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ABSTRACT

We consider the quantization of masse-
less Yang=-Mills theory in a class of general-
ized "axial" gauges, which do not lead to the
appearance of ghosts, Then, we derive in the
Bjorken limit an exact expression for the
renormalized propagator. We argue that the
consistency of this limit with the renormali=~
zation group equations implies that the
function has only one ultraviolet stable zero,

which is located at the origin,



Le

1, INTRODUCTION

In recent years, the renormalization group equations
nave played an increasingly important role in the study of the
asymptotic behaviour of renormalizable field theories. This
approach has acqumired new importance due to the fact that non-
abelian gauge theories are asymptotically free (1). In particular
it was realized that an asymptotically free theory will exhibit
Bjorken scaling. On the other hand, scaling implies, in fact, the
same asymptotic behaviour of the current amplitudes as does the

(2)

renormalization group equations have only been computed to very

Bjorken limit » Since the coefficients ,*f s etc, of the
low orders in perturbation theory around the origin, it has been
suggested (3) that the consistency of these two approaches could
place strong constraints on P and'Y1 for domains of values of
the coupling constant 9_, away from the origin.

In order to explain the reason for choosing a class of
ghost=free non=abelian theories, consider the exact two point

functions :
b s oo 4
D=t |ak P colT grm kel o

where F%f’is a vector boson field,/&, V are Lorentz indices,
and @& 4 b are isotopic indices. As Bjorken has shown (2), the
amplitude (1), in the limit lq,l-pcv', is determined by the fol=-

lowing equal time commutation relations (ETCR) :

Lim :D;if(x):: jCL3< e

1 g, »c0

a lexed .

C' .s...x - _L_. o - b
= COlR.S(R0), AS (o)]le> (2)

where we use the metric .ngé'“‘-q,f" o Since we want to know

]
[ 3

-84 -
q {%’(o(m:(za)/nfmuio) +

the exact form of the amplitude in this limit, we will need, to
all orders in s the above commutators, Now, tge important obser

[~ ™
vation is that, in a non=abelian gauge theory, F?f~ is not cano=-
nical to /Q‘L, the difference involving, among other things, the
field Q% . Since ) is not a dynamical field, it must be elimi

nated by solving the equations of motion in some gauge,
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Unfortunately, as shown in reference (3), in the Coulomb gauge it
is not possible, in practice, to soOlve these equations explicitly
to all orders in ¢+ S0y in order to derive the consistency con=
ditions, one has to make certain assumptions concerning, for

example, the ultraviolet behaviour of the wave function renorma-
lization constant 25, etc, (3). Due to this fact, we shall con=-

sider a set of gauges, which afford an explicit solution of the
constraint equations, Such a gauge is F?a;co s Which was flirst
considered by Arnowitt and Fickler (4). Note that this gauge is
not rotationally invariant,

In section II, we will consider the quantization of the
Yang=Mills fields in a class of gauges, which exhibits 3-space

rotational invariance and is characterized by :

a
n, R = o (3)
7{ being an arbitrary 3-vector. (In what follows, unless other-
wise stated, sum over repeated indices is to be understood). We
will show, by generalizing the arguments given in reference (4),
that in these gauges it is possible to solve exactly the cone
straint equations,

In section III, we exhibit the exact expression for the
renormalized amplitude I);%br in the limit lqol—bco‘. In order
to do this, use is being maae of the Ward=Taylor identities (5)
in the absence of ghosts, which hold for our class of gauge con- .
ditions (3). We next derive a sum rule for the divergent part of
the wave function renormalization constant 253, where we exhibit
explicitly the contribution of the one=particle intermediate
stale,

iIn scction IV, we discuss the renormalization group
equations, which, due to the Ward’identitios, acquire a particu=
larly simple form in our class of gauges, Using these equations
we derive a new expression for Z.B o We next compare the expres-
sions for the renormalized wave function 23 ‘derived in these
two ways., The consistency conditions which result then, imply
that’Uua/Sand'Y‘functions can only have one ultraviolet stable
zervy which is located at the origin,

Since in this work we make use of the Bjorken limit and

canonical ETCR, let us finally make the following rewmark. In the
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appendix, we compare in the lowest order of perturbation theory
the ETCR defined via the Bjorken limit with the canonical ETCR.
We find that these do not coincide, in general, a fact that is

already well known (6)
ties of the perturbation theory, and lead to the conclusion that

« These anomalies are due to the singulari=-

scaling is violated and that the current algebra sum rules are
divergent, On the other hand, experimental data suggést that the
Bjorken limit is, indeed, correct and that the current algebra
sum rules are finite, Since the non-abelian theory we are discus-
sing implies scaling and scaling implies the same asymptotic be-
haviour as the Bjorken limit, we feel justified in using this
limit together with the ETCR for the full theory (7).

IT. QUANTIZATION IN THE GAUGE w.R:.“= o

Consider a Yang=Mills theory (8) described by the first

order Lagrangian :

L

O o-

i a o bnc o-
:—z'_ F/ﬂ.\) F/*‘) - %(?/A H\; "?v ﬂ/,g ‘f’;faécgpgv )54,9 (Ll-)

" Here, the fields l%;f and F;*S_ are treated as independent varia-

bles,.fgéc' being the antisymmetric structure constants of‘the
gauge group G. As is well known, this Lagrangian is invariant
under the following transformations, characterized by the (infini
tesimal) parameters wW *:

(-9

a.

b - e
Fav | (5)

-~ O . oo 1 . i b c
n/* — A, —9—’9,,,(» + fabe W A

This invariance implies that the following identity is valid for

arbitrary functions /«7/:' and F;u:v : ‘
a.b be c
Du Dy F,, = (6a)
o b < c A
’Ifabb F;“'V [(Q,M— Qv - a” ﬁ/‘*— *J][CJL /4,4, /'7;)— F/"VCJ

where we have defined : ab_ c (6b)
D/w = SQBQM +2&aéc H/‘“
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Due to the fact that the above Lagrangian is invariant,
in order to quantize the theory it is necessary to choose a gauge.
Consider the following set of gauges :

a
Ny /4/% = O (7)

where n is a 4=vector, which will be discussed later., For the pur=-
pose of canonical quatization, we consider this relation as a con-
straint, excluding one of the fields A4 . This exclusion must be
made, in general, before finding the field equations. However, in
our class of gauges, we can show that this exclusion can be made
even after finding the field equations. To see this, let us intro-
duce the gauge condition (7) with the help of the Lagrange multie-
plier'I?t which must be treated as a new dynamical field. Consider

then the new Lagrangian :

L's L + I3a'¢b“_f%:% : (8)
We obtain the following Euler-Lagrange equations :

F/;,,“ = 9/4 ﬁvaf- e H/f' +; ;{abo K)/,f A, (92)
\D/A,aé F;f + n,8% 0 (9b)
n, /4/,,“ =0 (9¢)

Applying the operatorlD on equation (9b), using (9a) and (9c), we
obtain, with the help of (6a), the equation :

(2.n) B0

(2%
This relation, which decouplesuB from the vector-boson fields,
shows that ,B“'is independent of X = X. n/ml sy for arbitraryn, and
indicates that it might be a constant. In fact, using arguments

(10)

similar to those discussed in reference (4), we can show that the
consistency of equations (9) requires.Bm to be zero, So they becore
identical to the equations of motion, which result from the Lagran=-

gian (4), to which we add the gauge condition (7). (For the case

~ < O 5 see also reference (9).)
FlJ . ,
From equation (4), we see that the canonical momenta are

given by

E‘_‘ E“"(g._ Xy (11)
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With this definition we obtain from the set of equations (9) the
equations of motion :

@OF)O— 9, Fl E‘:a'-l-(;/abo /qdégac (12a)

<

QoEt'“zaJ‘ Iy *jfab:.'q ,'" *jj[aéo o “b'. (12b)

and the constraint equations :
[« ﬁb E [ _/ O )
- +j%abc. ¢ ¢ - (13a)

,:: =, /I - 95 A, +;faéc,[) ”J (13b)

Consider now the equation of motion (12a). By multiplying it by
n; s using the condition (9€), we find :

| b o
(2.2 Sac™ Mo 2 fase Ao ) RS = . B, (142)

The field /Qéfiis not a dynamical variable and must be eliminated
by solving equation (14a)., (We will show later how to compute the
right-hand side of (14a).) For the reasons discussed earlier in
section I, we want an explicit expression for /9, s to all orders
in 9 . For this reason, we will choose Ny to be a space-like
4-vector, which, in the Lorentz frames where the quantlzatlon
will be carried out, is given by (n. O). In this case, the gauge
condition becomes the one expressed in equation (3). Then, (14a)

reduces to
no: 8" = n; & (14b)

At this point, let us introduce a notation which will
be used frequently., Any 3=vector can be decomposed in transversal

and longitudinal components with respect to n :

V“\/ +\/ ‘\/ +\/

Jér V-r+ v,
iw)

=a+=

1.2’1 (15a)

with \/J‘ V"j =0 : (15b)

(Note that the gauge condition (3) states that the fields /Qd
a A Too . .
are purely transversal : QL=O so that /9‘_- = /-)5 . This is

not a Lorentz invariant gauge condition, althought it is invariant

O.

by a rotation in the 3-dimensional space,)
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Then the solution to equation (14b) will be :

( .
Ao (X x.) = otx,_ ESC %)) (16)
To find E‘_ con51der equatlon (13b) which can be written as :

—a T Tao Te Tbo Tb
@ B, =-(9; E ghu CE]¢)2D, B (17a)
whose solution is given by :

X

BLGax)=- | dul D7 BT (R, x0) (17b)

-00
We will now impose the following canonical ETCR which

are consistent with the gauge condition (3) :

(A" (xt) AR )< B R 0, E™ ] 20 (18a

La; (2 4), &

, -_\ (,)?'{;)] ) 1,5 S2(x® %) (18b)
with S.T— =)

LAY V\E'
‘/3 = OJ ‘
We must finally examine the Heisenberg equations of moe
T-
tion for the independent canonical variables Hy"and Ej““:

. Ta Te
},90 AJ' = [AJ ) HJ (19a)

: To Ta :
v Qo E‘_/ =L EJ' ) #J (19b)

In our theory the Hamiltonian is positive definite and takes the
form

Toa , Ta
H= E /} - L = (20)

J dx [ e, Lt 4 -;i,— Ff’ Fu/-“]

where E and F are to be expressed in terms of the canonical
variables Iy"and E; by equations (13b) and (17b) Using (20),
together with the canonical EICR (18), after a straightforward
calculation of the right=hand side of (19), we obtain that the set
of equations (19a) and (19b) are identical to the equation of mo=-
tion (12a) and the transversal part of the equation of motion
(12b), respectively,
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ITI. SUM RUL® FOR 2%

Due to the ETCR (18a), the first commutator appearing
ab
in the amplitude D,

N considered in the Bjorken limit, equation:

(2), vanishes. In order to calculate the second commutator, we
observe that, using (12a) together with (15), we have :

[9 (x 0) (0)] [ CTN(X)_TE (K *‘D I—'-) (X-.) g (0)] (21)

With the help of relations (16) and (17b), using the canonical
ETCR (18), we obtain :

(22)

L'<o}[%°)¢“('ifo)/ ﬂj?o)]lo): Sf; SR +

+O(x,) x, :D:‘oux

D Py

J
where €9 is the usual step=function., This relation represents an
exact result, valid for all values of the coupling constant é}.
Substituting (22) in (2), we find that, in the Bjorken limit, the

A$
amplitude ‘c' can be written as :

A abB
%@DJ jd " <o|LA, (x,o)/J co)JIO>:§-D (23)
where
abB

- (<
:D"J Sab .{' JLJ h z‘q«: ”l?“ ¥ ﬂo;l "\. I (24)

: + ~p
2 3 $q.x’ 2 c c
-Cg Sacx <o x, s SOV HE LI,
Note that the entire Q, dependence is in the 1/q2 part of the

propagator, which we have explicitly factored out. The positive

constant C depends on the gauge group and is given by :

C = — f'abc fab:, ‘ 2ha)

where ﬂ/ is the number of generators of the group.

Until now, all the parameters and fields considered
were unrenormalized quantities, In order to obtain the expression
for the rehormalized propagator, we recall that the Ward identi-

(5)

ties

in the absence of ghosts imply that the Green functions




can be rendered finite by the scale transformation

: a_ i, = A |
. ’qv = Z'.B 'L?vr g = 23 9.,~ (25)
Furthermore, it is necessary to rescale the gauge parameters OQC

in such a way that the gauge condition (3) is invariant, This

requires :

-1
Z‘.‘}/Z N, ~ (26)
We remark that all renormalized quantities will depend on an ar-
bitrary parameter/4 y with dimension of mass, who sets the scale
and which is necessary in order to perform the substractions
which render the theory finite.
With (2%) and (26), we obtain for the renormalized pro-

nagator in the Bjorken limit, the expression :

ab _1 -B
537"%31 de ¢ <o¢[/4 C)?o)/‘?,.(o)”‘?)-—c- gy (2D
where
ab B _ -4 - n,;,.q-‘l -+ Vll'r'gd 9.9, \V-‘o 14 :
: Lopjr = Sas &5 {S"J' (3.7 %‘*D“}‘Zga’
with
' - 2,3 @ SR
-ch‘ = - Cz.. jd.x 61 O(x )%, 3 (—KT) <Ol Acr (%,0) /')Jg'{o)b)(aé’)b)
ab

Je remark that, since the renormalized function I)‘J ~ 1is finite,
the above equation establishes a connection between the divergeut
part of the wave function renormalization constant é33 and the
(exact) expression D cj In order to study this relationship,

we observe that, due to the pgaupe condition (3), \:Dbj must have

the following form :

D(.J -[_5% - ZL " (L C] JH'*L..L.B (29)
S (- 9e

where H and B are dimensionless form factofs, which are deter=-

mined from equation (28b). So we can write (28a) as follows :

ab, B
DLJ ~ = éfkb Z_; (‘+Q)K

‘o

- (30)

N n; -
A{SCJ-.- Qordy +0yeqe l_‘h_‘r::_{_ R N -8 %
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As shown in the appendix, in consequence of the Ward
identities, the functions A and 8 are related in such a way that
B/A+A is finite. Furthermore, we have :

A

1+ T3 (31)

where-l;is a dimensionless finite form factor., We fix Za by the

z7 (L+A) =

normalization condition :

=

Te (g2, 19l =pm,190=4) =O (32)
which means that, at this point, the exact propagator (27)
becomes equal to the free one, (Note that, given Zf and <h_,.§T
is fixed.) We point out that the normalization condition (32) is
a convenient one, but is not essential for our discussion,

We are actually interested in the (logarithmically)
divergent part of 223 o Since it is momentum=independent, we can
evaluate it by considering equation (31) at the normalization
point given by (32). Using equations (29) and (28b), we obtain :
Z-dcv_ 4 C sz K4 Xe

3 T°3 jroalex._e <o|/9 AKX, A, w)/a; 1“(33)

where A, °= €T with € =1,2,3 are independent renormallzod
er

fields, In order to get a sum rule for EE dvv y We will insert a

complete set of intermediate states, Then, we find :

Yo L C ol 1 <oV A,% oy k>)*
2, =5Cgr % (k) <0} g ool 2] ((i’*‘
9

Remark that in our theory there are no Faddeev=Popov ghosts
so0 that only vector bosons will contributo to the sum above. It
will be convenient to separate out explicitly the contribution of
the one=particle state, which is normalized, as usual, in the
same way as the free field. Finally, we obtain the following sum
rule for the divergent part of the wave function rcnormalization
constant 233:

d;v =/
( ’;')~ Car {-6%-’- j/u "’v(l‘ K\/:)Q,.(O)Ih}lf()b)

}knwa/\ls a 3%=vector ultraviolet cutoff and.z: represents the

divergent contribution of the multi=-particle intermediate statos,
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IV. DISCUSSION

We will now derive, using the renormalization group
equations, a new expression for 423 o« These equations are most
simply derived by noting that the unrenormalized Green functions,
when expressed as functions of the cutoff, the unrenormalized
coupling constant and the gauge parameters, are independent of

/“'(]). We obtain two equations :

( 9 +ﬁ + X¢ -Q-— + zr>34‘/, =0 (36)
7
('“T;* & % ! “”?mr'lY-)Za:O (57)

where

g Y.
— r . Q bf' - v g L
/3_/4@_}./» ) /u. nJ : Y_/u@./zﬁ?zb (38)

The solution of equation (36) is given by (10)

b,B M
:" (Az%’ ’\liz':')jf)nir) =

(39)

Ak
J - ( “ ,“1.79"'“ )exp J._[Y‘Lg(t) n; (t)]
where ~-—£03) and 3[3,)h”) J and n [g) ‘,-;C_I satisfy
respectively the equations :

‘:,/ﬂgz n] izc x A Lg, nl (40)

with the boundary conditions ?[;:O]:?r; ‘V\-;;C t=o)=n;.-
Letting A§=/\j¢¢z we have

<
2 - — cop I —
23 <'r\/<3r, V’lo,r) = Z'S(i)g) ch) exp - ZéY[g(t),ni(f)J# (41)
We can simplify this expression using relations (25) and (26),

which are a consequence of the Ward identities. In this case we

get

[32 gt o= gy (42)
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so that (40) can be written as :

Ltoy 7 = gy Loy =y L]

(43)
Then we obtain for 23 the expression :
. 2 - - —-(0) 2
éj()/jr)n'"" = Z.B (1) 3)"i) [.%TZ)) (4hy)
- Now, let us compare expressions (35) and (44). As we
have seen, the contribution of the one-~particle state to ZEJ*CV,

as given by equation (35), is a positive logarithmically diver=-
gent quantity, Furthermore, we observe that each intermediate
2 olLev

state in Ei’ will give a non=negative contribution to

(In fact, we have verified that, to order the contribution

r?
to :E‘ resulting from two-particle intermei?ate states is posi-
tive definite.) So, we can conclude that the wave function
renormalization constant 25315 a positive divergent quantity,for
all values of the coupling constant,

On the other hand, we know that the function has a
negative slope at the origin, where it has a zero (]). Therefore,
if 5(0) is in the domain of attraction™of this zero, then
%ﬂﬁww;j(z)z O , so that 23 as given by (44) diverges, in accord-
ance with the previous discussion,

Let us now assume that there exists a second' zero at j’.
(If it does not, then, clearly, another ultraviolet stable zero
cannot exist.) In this case, it will be reached with a positive

slope, so that ' is an ultraviolet unstable point, Now we wish
to argue that the function (and therefore also the]p function)

cannot have a zero elsewhere. Indeed, suppose it has a third zero
at 9” ’ whioh will have the desired negative slope. Consider now
Lhe region where g(o) is in the domain of attraction of this
szerou, Then, since 3“ is a stagnation point, as & b0, we will
have ¢

Lom  9(BY=g"

& —»oo (45a)
and vsing (43) ¢ l

Gveo 9, . (45b)
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so that :
Lom Z,(1,3,7A.)—> 253(4,8", n") <@

P X7 (45¢)
From equation (44) it follows that 2.3 will be finite as

N'=AJut 200 . But this is in contradiction with the conclusion
reached above, which states that Z_; is a divergent function in

the whole domain of variation of the coupling E%,

Therefore, we conclude that the consistency of these
two approaches implies, for our class of gauge conditions, that
the /5 and ,ﬂ functions can have only one ultraviolet stable
point which is located at the origin,

We have not yet studied the problem represented by the
introduction of fermions in the above theory of massless self=-
coupling Yang=Mills fields, This is an interesting case which

deserves further consideration.

It is a pleasure to thank M,L.Frenkel for many useful

discussionse.
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APPENDIX

et us determine the most general form for the renor=-
malized propagatorj)ajr » which is consistent with the Ward
identities, in a general class of gauges described by equation
(7). It can be shown (5), that these gauge conditions can be
generated by the gauge fixing Lagrangian :
a |\ 2
I——@"""ZL/Z(”/*-F"/*)

in the limit /3—;5). (For notational simplicity, we drop the

(A1)

subscript v, although we are now considering only renormalized

quantities.) Using (4) and (A1), we obtain that the renormalized
two=point vertex is given by :

— ab v n.n - ,
'/‘: = ¢ gab(slu‘) 72- 7/“'7\’ - "&/‘51 -+ -r:u.l) ) (A2)

where, as a consequence of the Ward identities (b), the non-
trivial part Tij must be transx;rsal to the external momentum
q . The most general form for 774v consistent with this
requirement is :

N
- A

. 2 '

=(§ o~ i_ . nn,-Nn,9q9, -n J :
T = (80 9= quqp )T + o + 9 (F s 0 WY (%)
where‘r‘and Y‘are dimensionless finite form factors., Note thal
the counterterms generated by the rescalings (29) and (206) have
the form : (6#\; ql— chu C(\) ) Z3 y so that we can always fix 33
by a convenient normalization of the Tﬂ function,

Since the renormalized propagator is essentially the

inverse of T—'&b using (A2) aud (A3), we obtain that 'Dab

=~ P . 'A\’ ’ (9] 3 . (& ] > AL ,‘v )r )
ab Lhe Umjt\/&-—bO’ is given by :

L

' = 5 =15 - i - z
D/”f 9 abiﬁ'{o/“’ 17(“/*‘1v‘*"*"(#\f(n,r“'ﬁ7ﬂ‘]"* (A)

2
(B et - o et )+ 2220 ]

with PN & - (A5)
F (q.mY/gtnt + /14Ty
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In particular, for the class of gauge conditions given by equa=
tion (3), i.e., N, =0, we obtain, using the definitions (15),
that -:

\ob ..1/ 5‘6 ""YJ*W% 7‘71 T?JT“
Dejye= > Tk ,.,T'{ J A (? )* lq"’} (46)

Let us call |7 and F y respectively, the values in the Bjorken
) 8

limit of the finite factors [' and F . Identifying this equation
with (27) and (30), we obtain :

1 1 B
(1?9)—1473 m = FB : (A7)

We will now compare, in lowest order in perturbation
theory, Z:w as given by equation (33) with Z;uvobtained with
the use of Feynman diagrams. We remark that the exact expression
(33) was obtained in a non-perturbative way, using the Bjorken
limit and EICR (18). To order g » We obtain from this equation

that :

2 1+>4Gj EO (A8)

: B . s L
where G = g;‘ Sabc&abc’ Note that Za 1s positive definite and
therefore gives rise to the correct negative slope of the//5 fungc
tion around the origin,

On the other hand, we can also compute 253 from the
vector-boson self energy graphs, shown in Figure 1,

Figure 1

The vertices are given by the Lagrangian (4) together with equa=
tion (9a), while the free propagalor can be obtained from (A5),
It is rather tedious to compute all contributions resulting from
the graphs above, However, since we are interested only in Zau ’
simplifications occur, due to the Ward identities, From (A3) we

see that the divergent part must have the form :
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M;j = % (Spv 9% 9.9) D (49)

as the form factor Y must already be finite., We can therefore
isolate the logarithmically divergent factorl) by the operation :

O’ "J; 70( ?/3 (gz/’;‘*?ﬁ)qza . (A10)

After a straightforward calculation, using techniques discussed

in reference (11), we obtain :

Z,y= 1+ %%L}’z’eoﬂ'% (A11)
which is also positive definite, but differs from Z: given by
equation (A8). If one wished to reproduce (A11) via ETCR, it
would be necessary to modify correspondingly the ETCR (18b),

while the ETCR (18a) are left unchanged., However, we will not do
so since, as discussed in section I, we believe that these
anomaliecs are due to the peculiar features of perturbation .theory,
As we have not used perturbative arguments in this work, our

conclusions are not affected.
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