .ANACV is to be .
puwmnvnmnmm as ms algebra of oummﬂﬁvwmm within (@ , we
must have, Um locality, that m commutes with ) AG.J...
i.e. %\?\8 c ot (d % . But then duality gives |
R (V) € (((U) »andso R(G)= O (0) - 1t 1s

cbwnosa srmﬁ_mﬂ 3mx”._.3m5.¢w implies duality (see Haag (1970) ).

7.4, H_omw.__.»nmm Monomorphisms

Sm_nmnm.z. that a monomorphism o_m a o*amwnmvwm
ig an injective * = rcaoaonﬁrwms. __ |

Given a nm@ummmuwmﬁ»os ( um )_\ ) of a
ns... algebra, ﬂc__ and a aonoao_nmrwma w , We can mmmuu,m
another umvnmmmswm¢»o= ¢ ?P e ) on the same Hilbert
gpace hy j‘ {(A) = W (AY, A € %‘ |

1.4.1, pafinitton

et p be a monomorphism on (X

gm say that W is localized in a region % if __ ‘
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T:& = A for all _h_m_ X A%m We write KASV
for the aoﬁmoﬁo: of such 3830355? | R

The Eﬂ_ouwmsem of localized monomorphisme lies in -

the following.

7.4.2. Hrmoﬂma_

TLet ﬁ_gm yﬂ_w Um a faithful Hmuﬂmmmsﬂmwuow_
of (X e Then w\@ it v and A%ﬁo. T, ) are strongly

locally equivalent for a double cone ( if and only if there

is a monomorphism p + localized in (J; , such that

/

o Tar ) is unitarily equivalent to ( #b,, T, e P,

Proof

mcﬂvomm ( \xu \._\ ) and Au\muo,)_\ ) are
strongly ponmwp% mncsmuman mon (); . Then there is a

unitary operator V ¢ Mxv —> %m mﬁo: that
TR ve=v T,
for a1l A & (L (0})

ror A & X , define m {(A)=v¥ TI EF
Then P (A) = & for all A€ A (OF) . |

tet B & ( (0F) where - (0 2 S Then,
for A € ((((H) we have
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pw M =ve T@m v 758
avr (@A) v T (B) v
= v* A ay T (BY V since .&m%ea c & (%)
=vé T(aB) vevr T (BA)V
avr T vvr T (B)V
= Ty(m vt M@V
M, (8) P (2).

*.

I¥

Thus muﬂwv noaaswmw s»nr AL Oy, mbﬁ.wo. |
by duality for ( 36, , T, ), P A) € g (0) .1 other
words, p: & %v —s Qﬂhngv .Moreover, g faithful Havppmm
: wv is »numow»<m‘ m:m ‘80, by continuity, wu mxnmnmm to a
aouoaonﬁwwma of q&. - Since ﬁuﬂwv = A for all A€ meﬁa p
we have _u e M( %u ).

By construction, we have T (1) =V w ©0 v+,
i.e. M (A y=v T, 0 wAQC v*, and so T = T,e

Conversely, Hmw. QO £ M( Qh ), and set %_\
Then, for A € (Y ((,°) + we have

Twe Moo pim= Tom, |
and - so ﬂw_ and T define the same Hmwnmmmawmwpo:_om

o (©,5) « Hence, 1f ( b,y = | »A:u_mw ), we

clearly have the required strong local maczmpmnum.

o

7.4.2, says that sectors strongly locally equi-
valent to the vacuum sector are given by localized

monomorphisms.

&
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7.5. Localized Automorphisms

&
7.5.1 Definition
We denotd by T AS V those _maﬁoaowuama_m of
(Y  localized within (/ ; T' () =m{(Mn aue X .
We can improve upon 7.4.2, under the
additional hypothesis of msmﬁﬁw in ( xw\ i v .
7.5.2. Theorem
s B |
Let ( Kf T ) be a faithful
B

representation of (X, and suppose that ( M, T ) ana
. 3, B

double cone (I} . sSuppose that @uality holde in ( ¥ I}

for all % =) %»_ , L.e. |

T(X(®)) = 7 (o)

H ._z\o )y are strongly locally equivalent for some

for all Q 2 Sm : Then there is an automorphism ,a,
Hoampunmm in %h , such that :‘m\\:\v is unitarily
equivalent to ( %wo~ Mo ° ).

Proof

ny 7.4.2, (36, T ) 1s unttarily
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equivalent to ( u‘mo ) ‘._._\oa a: ) for some Q., in M \%L « We
must show that d, € Aut 9 y L.e, that @.. is onto (X .
With the notation of 7.4.2. (but with \u.. replacing \o , W

have

@;;: = yv* I (A) V

for all A & (X .
et (@ 2 S and consider

T (X Gé ~.<j\a Q.nemC/\ w since ‘Sm.ﬁ %w
v HVAQAS t v+

L

B

~ But, by hypothesis,

(o) o (v)

Hence : _—
v () ve T, (X(W)) = &(¢)
for all S 2 Sw. _
In other words, \Q\AQ«%C = X T.e for all
0 > %o . By isotony, such (U ((f) are dense in (X ,
and we conclude that as ( Q.v = U . i.e. @\_ e aut &,

OFD.

The converse 18 also true

7.5.3, Theorem

v \_.._\o AQ :bvv V* by duality for \:M .
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Let .m 3 AJAC»U _\ some double cone %» ’ msm __
set = M, o - Then ( Xo\ _,QAS:EA%SJ _,QE V
and for all () O GN , we have _ |

q\ﬂ,_a_a:u 3@ (09)’

vwoo»

wm »5 q a u_. Hn “_.m trivial that _
(Moo, OGS ) ) ana ¢ o, 1 M CCLEE)) are
unitarily mnﬁ%mwm:n R
| H_.mw \ U @» ] Um a moavwm cone. We

nH_.mHB that \@\.AQAG v ﬁ Q :E

Indeed, we have S _ - |
(oo, o] = g Lo, )]
) - \q.mgar a A.ei_. _
since Qm@mv C Q :@mv mmm Q.L.m ._J ::.L
= 0. |
Hence ¥ ((L(W) € GL(0%)'= (X (0) by duality for T, .

Applying the same argument to d\,if_ , we obtain the H.mmsuw.

d,mQﬁ%tu Q‘..:.S | , mOﬂ_ all (0 D @m

.Eg_cw. for (0 > m@ , we have

MW= r(x(e)) = O(0O)
= (O((©35) by aualtty for T,

d.mg mtm»som \R,m ._JmC» , S_mn_n %Lm
s \39 U :

o.nnf. |
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7.5.2. and 7.5.3 say that those sectors which are strongly
mmc»<mwmsw to the vacuum sector and satisfy duality correspond
to those sectors given by localized automorphisms.

It has been shown by Doplicher mn al (1989a)
that in the case of a non-abelian gauge mﬂocww duality
cannot hold in any sector other than the vacuum sector. This

means that these sectors will be given by localized

" morphisms, but not automorphisms.

' 7.5.4, Proposition
tet ( ¥ r T ) be a representation given

Then pymxgdv is irreduecible. : . | Cq

troof

By rwvowwmm»m. H_K:\:\V o A_%?.z\oo.m.. ).
Since d, & Aut a, d;OQ = Oﬂ m__pm so ._ |
e d,ﬁmAuv - and Mo Amx.v | aré equal mm.mmnm10m_
operators. The result follews from the irreducibility of
A @@c‘ T, _ o _

_ 1f ( _»?_\ T ) is given by ms_nanOBOHvsama, then _@_. .
it is cleary faithful, Thus automorphisms always give rise to | - N
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faithfull irreducible representations of (X .

To end this chapter, we will just make a few
remarks oo:omnmwua the results of Doplicher et al. |
Rather wwmd_nummmuw their aoswwunnnwos of charge carrying
mwwwmm. which is somewhat technical, we will, in the 5mx¢_
chapter, carry out such a construction for a simple two-
dimensional model. |

A sector is said to be covariant if it omﬂn»mm a
strongly continuous unitary representation of the Aao<m3»:n
group of the) Poincaré group implementing the corresponding
automorphism of X ._Umnowm by T  the set of those

C
_\Q € 41_ which lead to tovariant sectors.

7.6, Some ﬂﬂQmew»mm of the Sectors

7.6.1. Definition

We recall that an inner automorphism of

X is one of the form A ——> Oy (A) = UAU*,
where U € ol is unitary. Denote by u“ the dgroun of
ifther automorphigms of mH which are localized. Let

us denote by 1 the group _M%.ﬁ,ﬁsb .

Clearly, i U, ¢ (), . then T'(0,) c T'(U,),

We alsonote that *] 48 a normal subgroup of T' i for

£ 7 eT G, .m Q , then %Q,c %Lu a.ism u

)
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7.6.2. uuouampnwo:

e T e ML ETeT,
if and only 1 P, 7, e . | SR

Proof

Clearly Ty : € ﬂ implies ﬂ:mw,_
Moo Ty = T, © qfw . noudmwmmww;_m_‘svwnmm” u _n_;,zu_oww Ro_

is unitary and . . .“.” .1. "_. 2 . e
| Mo (. (A) = U T (fi(A) U*
for all A e OUL. o o

| ret (£  be such that Ty dm e [ ﬁ@v . Then,
for any A € (X (W3} ,  TMo(A) =U 7, (A) U*, That is
7 e wmcﬁﬁmﬁ@ub.v\ = \_.__\eﬁg.ﬁel = X(()) by duality.

Hence,

T =u vt § Ta @

-

for a1l A € CL, | |
i.8. \Q»N &= Q..C .\Qpn .

QED.

Remark U is determined up to m_vwmmm mw, ﬁu .

Indeed, 1¢ O = @, , then @ O, = identity, which
gives UV#A = AUV* for all A € (U . By irreducibility of

y
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3 : _ _
e { on u*wo ), we see that U = mwo

B A . ] ] .
“Y 1£ T  denotes the unitary equivalence class

v, €e R .

(i.e. sector) noswm»u»na the wmﬁﬂmwm:ﬁwwwos ™ ._s@ nw3
define the maps Y —> (1, . a)v) . . 7.6.2 um%w
that there is a one-ohe correspondence between the mmnwonm.
ohtained from localized mswosonwwbmam‘muﬁ QWV\ﬁq _. Since
Au is a normal mcwmnmwﬁ.om AJ- 44\>¢ moaam a QHOGW
in the obvious smw. This means that the sectors obtained from .

AJ inherit this group structure.

 7.6.3. proposition

Q | et [,eTL(0,), 1, e T (0,) vitn
~-and Qm‘ space-like with respect to each other,If &w and

‘ 1, lead to the same sector, then they commute.

q.m.a._vwovomwwpou

Let A%P _ NM e T correspond to the
c
same sector. Let U satisfy au dﬁ = qw (as in 7.6.2), If

dw and &w have space-like separated localizations, then

Yo = xv.

The sign depends only on the sector and not on &M and @M :

éxplicitly.

W For proof sae Doplicher et al (1969b) .
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Remark fhis result is not true in 2 space-
time dimensions. | |

Those mmnwonm nouwmmwo:mwnm to a plus sign are
called Bose sectors, those oonﬂmmvonmwin to a minus. sign are
called Fermi sectors. It is a consequence of this proposition
that the charge carrying fields fall into two opmmwmm,u_wOWm
and Fermi, |
This result depends on the \q.m being automorphisms. In the

qeneral case of monomorphisms, one is led to anmmnmﬁpmﬁwnw.

7.6.5. Proposition

vﬂM is a wnonv._mbm .ﬂw\ﬁu is abelian.

wmamwx This result together with 7.5.2 and.-

7.5.3 implies that the "superselection quantum numbers” of
those covariant sectors strongly locally equivalent to the
vacuum representation and satisfaying duality form an abelian

group.

'9.6.9, Proposition

o The energy-momentum spectrum for the
representations T, o I T ¢

forward ligth-cone.

-1

. , lies in the closed

<
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In fact, if mﬁg% ) denotés this spectrum in ﬁwhudg

“4 we have _ |
S { N‘ &ﬂ_ ) O s( &)v.+ wa_@;gf

For the proofs of these result and further
discussion we refer to DNoplicher et al (1969b).
The more gemeral case of ao:oaowﬁrwwam is wﬂmwwmm by
Noplicher et al (1971, 1974), where one finds a particle-~
antiparticle structure and a spin and mﬁmﬁwmﬁ.om theorem (See also

Haaa (1970)).

L

A




170

8 - A Two-Dimensional Model _ €

am_msmwp_aonmwﬂﬁnﬂ explicitly, for a simple
model, some localized automorphism and their sectors and the
=nwmwmm:omHHvam= fields mapping one sector into another.
These a»HH turn out to mmwwmmm_mOmm or Fermi commutation re-
lations, or neither, mm@mﬁmwua ot the charge they carry. |
The "charge" will take nOlwwaﬁocm values - the sectors can
be parametrized by %m_.

We wish to emphasize that everything is cons
tructed from a theopy of free bosons. The model is suggested
by one of Skyrme (1961). We shall follow the treatment of

Streater and Wilde Aquov.

8.1 -~ Heuristic Construction of Fermions from Bosons

To see how one can write down fermi fields in ’
terms of bose fields, consider a free bose field Au in one
space dimension, Then it satisfies the usual time-zero

commutation relations

(b, Tx)] = & HERD

where i is the conjugate momentum at time-zero.
Integrating over x' from y to & ; wWe sm«m
= o0 o
R + }
[, | 7o ax ] - £ § s lxn) ax
‘s | 3

and, exponentiating, we obtain
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% exp 1ok §(x) exp Lp M (k') an'
P @ o _ o0 o
gt = exp *%u,m Mix'y dx' exp pg%_c&_ exp = »2.@ m §(x-x"yax"
Yy | T o
Define
oo

W (x) = exn 4o % (x) exp tf5 m T (x") ax!
= U(x) Vix) 7

Then using the commutation relations for the U's and V's ,

we have

P (x) )fﬁ =0 Vix) uly) Vi)

e =]

U(x) Uly) ixv Viy) exp »Q® m % {y - x') dx'

it

Uly) viy) ccc 433 exp :. .xxww %le Umx_ - HQ&mﬁxixJ&xJ_

by P R | L

It

L
it

- where A= Q..@m m (y = x")ydx' - 2? w S(x - x")ax'
x

If x =y, A= 0 and %:&.. »{\ (y) commute, as mxﬁmmﬂmm.

If x4y, »fx.? , and 4f y < x, ».u..__o%.

So if we choose nx\w = (2n+1)Y , then Y (x) and H_\::
anticommute for x # y. On the other hand, if 9_?" wn,_ﬂ_ |

then Y (x) and )*\ (y) commute.
1f Q? ts not 2n TV nor (2n+1)T , then
...T (x) and \,T (y) neither commute nor anticommute -

theras 1is always a phase factor which depends on which field

is to the left of which, i.¢. depends on whether x¢ y or

v & % . We shall encounter precisely this situation for our

v charge-carrying fields in 8.5,

Of course, this discussion so far is completely
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heuristic. However, using #He ideas of Doplicher, Haag and - ¥

Roberts, we can rigorously define these fields (suitably

.
Yy

reaqularized) as charge-carrying fields operating between
different sectors. The point is that 4% gives rise to an
msﬁOHOHvrwma which leads to an inequivalent representation

of the algebra of ohservables,

8.2 The Algebra of Observables

Let us now baain the rigorous construction
of JGH_BommH. We must first define our algebra of owmmw<mvHWm.
We do this H:_ﬁmwam of wxm_mnmm hose field of mass zero in
two gpace-time dimensions. This choice appears to be necessarv
in order for our automorphisms to be localized in bounded
regions,

Our Hilbert space, then, is the Fock space,

SB

%ﬁ,ﬁ over vun R , d R Y}, and the time-zerc field and its

»

oonwsamwm momentum are given by . , -

—e---
E
]

N =1/2 -tkx * ikx, dk
(47) (T a0 + ate™ oy

=
x
i

1 (47) L\m__m k% My - amoet®®) k) /2

e note that &C: is not an operator-valued

distribution - we cannot smear with an arbitrary f € u&wanu

because of the factor _w_ 1/2 in nwm denominator. mosmqmu.

6 Amv«»m m.smpwnmwwp:m&_mmwm:mmuopnw operator (as usual)

provided £ AWv\\_x | belongs to hwnam , dk). We will, in

fact, restriet our test-functions, as suggested by Schroer

(1963) . e a
fo define the locad algebxas, we will be concerned

4
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with functions of compact support, i.e., f € mmwm=wv. {Our
test-functions will always be taken to be real-valued, m¢mb_
if this 1s not explicitly stated).

We see that if £ ¢ GHVAQ.V , then £ Hxv\_m_p\u
is mncmhmswuﬂmmwmvpm_»m and only if mﬁov = 0, It is clearly
necessary. On the other hand, if m:: = 0, then %mﬁxumxno.
Hence f is the derivative of h{x) = Muu,m fly)dy, and h e ﬁw_ﬁ.v.

_ 1/2

-~ ~y P
Then £ (k) = ~ik h(k)}, and so £(k)/ |k is square-

inteqgrable. _
tet D, = { recTw) [f@l=o ],
By abuse of notation we will write D for ﬁ,o :ﬁv_ . Then,

for (f,q) € w®o X e@ , we can define the fields % (£)

and T tg) as self-adjoint operators in u\ﬁc .

let us write <>\m for k@o x D,

Any (f,a) ¢ L,Au uniquely defines a real
solution m. (x,t) of the wave equation O m = (0 by the

recquirement that
.maxﬁov = £(x), m (x,0) = g(x)

i.e,f and g are the Cauchy-data for m . |
Let us also denote by M, the family of real

solutions to m = 0 with Cauchy-data A m.?:ov ) m?wovv e M.

The two-dimensional Poincaré group LY , acts

on ,\Su as m — MQ.P . wWhere

mp\>:.+v : w ﬁ.>|:x,9»_+\-c,ovv. |

8.2.1 Proposittion S\O is Hw4wwpm:w under

Poincaré transformations.

Proof
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1f w has Cauchy-data in Ox oL then it ¢
is well-known that MP A has too. We only have to m.r.% . "

?

that : 0 .
1a ﬁ:>$? Y€ Dy
Now, 1f " 1is any solution of O ...@uos then

the Wronskian
T\N.mw = _,mmd?.ovm.?\oun @Ax\ovm;‘ovvpx

is mv.. invariant. Setting )\N.ﬁrﬁ = 1 implies that
M% (x,0) dx is invariant,

QED.

Let %_m ku » Then if m &> (f,q9), we
see that $ (£) - () defines a self-adjoint éperator o

in Kuo .

We denote this operator by m b, ,.ww - it is : J
the Vronskian Umnsmm: nv (x,t) and mcﬂ.i . | . .
smmmnzﬁwvumxvum%\Mw . Then it is

not aifficult to show that, for %, ¢, < Mo

= -3 b
W ( /mizﬁm«u exp S m_m.»_mp_w e,\:‘wz MNV
om0 (4, 40 WlgIWLE,).
we call these the Segal-Weyl relations.
We can aive ,?_u 'a local structure as follows.
& 2
let 0 c R he an open connected bounded set. .
he a space-like interval inside S.__Hm % c fzu and

mm .mv } “:r&\ o) 1s zero outside H?_J. y Xo), we .um,< ]
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that .w lives on I(x,,X,). By varying the space-like interval

_H, CJ,. xmv over Q » we obtain a family of solutions. The

linear span of these is denoted by k«%v .

It is easy to see that any .m which lives on
I(xy, %,) is the Poincaré transform <~9\> , some (a A\,
of some JN € &Au . The image of the support of ( J , <~ )

under (a, /\ ) is mpavww.mnx“_.. xmv. _
Evidently, L(r = U ,\XVA Gv , and we also

g
see that (a, A) e % maps %:Gv into 9\? mSe;).v .

2
8.2.2 Definition To each reqgion Q in R ’

we define the local algebra of ohservables a «%v to be the
von Neumann algebra generated by “.52 f _ m c fKu:Qv h .

The quasilocal algebra Qﬁ is the C*-algebra generated by
2

a1l the X(V), O « R,

We can interpret the condition w m?:i dx = ©
as follows : mv is a potential and so the observables
should be given by its current win_u . Womv is just N ’

and W»nv , in smeared form, is
d'b (L) = - d(2'h)= - b(F)
where f = oth ¢ c@o d he d.

80 the infra-red problem has forced us to

consider the algebra generated by the current.

As usual, we can define a unitary representation
of % in nxun » and one can check that under this action
X :b\ is mapped onto (X NQQB ) for (a, A) € %

if %h and %&. .are mﬁmnmiwwwm;mmwmﬁmwmm.
then O ?SL ana A mg&v commute. This follows £rom




the Segal-Weyl umwm_ﬁonm wm._o_msmm w ,m» ~ _ urn. o — .

%»m%ﬂ mzm mh.mkmev

_u _
o

8,3 Lodalized ua_wozo%imam

Having mmm;mm s _wwqmwwm we are now in
_aomwﬂ.an to mmm»:m Hoom:.umm mswosowﬁﬁ.mam. -

tet 6 @ R — R be such that

4, ¢ & and Ol-2)= 0 ., Thatis; & is a

_ mawowm step=-function which vanishes for large negative values.

#mnm auch. e Qmesmm_m pair OWHHmmH
solutions wc the wave macmw»o& ( u vm )O (xt) =0 by
setting @ ?.:5 = 8 c" + i or G (x - &)

*.
m 3.1 ammw:wn»ou let ,Z, denote the above

set of nmmu_. solutions of the wave mﬂsmﬁ»on and let LA, o .

+ -
denote the real linear spanh of ,Z, and Z,

8.3.2 Lemma Let ® (x,t) be .a smooth wo?ﬁon

of the wave équation. Tfhen ® & ,Yh. "if and only 1if

@:rsmgé Cand @ (-=,0): 0.

proof it @ € ,Z\, then it -is opmmw.wmww

e M ma O — 4

Conversely, suppose | @ <O and @ ¢ %@ | .. A

and @T&how 0, . . | o ) m,
@ can be written as I

O (x,t) & £x 4 8) + glx - &) o o o

for some smooth £ and g. Then N __ -




177

2 @ (x,t) = (¢ 4 ¢} « _m:.u_.n a gy
. 6 (x,8) = £" {x 4 &) 4 ¢" (x = &)

He M implies that £9(x) + a"(0) € oy
f.e. £'(x) + g'x) € O . Also £'(x) - Q.Em &£ ana
so £'(x) and ¢'(x) & a® . Then |

o x4t _ x= w
O (x,t) = c, + M - fYy)dy + mm + M g TZ&\
: . ols . By
(= 2 , 0} = 0 implies that nH +C,y = 0. If we set
X
8,(x) - m ly) dy ma 6,0 § gy
we see that | @Ax t) & @?.I& +. ® (x-t) € Z.,
QED,
',
. | : | 8.3.9 Definition Tet Q be a tegion in %i.
‘ Ve define ..Z.:bv to be real linear m.@.m&. of the sets

g (@l BeMO} _w@m%i__@_mkug;,

. 834 tenma 1 B € W (V) m_sm 12 (0 1s
space~like with repect to % , then @ (%, S msm
mvx © :?3 vanish on %.* ; i.e. @ G?S is &

constant on @» ‘

vwoom @ can be mmno%ommm into @ € Z;
Since Q @ (%,£) = + | @._. {x,t) weé need o:u.%
no:mamn @»?.S. But {f m & vaﬁGv y the

hyperbolié propogation tharacter of solutions to the wave
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equation implies that w‘ = o on any @ mnmn_m..w;.m i.wr __ ;"
respect to % . | | .
&
" nED.
8.3.5 Definition For any @ _m ,»/ﬁ , we
define a transformation d, oh mpm.am:ﬁm of Ol of the
W m ) by o |
| \qf\AmV — mxm‘mw@\.mm f\ﬁmv
8.3.6 Lerma _, For mm_od ﬂ_mn“_.on_ % , there is a
(non-unique) cn_»nwnw ovmwmwon_, Vv £ Qﬁ . zﬁow effects the
transformation d, : . |
o T(wi) =V wWg Y
for all W (§) € a(0). .
-3
pProof Let @.»?.t € g(F be such - ¥
that ®h {x,t) = ® (x,t) whenever (x,t)é€ ¢ .
Set Vew ( @- v*. " Then, by the Segal-Weyl relations,
for ,m. é (K.. AGV_
,:,;ﬂ v = z;u ml@uf ¢
- wiget 188
since @, = @ on 0.
0D,
8.3.7 unpuom»ﬂm: B q_o_ each @ m%ﬁ .w:mnm
5
exixts a unique automorphism of Dﬁ which reduces wo .

% ~on elements of the form z«f _ m 3 k:& , ‘some ()
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Proof since R& i8 generated by the

W ﬁmg , m e M :ov y @)me be extended to an automorphism
of o { 0) , Say ﬁm , implemented by V as in

m.w.mc
1f %g ¢ O it is clear that

To b Q) = Ty .

Thus we can define an mswoaog:Hms @; of
C Q :8 which agrees with mmov. %6 . This \q,

mxﬁmnmm‘ by continuity, to an automorphism of (L .

OED.

8.3.8 Theorem ret @ € NI(U), and 1let

d; be the correspondineg automorphism of X given
hy 8.3.7.
Then \a., is localized in (.

. )
Proof Let %A be space~like w.r.t. (¢

e want to show that
PN OL(0) = M Ay
It is enough Lf we can show that
\is;: w (§) o _ ,
for all m e M (9;) | | .
i.e. that :@m o  forall § e M{0). ,
© But, by 8.3.4, © isconstant on -, -, s0

{ ®_m l=o , for all m. e M (0,).

e QED ]
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Remark It is evident that ®(x,t) + ¢, where |

c & =N ‘_Qmmwumw‘ the - same automorphism as @ ;

*._nﬁ m w = .w % (x,0) ecdx = n,
since m € ..%o . Thus, the requirement that & (- w0, Ov_ =
is Bmﬂmpw one of convenience, i.e. a "normalization". The
important property, mm_mmw mmwsm_mﬂm concerned, is wwm
value of the difference @& (o, o) - ®(-=,0) .
To see more clearly what ¥ is, oo:_mummn

@) (x,t) = & (x + t). Then \q, corresponds to

ﬁﬂﬁ .Iwgvﬁ + ,M_wcc - O (x) ax
Mtg) — T (g) + % g (x) ao cc %
_ _ : .mmx

or _ _
bw - b + 8w

and | L a..xv —_ .._.:. .G& __+_ m...:c.

If. ® Cm._ﬂ. = _Q_Ax - £) then ﬁ monﬂmm_@o,smm. to

¢ x)— nv ) 4+ Ox)
T » M - 0w

In general, since T = ¢ , we have

mv (x,t) — AU (x,t) + @ Auws__uv,-

We notice that if supp g /\ sup &' = &
then T Ev remains unchanged. If also mch m Dmmcw_o &}z F
| ', where ﬁ. supp 6’ .N 18 the smallest
closed interval containing supp © , then £ £ &u

s
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implies that ,mm:: ©(x) dx = 0, and so eﬂﬁ is _mwwo.
nbo:wwamm. | |
| | This is why mw »m.poompwnmm em terms of its
derivative, and we have oWQmms double-¢ones - the Hmwm<wnw
point is that .wrmw are convex sets in %m. . This results u..s_
® being localized in terms of —...msm%_ mg rather ms_m..%.ms.
If we allow the limiting vwonmmnnm ®» —3 mﬁxlx_ou

where H is the Heavyside step-function, and @.?tn g(x+t) , the

unitary operator V in lemma 8.3.6 becomes essentially the

fermion operator of Skyrme which we constructed in 8.1.

8.4 The "Charged" Sectors

With the air of our localized automorphisms we

can construct a family of sectors.

8.4.1 pefinition et T, T (U) T'! denote

_Eam groups om, ms.ﬁoaonwwwma given v% - in Z,‘ ,_Z,_:& and

+
,Z, - respectively. .
We denote by - 7, the representation of
L by tself on u\_«uo .
8.4.2. Theorem
(0 1 pe MY amd e T,
then T+ Y% W,-p, 1if and only if O (=)= 8, () |
where e, and 6, define 7y and ¥, .,

respectively.

*

(1) 1f Pt . T'F  are defined by
= W,- I * are n__WHﬁ_mE.ww

& (x 44) , resp., then Tt

inequivalent unless @{s) = 0,
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Proof (i) Suppose first, that 6(=) = O, (=) det | r
®_ ® = 6 & ..._. @ﬁ.@c. Then & (x,t) = 8 (x+t) € M . |
Hence, if ®u Gms._uv = Qunun._.ﬁv r 3= 1,2, | |

. 1{55

wie) Y :,Zm: w(e)" ..zﬂ@vfff@v mi@tﬂ

nicm.ioﬁ R
e lOm Gt _____._;__.ﬁ.fE@s__ﬁ

= Y® (k).

Since Q_wmamsmﬁmwmmuw *,\imv \ m mt?Pw , we have
WO L@mu(e =

foralla ¢ CL. Co ]

Thus W ((®)provides the unitary equivalence.

Now suppose __ B,(«0) # ©,().
Moo Ty, =W, Rmﬁ only if “ 1, ﬁ
so we need only prove that j\_u ° T is Hﬂ@ﬂﬁﬁwﬂﬁﬂ to ﬁ\r_ _ L
whenever ' is given by e with 6(=)Fo0.
Suppose, .:\ \m. . Then, in mmHnHQGHmF we
have
- oa(y) c».» wig) et «te. 3
for all m e M, r mﬂﬂmﬂﬁﬂagc.
picking £ ¢ Mo tobe of the fom (0ig), g € b,
we obtain | o .
Cpet Tig) y* oot T _m.&qca m.@%
We will obtain a contradiction ﬁmm in 3. 3) tn. we can

_mwnmmmmncgom q [ b mcosnsmw

w_w_ | g0 | 2@ —> omut T_,E-o.s_&. —
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topology of % , we see that QMN C &
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i T(gm)

( - because then e — 4 ~gﬁ§mn.w.m..kv|¢_v_

This can be done if we e¢an show that the functional

Xt g —s %WE 8’ (-x) ak

is cudocamm 05_. A@;\% w.r.t the norm
nsi*- ikl | sw %
m..»ﬂww.._ let us note that 0 ¢ L g&_n Umomw__mm
Ble) 20, 6w ¢ Dy . te 8' ) # o. since
O' (x) is contimons, there is & > O and  b> 0 such that,
“for __w__ < S , we have | Re m‘_ca_ > b.
_”ﬁ _ @ _AS is real because _ m, ca_ s H.mwns .

. Now suppose R\ - 18 bounded. .Hﬁmb it has a oosﬁ.bﬁosm

A ~ c

extension, say R\ , to the ogmuwmﬁ.ou_ bﬂ , of x@ Ww.r.t.

R
M . Since R.w% is dense in  Jp  w.r.t. the

' C
~ . i R “
L= lfed | fo=-fr1.
. Moreover, the functional £ —> m £ (k) 0 (x)dk

is continuons w.t.t the % =~ topology.
L

let £ € &w . Then there is mu e Dy such
ﬁamwmw!IVmHn QQ |

Therefore

mma @' (<k)d = Lim m g, &) € (ka
fi .
) .
=um X@) = A&,

. A ) % A . . o )..“
i.e. X 18 given on R by X (F) = wmca ..@ TwEw.....

and, by definition, is continuons w.r.t. the [l v Il -norm.
Smouoﬂm»umoonﬂm&hﬂoswogwm.oosﬁuﬁgom ..K _

by considering smooth approximations to the functions
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e THEVR k] €S

h. (k) _ =4
0 _ : otherwise

o o 5 » |
since | m h k) 6 (k& _ = ,w_w | H D pe B0 | &
_ )5 _

since Re ©'(-k)dois not change sign in (~ , ))

| s |
> w.w | x _._H+.H\=%_n~_w: hH\s.
But m?cc | 2 [x| & = né%"

’_ wss_.aa 8" (k)dk _ > > ﬂ.. i s
ik aEm oq@mnmm noomowE . The proof of (ii) is

‘analogous.

1t
8.4.3 Theorem ~ let Y ¢ T' % then the restricted

Poincaré group is implemented in m,° T -

Proof This is not difficult (See streater H.E Wilde

(1970)) .
QED.

Remark Space and time inversions are not implemented

except in T, , because, by 8.4.2,

@ Tx..ﬁ amd ® (x,~t) lead to Hmwﬂmmmnﬁmﬁmd,m

inequivalent to that definedby & (x,t).




s
¢

8.4.4 Theorem et Y& e
\:lo o \o) are strongly locally 3&&5:?

Proof et %

nothing to prove.

Let % € ;ﬂ_: GL

mmaﬂogwma corresponding to @

By 8.4.2, @1 \@;.m
.\:\.O,R..)_\u\m. qﬁt».

d.mm\—.. (¥) m:m_mo \a‘m _.Q: 0°¢) =
,Hfmnmmoum d‘awgﬁﬁeuv =

and there is
__...__ma.mﬁmﬁo_mm T
dofinedby @ € NI(0,) .1t 0, ¢ N*(0

Qﬂo.bb_ﬁuv O»AS Ov -%Hml_n

is implemented, ‘and so

T, Mo
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. Then T, and

be given. If a;m ﬁmtbv r
by 8.3.8, T (o) - { Mo(o*)

YUk

8.4.5 Theorem If Y € TV % , then the operators

implementing space-time translatioh in , - % may be chosen to
have their joint-spectrm in the closed forward _Huowwsnoum. :

Proof One shows that the generators of space-time

translations are given S

\vq = - m kb (K) bl
Hy = w \k| b o0 b &
R Y 8
where b (X)) =a (k) +-—=— -1 _x_w\m

R
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fhis is vwmoummpw ‘the displacement corresponding to that
experienced by the fields under d, .

| wmﬁn.w The vacuum in \_._\c ' bon (1,0,0,.....) ¢ u\ﬁ

the Fock space, defines a vector state in 17 = T, * 7

but it no longer has zero energy,

._ 1 (oA 2 a 2
¢ (L, Wy (1 )y=% w O x0° + 2= (x,0) dx
d. © ..N “. . 3 w

- . This is the classical energy of the solution ) (x,8)

- of ”Em__smﬁ. equation.

8.5 The Construction of Charge Carrying Fields

_ We have seen that ®p and ®~ € %ﬁ*ﬁoq_%ﬁ_-v
lead 6_ equivalent umﬁummm:gﬂosm if and only if @) (=, ©) = @) (0, o).
For simplicity, _. let us consider only ,Z, r . Then mzm sectors mHm_
labelled by the values @, (%, 0) , i.e.by [K - the "charge".
(In @mbwwmu.. when considering Z., 1 ; we zcc_u.m be able to label the

2
sectors by =N ).
: In the set-up of 7.6.4, we have, with
X L . .
TE)= VU pt) U7, mat
. 2
K U)s &% v
where d._ corresponds to () - and has nsmﬂum - , l.e. @?&u X .
So we expect fields that are of neither Bose nor Fermi type (-as also
predicted in the first paragraph 8.1). This is a special feature of two
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T T ey

We select an arbitrary, but fixed, ® € Z.+. with
@{wo,0)= P(o0)=1. For each « & R , we shall write
@z for 2®m\f7ﬁ.*.mcowm @n , and its corresponding
autarorphisn, Y . will be called standard.
| We want to oosmwmmﬂ the various representations as ﬁmw“.rs@.
place on different Hilbert spaces. For each « € R~{o}.
_ v\mua be a Hilbert space isamorphic to Ko . Iet %z
jsometric fran  ¥b,  onto &f , and set H_\o = | "

We define the representation ( Ku o) \:\a ) of L by

m, @ = 42 5,%&2 Y ae L,
where \L\ ﬁu u\ﬁ o ig the inverse of H_\R*.

By 8.4.2, hg q Vmaﬁxu ﬂmvmﬂmwﬁmﬂcﬁqﬁmﬂﬁ :

*

unless Qlﬁ .
Define W =9 &oa , M= @ T,
- >

The field algebra will be defined in Jb. 1 U, (&« A)
represents %.Ta in %..a , T, )+ then M, carries the

representation % C_.x . which also has energy-momentum mwmoﬁaa in
the closed forward light-cone.

X N .
We define on »\ﬁ by linear extension of
oL

# _
ﬁ,,x%uf%f;% o oult peR
Cleary ‘%H is unitary on M. . 1t is the charged field

corresponding to the standard @x .

We can extend this to the general case.

8.5.1 ummtnﬂon Let Ex.c - M ) e N,
\A (o) = « . et Y e be the corresponding autcmorphism. The
fleld A \i with charge o = \» Ta is defined by linear

@mwmsmpon of



yHp) bty = sliz 0.) Wl _,;a

for each \w m% .ﬁ».mﬂm ﬁ\ o A \w “_.m m mg&mﬂﬂ Hmﬁhmmm:dmﬁou.

We E&mumﬁgm this definition as follows:
H_\M m&nm on xu p creates a standard charge in u\ms -
We can change this standard to the required state, determined by M, by
an element of OU  , namely WM ~ @L.. mozmﬁ. this must be done
in the representation \_.ﬂ_.x_+ ¢ .

wﬁmmbﬁ%. HT: \s.v is unitary on «Ku .

. m 5. n Hmnsm Hmw E Um any Hmmwo:. and. Hmﬁ._
Moe .ﬂ :\v awmu Ll\.,v commates with T o)

Proof - T 1 - mcmmu.nmm ﬁo UHQSm this on mmow

\Tﬁm , mwnmm. Uw oo.u_._mﬂdnﬂo? \:\ is Hmmaomm _u% w tv
let A € Q ?o.i. , and suppose \ST&H X .

,cs 3:@ H_\ :i T (A)

..J T\,\ H_\ L\?. T, d,;_:j\?.

where W= WM -6) N
*
= H_\R...—w ﬁ\oﬁ\ﬁx.rﬁvﬁf\v ﬁ‘ ﬁ\q.?mb.vv H’\\u.
= \J\oi? )ﬂ ﬁd,?n\%n(,ZP VA.T?
W, T T :25;: 5

by 8.3.8, since N?m d,,:s

R R )y,
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*_ ;_.

L@@ gm = W \8;.5 W iy
“HM - @, ) @) wet - 6 )
| B \ss =
- d,a (a) by 8.4.2 (i)

Hence

iz,:z_,x 42,4 ﬁs,g;;;z_l
fv o™ Tun(AW) Wp

: oI.? T._.. @.2+3A>Vvﬁ.:. ﬂf\%s\ v#
3& Y () 1 x%v

"

'1;’

| © 8.5.3 Definition  We define the local field algebra
.Nm Y, v _uo be the von zmﬁﬁbs algebra generated by the set

{4 p e me X)) U Z;Z\.,E:e:

By 8.5.2, we mmm_gmﬁ if G» and %m. are space-like

separated regions, then

Tm& ig g

li

8.5.4° Theorem

tet S.»  and S.w, um m@momrw»wm mmﬁmﬂmﬂmm |
. . + . t
regions (dovble-cones). if M, € N, amam, e N :P\v :
o

W W) = WGV et
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where zu ?.5 ..\xu .x+¢, __ u.. 1, m msm

V= o+ \\;F&_\.rp%v mcuow&:a mm ge&mgmﬂ OH is to gm Hmmﬂ or

right of O .

Proof = | g H_mﬂ \;»?o. _\_fﬂ&,um ~

and consider C;; Y C;L ‘on any subspace Ku.ﬁ. of ¥ __
.%...C».L bt C;N _, Fm .. ﬁm%.m 7&: 4 A.T%As\ \%v
where W, sEp W, = Ezu O_t |

u arT%.iw..m ..mm&wﬁ.ﬂv»mﬂcﬁv d;?wm.mzb .m d._»m.

= X,
Arx‘.?o m : *: (< :(:. c.w v ,)\ T,\_ - x.wv € m N*\m‘
.a&mﬂm NI. m-. @ﬂ.v?fm. ’ Z @ .w .+ * _\wwﬂ.._ _(_ - @ m
But m 7 @L .|_.o _m_o_n mbm_ mnm:mmumm _omomnmm they are @Hovo_.,ﬂoé .
X = *. aifn. _.m. ¥ *@.D*m. _<_~W.
By .&m_ mmampaéw relations, | |
Sﬁzu. - O..._szcs. - @?.v mu..wu.mu.k SE +3~ _ @ C?u.

were  v= - 4 (M€, My G f?,_i_;@?i
Interchanging O and m e.nz and. z~ we obtain

YO CL- Yrpee Mo LW (Mo M- 8-fe
where 2 = MTNL,._: - M wl@f?w

Hence

#55 %:\iu_.e_\* C»L %,?; __m,.c

me w@f«m. w
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“% where V= X-Y :
2 nN@irl».@?&?_bw+.m.@£_3~.wl w@?\.?:.w
= w. _S»~ _f\—m .w .
= M A??C& (x) - \Zi\é?l_?
= w\ii\stav -as required.
QED.
o o ; ‘ m,_._ow_ futher remarks, and the definition of the gauge group, we refer to
" Streater and Wilde (1970).
W
>
3
.
&
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