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I. INTRODUCTION

One of the most important reasons for studv-
ing two dimensional field theoretical models consists
in their relevance as a laboratory for new ideas.
Operator product expansions and anomalous dimensions
(1,2) are ideas that were primarily realized in the
Thirring model (3) (massless spinor field with quadri
linear interaction); another two dimensional model,
the Schwinger model (4), can be referred to as
exhibiting a very simple mechanism for dynamical
generation of mass. These discoveries were made poss
ible, mainly because of the solubility of various
models that occur in the two dimensional world. The
basic reason for this solubility, is the fact that
vector and exial vector currents are not independent
but are related because
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in two dimensioné. Thus the currents are explicitly
known if they are all conserved (as it happens in the
Thirring model) or if the anomaly is mild in the sen-
se that it still permits the integration of the equ-
ations of motion (the Schwinger model).

The appearence of anomalies, which one
generally expects in.any theory needing renormaliz-
ation, usually may destroy the conservation of
currents, which is valid on the classical level. One
may on the other hand take advantage of this feature
and consider models, which on the classical level

have nonconserved currents, i.e.
B = Ao

One may now try to use the anomalies to cancel exact-
1y the term A{x) and thus produce currents, which are
conserved on the guantum level:

Dr‘éq (K = 0

The quantized version of the model is thus more sym-
metric than the classical counter part.

It is immediately obvious that this
mechanism can only operate outside of perturbation
theory. For example, the classical equations are
valid in the tree aproximation, whereas anomalies
only appear once one considers closed loops. The
above cancellation can only happen for particular
values of the coupling constants. Off these values
the theory does not satisfy current conservation, but
should exhibit all the general properties of order by
order perturbation theory, like unitarity and analyt-
icity and they should still be true for some
particular values of the coupling constants. .

In this paper we investigate such a possibi-
lity in the context of a Thirring model with U,
symmetry. There are four types of currents in this
model which are important for its solubility. These
are caracterised by their transformation properties
under the Un and Lorentz groups and classically it is
always possible to arrange things so that only the
axial isovector current \—y‘t“‘f's ?\q'ly is not conserved.
To get ccnservation in the quantized version of the
model it is necessary for the anomaly of this current
to have the same operator form as its classical

divergence. To investigate this possibility we use
initially perturbation theory for the massive case.
We find that asymptotic conservation of the various
currents is possible along a‘curve in the space of




the th;ge coupling constants 91+ 9,+ 93, that includes
the ori@in. As expected from the above argument, this
curve corresponds to a trivial model, in the sense -
that the interaction does not mix the n components of
the basic spinor. One has n selfinteracting U(1l)
Thirring models and all the currents are already
conserved classically. This result is the same as
that -obtained by Mitter and Weisz (5), although they ¢
use a parametrization different from ours. What one
learns from perturbation theory is that the anomalies
have the same form as the classical divergencies Ai(x)
and makes a nontrivial cancellation mechanism highly
plausible.

In section II we study the zero mass limit in
perturbation theory, conveniently using a generalized
Tayler subtraction scheme instead of the Bogoliubov-
Parasiuk-Hepp-Zimmermann (6) renormalization
procedure. It becomes clear however that the only
assymptotically symmetric theory that we can get using
perturbative methods consists of n non interacting
Thirring fields.

The important problem of the existence of
other, non perturbative, solutions is discussed in
section III. Previously there were some attempts (7,
8) to accomplish this goal but to our knowledge all
proposed solutions are trivial in the sense that they
are or can by a reparametrization be reduced to the
case of n independent Thirring fields, i.e. a solution
Y - which is the product il?: \PL(‘) of n fields \h,

each one interacting via 9§, (‘T’Jp\';\(% YY) L
not summed over. The latter possibility arises due
the existence of an algebraic relation for the free
field which assumes the form of an interacting equ-
ation of motion if a different representation for the
Dirac matrices is used. Instead of this we use a
construction of Johnson's type (9) to obtain an
explicit form for the two and four point Green func-

tions. Higher order point functions are not
explicitly known yet, but it seems clear that our

result is intrinsically non trivial. Furthermore
following arguments that parallel those of ref. (7)
we are able to determine the value W/n for the iso-
vector coupling constant. Finally, section IV
contains a discussion of related work by Dashen and
Frishman (7) and a comment on the complete solution of
the present model. In the Appendix we present a
different form of the four-point function, which may
be useful for a complete solution of the model.

.

II. PERTURBATIVE DISCUSSION

In this section methods of renormalized
perturbation theory will be applied to the Thirring
model with internal U(n) symmetry, aiming at a
classification of various situations according to the
number of conserved currents.  We also discuss an
equation of motion for Y , written in a limit form,
adequate for the comparison with the extactly soluble
model cf section III.

II.l) Asymptotic scale invariance

The perturbative treatment can be done in a
sistematic way through normal prbduct methods. We
consider the model described by the following effect-
ive Lagrangian density '
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QI.‘C'I. - X v H-' q-s-C} -~ -
+ —"2'— (‘V*P.)\ ‘*‘)(Wt A \P) + Y Q‘\N’)(W\P) (I1.1)
where K=(A1,A2,...,An) are matrices of the fundamental

representétion of SUn, satisfying
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- The finite constants CysCy and

¢, are mass independent counter terms fixed by norma-
lization conditions to be specified later. The
effective Lagrangian (II.l) is the most general one
satisfying the requirements of renormalizability,
Lorentz covariance, parity, charge conjugation and
U(n) symmetry. The Green functions are given by the
usual finite part of the Gell-Mann Low formula, with a
subtraction scheme which uses the forest formula with
modified "Taylor" operators {(10):

Logarithmically divergent integrands require
one subtraction:

T FEP,mM) = Flopw) (II.2)

‘whereas linearly divergent integrands should be sub-
tracted with €1 :

o w oF OF
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The subtraction scheme (II.2-3) is convenient
for the derivation of homogeneous parametric diffe-
rential equations for the N point functions (10).

Defining the 2N-point vertex function T“ZN)
by

2y § (Zha3 ) T
. .
( ©Rey ¢ h‘q., (:P')?‘)"'?")o")qt)”’ "\N) =

N

N N - Prey
= S TT olx dy, exp (v lZ: (Puxi+q.y,) <°|TE‘\V W ¥ (Y)le)

Let

where the superscript Prop indicates that only proper
(amputated, one particle irreducible) diagrams are
included, we obtain from (II.2) and (II.3) the

results
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Using methods similar to those of reference (10) the
following differential equation can be established

> > . & ‘
[m‘p\*g”“m*gmf—gﬁmr“"’=o (11.5)

where §, Bi(i=l,2,3) and y are mass independent func-
tions of g5 i=1,2,3 which can be obtained from the
equation above by application of the normalization
conditions satisfied by F(ZN).

Normal products are introduced in the usual
way. 1In particular for proper functions containing
only one special normal product vertex the following
notation will be used: ’

NORMAL PRODUCT NOTATION .

NIF2, 4] T
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N, T¥ SN P’*;P&N) (II1.6)
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These normal product vertex functions satisfy

differential equations analogous to (II.5)
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where 3, ..,5g ana ti,.. t, are {unc'ttons of 9, hnown ¢n
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The model (II.1) has two conserved vector
currents

ap iy & aw @N)
K -LE‘[P (...?qh*-p)...)-]" C."-,'Ph*'P).--)-\ (IT.8a)
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whereas for the axial currents we have

(2-ed P ek T e o P P
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-H/,!'E,[P( )q{? )KS x“"*?‘)QT (?.N) ).PV'P )—l (II.84)
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The anomalies in (II.8c) and (I1.8d) come from the two
identities
2 Ny [P g5yl 2m N [gesy] ~e, Ni[a**(q*”s@] .
+ 2 N2 [CP 45 43 (Fy 1]
2N Im BT« 2m NLGesa w1+ e, [0F(Fe, 400 o] «

+ A2 fabe N, [(F R3S FOFEROY] + 2, N, [(F XY (Fo7)

' (II1.9)
X,= 2 (%yc‘s) o - )\

K= 21(9,- C)M- N
X21=2(9;-¢4) 1-2;
where

Yok = 2 2= Lol Tam N, [F45¢] f°)$(°>?y'<°)!°§r“]
s Sm me
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map
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bl

and analogous formulae for nr ey, Al and A3.

One interesting feature of the renormalized
theory is the possibility of asymptotic conservation
of the axial currents, though classically this is
impossible. Formulae (II.7) and “II.8) can be used
to obtain a number of interesting results:

i) By applying D to both sides of (II.8a)
and (II.8b) and using (II.7) we get

St = St; -y
So that at an eigenvalue go=(glo'920’930) defined by

Q5\=(21-'(33»=

all currents will séale canonically in the asymptotic
region. Such a line of fixed points has been investi-
gated by Mitter and Weisz (5) in the neighborhood

.0




of the origin’gl=g2=g3=0.
ii) There are two surfaces containing the
origin gl=g2=g3=0 on which either Bl or 82 is zero.
Applying the differential operator

02
D= ’W\ = v II.10
\"Dr\' ten QQ» ( )
to both sides of (II.8c) and using

aP(IN)

=- AW

o m
N
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aN)
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where Ao is the soft mass vertex insertion, we obtain
the equations

«B G- &) - (3-Da,3,=0
\ -2% - §i - (8-t = 0O (IT.11la)
2, 3}‘ _ S+ 4gel = (3-0e 33 O

We now choose g3~Cc3 SO that a1=0 and furthermore ¢

so that el/a depends only on 9, (this is always
possible in perturbation theory, since el/a=A(gl—cl)+
higher order terms, with A#0). Thus from the first of
the equations (II.10) we get

S %‘_ =0 implying B, = 0

Analogolously, if we apply D to both sides of (I1.84)
we will get

nl'.D (‘-—"'I; - (8- (334433 )=0
\—Zt—?%? - (8-1)41-. o (II.11b)
Ay 2L - Doty + b $aa - (3-(234+4335)2 0

S Dety oy - (541 (Ay5gw oty de)m 0

o
=3 Lg‘
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Thus if Sy is chosen so that e2/n depends only on

g, and g, is fixed so that a263 + u366 = 0 it follows

" that 8,=0.

From the equations above we also have that
at the curve a1=0, a263+a 66=0, all B's vanish. But
only in the case of SU(2), when T and T are li-

7,a 6.a
nearly dependent, does this mean conservation of all

the currents.

I1.2) Solubility conditions

In this section we want to investigate the
conditions of exact solubility of the m#0 limit theory.
In the present context this means an exact conserv-
ation of all vector and axial vector currents, for
then we would be able to execute a Johnson type cons-~
truction (8,9), as will be done in the next section.

FPor this purpose it is usefull to start wyith
an equation of motion written in terms of currents,
such that one can easily read off the consequences of
their conservation instead of using the parametriz-
ation provided by Leff of equation (II.9). We will
thus express the currents as limits of fields, when
the separating distance goes to zero. ‘

Besides the usual definition (9)

3 GO
{ 3,‘:&:) (II.12)
= é;w; ; i[\\?('x-va){\‘:;?g*{r\i)-itr‘)\a\‘\'(xwﬂkb‘)]ﬁ- [E-‘»&Y&iz\

we may also define the following currents
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(II.13)
where

From the Wilson expansions:

Plx-ed¥, W0 = By ke Y ) = ZQvN[WﬁH’](‘)*‘fdx—uN[ i) +
+ DCe)
U m»&n-\“mwew‘o =20 N, [P N (e)

Crbal SN GRG0 +B (e)

(IT.14)
we obtain
'gpw =Thlo) = Ny [Egy]x)
');tx)=3: w = NIFHR YT x) (II.13)
where aj’’ depend logarithmically on (e21%). We also
have (2svV' =alcal’, (Fsv) = a¥”

The renormalization factors Zi convert the renormaliz-
ed field ¥ into the unrenormalized field wu.

The two currents Ju and J are thus identical,
since N [?Kvgﬂls the only conserved current one can
construct in perturbation theory. We will obtain in
Sect.III a suggestion that outside of perturbation a
new isovector current { 11) can be constructed due
to the fact that the logarithms present in az may sum
up to a positive power of &, i.e. (szuz)a, a > 0, so
that equ. (II.14) is not any more valid as a power
series in the coupling constants 9, and 93-

The field y described by the effective Lagran-
gian (II.l) satisfies

ol T L(LF-m)PW - (a6 Nag D¥py (8100 -
(A edNw [0 Mnrmnw - 116

(A1) N3g LY (e d}0)] TT el )Tw(y o =
Sefta-terms

[
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We will now show the existence of the zero mass
limit of the above egquation of motion (I1.16), around the
point 91=92=g3=0 along the curve found in the previous
section, where all PL and all anomalies are zero.

We rewrite eq. (II.16) using the Wilson expansions

(12)
A= B\ Nan L8 3,987 100 + By Nay, [(F%0%) ¢M ¢ ) +

+ EaNa (3w ¢]) « 1B Bpty «mEsipto + O(m) (I1.17)

B = B Nw [(@¢4) 850004 F, N%[(Wﬂ“\v)xm‘*q;'ux ’e
+ F3 Ny;[(‘T“P)Yj(’()-r VF‘&ﬁ\P(K}-‘-’W\ st (x) 4 5(%)

where we introduced the notation

Ak) = u»; WP e m) by - $ g eamIN ERRIOL

(II.18)
3k fl"“ N LB o ) €N o) - 3 Aatlam)N [F o0 $lw]

bsx) = N [T ¢ x)

Note that the coefficients E{ and F_ are m~inde-
pendent due to our subtraction scheme (II.2) and (II. 3.
The absence of direction dependent terms of the form 6463/5 N
eda‘/a follows from the conservation of all vector
and axialvector currents in the m+0 limit. Using (IX.17) the
m+0 limit of eg. (II.16) can be written:
LB Fam BT - Qe (BaF, - Fugy ) @) By FLEN) (BPW) =

= [W“\’Fz'(*‘a,_-coE]A+[(aic,_)E, S ELN RS (II1.19)

- [(°‘3'°3)(,Ev F- E1F1)+ 9 \'C\) (E1F3‘ FEy)+ Qo) (F;Ey FaE, ﬂ AS




teen LAY = el Al oy Bl) =ty Ag ) (11.20)

To show the finiteness of di’ i=1,2,3 we use (II.20)

to get: o
- - - s
-uof i(a"*ni)': qu&x+€)tr:85ty(<)'.7‘ =z F*‘“_-f %qﬂx«s)‘s Alx) +
- o _ -
+ Al ¥ el + 33%5 Kz‘\»wé)‘l’ Bl) + B Xty L)) +

da

+
Q‘:qv Q"‘

§ ¢(ne)1”A5 )+ Zs (x<€)'&sq) Kt)‘g
(I1.21)

Now from:
(af+al)" } ) 3*A + As) Pytaf
=ord N [R5yl « 0 ()
(aival)' {Feor™Bw. oo 15yl e
=iy szér(¢ir‘6‘q« x4+ OCe)
(a’+aiy” xt.?\x?&) B Ask)+ Aglar¢) ¥ Syl =
= 03 N [OM (T 9050} 08 Ny [(F¥S0) (4] 1) 4 D (6D
We obtain
S Gt ¥yl = C(dinfed s dynf
M IN(ERXS YN 4 B g N [ 159) (Fyd] (o) |
(Ew)

In eq. (II.22) we have dropped direction dependent

terms, since they are absent in the exactly soluble case.

&,

Had we used the iso-vector axial current
;Q(x.v&)x‘*‘)‘“q/(x): we would get a similar eguation

oM @l T W ho: | =

= (ol rYad nfwd ey 3PN, [q,xrxs)\aq,y‘) .

« dary dase N LE RO (TN +

vy el N TGRSV ) () (o (T.-23)

For solubility we thus require d3ri=d2rz=d3r‘5'=0.
Since in zeroth order ri,rX and r‘s' are nonzero, we conclude
that d2=d3=0 in perturbation theory. The finiteness of dl
is obtained applying D given by eg. (II.10) to both sides
of the field equation with d2=d3=0, together with the know-

ledge that the current scales canonically. One obtains Bd1=0,

which implies alau.(d1)=0, i.e. d; is an ¢ ~independent cons-
tant.




om

III) NON-PERTURBATIVE SOLUTION

In this section we want to discuss non-per-
turbative soluticns to the Thirring model with U (n)
symmetry, which are not equivalent to the trivial
case. One way to do this systematically is to cons-
truct Green functions by integrating Ward identities
(W.I.) as was first done by Johnson (9) for the
Thirring model without internal symmetry. This is

possible if one knows auj“ and auj“ = aue“

Vjv. It is
thus immediately obvious, that one has to get rid of
the anomalies in equ. (II.8c) and (II.8d), since they
do not only change the normalization of the current.
As we know from previous sections, this will in
general only be possible for particular values of some
coupling constants. In particular, this happens at
g2=g3=0, but we do not consider this case, since it in
no way differs from the usual U(1l) Thirring model.

We thus consider the massless case with the

following equation of motion:

L8 Lol Ty lo>=Z iS("‘ﬁs)(")i-HN@lTXJ oy +
_ o _ (III.1)
FCIT LA My + It Wy ] K loD

o= W) ¢ ) Peyy... ¢ (4pm)

X..) = YU @K a?m,)..@(‘og-.) &\"3-".)... q:(‘ﬁn) (I1I.2)

Z is some finite constant.

In the following we will present a partial
solution of this model, which is however sufficient to
fix all parameters ocurring in the solution.

In the following of this section we will denote

<0{TO(x) 0> by <0(x)>, for simplicity.

16.

III.1) The two and four point fuuciions

The egual time ccmmuztators - -~z .soscalar,

isovector (12), vector and axial vectcr charges with

-+

v (x) suggest the validity of the following W.I.:

a\*(}”m P §MID =
= a'l [‘S(x-xl) + S(X— ‘dl)] <&P(*\)¢(‘GJ>T

(III.3a)

deﬁxw WF YOI, =
= o [-S(-x)¥5 - 3““40“:.]6\'(*«)@(‘3.))1. (III.3b)

3,4 oy W)Dr =
= b, [‘5(&-)(.)7\‘:, + S(x-%,)')\:‘] (¥ ) v} w‘)>1_

(III.3c)

QL WEEIFUND, = (111.34)
LS CHGE SRR HEHEEN R I ECTER TR Y

where ay bi are functions of 9y to be determined.
Equs. (III.3) are easily integrated yielding

1o $ (Y, =
QFoyeo Fuyd, (II1.4a)
= (213" 4 @, e"7¥7 ) 9, [Dixn) - Dy )<y tx) Feao>,
<<.\';_(‘)‘V°‘-)¢M.)>T- . (III.4b)
= (B4 b €791 W s [texy - Diai] < 0 Ty,
where D(x)=iT /an)"b%(x‘-i;)\.\,‘ is the causal
solution of nD(x)=—§§2)(x) and we allwavs mean
3, Dk-4) 2 2 Dx-y),
s oxt )

With equ. (III.4) and the definition (III.2) the equ-
ation of motion (III.l) becomes

L P00 Flugd = LZ S 0w, -
-[a e+ 9, C e D e (oo Ty
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whose solution is

Y §D, =
= ex?XLH\(Q.-O.z) +9,C (b5 0] Dlx-y )}(\pu)q(l‘&))(: (II1.5)

where the free field two-point function is given by
e ¢
LYW FWNT - FDk-gy  and CEATA =2 (n- V),
Thus 2 in equ. (III.l) is actually zero.

For four fields the isovector Ward identities

are
a""( }‘:‘ O Y0 PCUd P4y = by [- 8 x-x)%, -
(III.6a)
- S (xxdNg * SORAY + NN LR ICTS TS T2 O 47y

Sy CHL GO PO Y W) FUI Ty = by [ S ) NG ¥T, - $ GexdN 2T, -

a a -
-3 (K-%.)’}\‘Q.ﬁg‘- 5(‘*‘3;)15“6‘:;}(\{ &Y (0¥ Yy ¥ (qg}r (ITI.6b)

Integrating gives
0 Y EOye)TF T YD = ia‘:, (b,o%+ 5,35 3F) Dix=x) &
+ Ak (5,37 BT M I Do) + A, (b, 01, b, ¥ 3P )Dlx-w,)
a 3 - -
+Ay, 5,3% 617 3"y Y D Y DTy (y,_»f_l -1
For ™)) ¢RIFuoT Ry . just replace A~ by

one and bi by ay in equ. (III.7).
The equation of motion now becomes

L ¥ YOG e TN F D = {q\[( A, +a, ¥ 8 )¥Dxiexy ) -

- (2@t E DY) = (e 3535 ) #D 0y, V] +

18.

+ qz(kix‘:z(w by 32 85 ) FD1a- %) - 0Ny (b, 5,545 ) YD Gery,) -

- NN, (b, bad5 45, ) 9o eey, 51 =

« <U( (‘(\)\\/(‘L) ¢(})») ¢ (yx)>T
(II1.8)

whose solution is
¥ @ ¥ FIIFOL)D7 = ep {-u[a(aran il ¢ 9, (5 b v Yoy )
« [D (x‘-x")’b(\’\"ﬂ) “Dlt-Y) <D, - '1)-\.'8 <W‘) \-\"‘h.))-r <‘V(K|.) ¢ W, )>T =

- ep -t [, 8B ¥5 ) 9, (b b, XS ¥E ) WS T [D terea =

- - - (I11.9)
+ D) DY) -D (x.-m]} LYW <y ¥ ()

Up to the four-point function no problems due to the

noncommutativity of the A-matrices arise . In parti-
cular one easily verifies that [')\“9')\“) m'}f@k"} =0,

(See also the appendix).

III.2) Definition of currents

In order to determine the coeficients a;
and bi' one has to exhibit the currents as limits of
products of the field W(x), manufacture from an N-
point function some N'-point function of the current
and compare the result with the W.I..

For a; and a, the procedure is the same as
given by Johnson (9) or Dell'Antonio et al (13), the
two differing only by a renaming of the coupling
constant 9;-

One defines the isoscalar current as:

< irmz P

. ' o - S Jew? (II1.10)
- g:»\o qu‘ DTV =B keerFw] [ a]kX}TZS(F-)

The normalization can be fixed, requireing

the isoscalar Schwinger term to have some value.
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The satisfaction of the isovector Ward identi-
ties with a suitably defined isovector current, turns
out to be a nontrivial endeavour. We have found the
following definition to do the job in the 2-and 4-point
sectors (plus any number of currents):

By g F{Teomlvo -

-m\“wwnﬁo]&-?i—t*ggi (e.-»—e)kX) Z)
£* T (I1T.11)

where 2(&) = expi 9 (b-b3) C D)

Because of the non abelian structure,the normalization
factor N is not arbitrary and will be fixed by manu-
facturing one current out of the 4-point function
<ww1W>T and comparing the result with the one current
W.I. equ. (III.4b). As opposed to the isoscalar case
only the term proportional to <W(x) \7(\1.))7(4»0(,_) &T/(y.‘))r
will contribute to {;;(x‘) Y (%) ¢(y,_))1. s _
when x, + y;, since appearently the term - {44) LPW,,))T«
w (YD Q’(y,)).‘. does not allow the extraction of some
finite part with a definition like equ. (III.10). 1In
order for one term alone to satisfy the W.I. equ.
(III.4b) one needs to flip the sign of the ¥°@® {¥
part in (bl-bzyse YS) of the four-point function in
order to oktain a nontrivial solution with bl#bz.
This is effected by (E‘AEOL + Euga)/sz.

To determine o we take the limit Y% %e,
e>0 in equ. (III.9):

W0 §0) Flxee) FOy D =(¢q &-L [a,(ara,tf LFARCTCEIR -

« [DU-1) D58 - DE)D (\/;xdﬂs ap L{[9,(a-a)+9 C(by-b, Y1 [Dexey,) +
- - Q) i

- D(x‘-r\-aﬂ.g<+(x\)W(Y;))m<+(x;)&|r(x\wa)> - ex?{w la,(a-a 3548 ) +

+9,( b,-bz‘tf"cfl_)):l):_‘] [DW-%2)-DGxp-£) =D (x,e Y)+Dx-y,- e )]‘g .

L LY D g—y(yx)>1, ?‘;‘_ ‘%{) 2 (€) (I11.12)

multiplying by (*,/a Xa)‘{ we obtain for the first term
"1

above:

u?i.i[%l(a.-ﬂz)+<51C(\=.-b1ﬂb(‘l;"z)k .
« eXP &th(b,-b.‘) (?Y:L* C ) [D(ﬂ“z)f)(?f"ﬂ + Dy~ =)=

- (o) - <
-2} &) < e 3 ()
(I11.13)
2 -
where we used AR N == ~ 7\‘\3 Ve Y¥Dr=-<9T K’>T.
The first factor gives <y (xz)i(y2)>T and the

second goes to zero for g, (bl-bz) (- 2/n - C)=gz (bl—b2)~
®#(=-2n) < 0, i.e.

9, (b,=b3) > 0 (11I.14)

Our solution does thus not have a perturba-
tive expansion, since we cannot take g2+o.
The remaining term in equ. (III.12) now cives

[-N - 2 -+ ~
" b (0 q/ax\)w(y»\_ = —1:?- N i p (o + by X5 o)«

x (DG=0)= D= Y, Py TP+
Comparing with egu. (III.4b) we find
T

2‘52.”:1 or LI (III.15)
mw 2%1
To determine bl and b2 we integrate the two

current W.I. given by the non abelian structure:
{ipto o pe Y= B 3pr by 35 50 Dle-x +
£ 2%, (5,0 + b ¥ S D01 ¢ IS v SRYIE
= Lap DR DD QAWM Y FD - (171.16)

+ 9D Cx-y><g‘:w>wz)$w;)>71 -

~
=630 Bap (v + 90y ) DU-Y) Cyx) ¥ )
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whare 8v is the isovector Schwinger term. Tt ig easv
to see that equ. (III.16) gives the correct equal tinme
commutation relations for the vector and axialvector
charges among themselves and ¥ (x). The interested
reader may also want to verifv svmmetry under the ex-
change (x,a,u)«> (y,b,v).

Now start from the one current W.I. and take
limits:

IR (¥ V) ) Fneed T = 1% (bdyr ba¥E 5 3ten) +
, R‘:.‘(b.bw b;‘&i,_s'\..)D G-+ N (Fo0nr bz*iﬁ@ Dik-x-€) «

+ A7, CB Ot b;&‘\f}‘h) D-y,3] (ex? - aea, 155 ) +

- %,_')Q\C‘,_ (by-b, Y% tfxﬂ ID(x-¥) - DED D RN *’D(‘/x"t'&)-l]& .

« exp S.i. [%‘(Q,-Qz) +Cq, (b- b'l)'] IDU ) =D lxp-x- € ﬂ‘& .

« (w0 T ch\.g))‘: - ecpl-i[9,(aratys) «

+ WAt N (bym b X85 VI TD (i) = D e Y33 =D (- kvt y

+ D31} CPed T <yl Wwe»?) (ITT.18)

One verifies that again under condition (III.
14) the first term goes to zero, whereas the second
term yields:

< }:(‘)‘3\:(‘!)‘?0&3 ¥ WQ>T= - 3ae 1,1_‘/__7‘ (5,9,9,- bzsvsv) :
DoY) {PUDPLPD. + .7,%/7' ‘fnbo)\c FDlen) 9,

[ (90 + b0 85 5) - £ (B2 00452 5,5, 30 -
D@ D) Yy W), = 2 9, M [N Dk -
- (AN Dley)] (b,9w +5,%% £, (6100 b, 513\,) :

: [D(K\- Y) '}(‘\"(;)] <l?(’(z) ¢(V;)>T (III.19)
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Comparing with egqu. (III.16) we get

{
b z~b. = L €, = (I11.19)
\ kN >y bJ v 2‘%1

III.3) Determination of 95 via the energy-momentum
tensor

By solving our model in the sector
CHF o dpem 1o IO P T F e 150 T
we have been able to fix all our constants, except 9,
and gy- On the other hand we do not expect 9, to be
arbitrary. Presumably 95 will be fixed by looking at
higher point Green function or at a possible operator
solution, which we have not been able.to do.

We thus take a route via the energymomentum
tensor, much in the spirit of Ref. (7). We first
notice, that our W.I. equ. (III.4b) and (III.l6) differ
from the free field W.I. only by changing

\ 1Y 1y
ww ¥ —--3 (III.20)

gv —2y

Our current Green functions are thus equiva-
lent to the free ones, except for the value of the
Schwinger term. We know then that our energy-momenrtum
tensor has to be of the Sugawara form

<Op X 77 =< X.E‘ RN \t:(‘)-éqrv:;:.lw: o -

+ E’-[’sps»"(‘) -‘5_0‘)}“):)’( 3";(:)]& z>1_

(II1.21)

The constants are now fixed bv reguireing the

correct commutation relations with j. ané 32 say. One

gets for example (see also ref. 7).

]
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L [ a“ Q‘AV(X)) L;(\})}ET= Eq (\%“’ Sv)évégty) %(‘I'Y')

M \
= A =" I3, = 1 (I1I.22)

since comparing with the eguation of motion one gets

291
E2 =g, and El = al_az
We finally obtain
T
gy < g (XII.23)

a, and a, are given in the parametrization of Ref. 13 by

al-a2=glss ’ ala2= Ss
where Ss is the isoscalar Schwinger term.

Our partial solution is thus sufficient to
fix all parameters, except 9, which is expected to
remain arbitrary. We hope to come back in a future
publication to deal with a complete operator solution.

IV) DISCUSSION

Guided by the simplicity of the usual Thirring
model we tried in this paper to investigate the exis-
tence of possible solutions for the model with Un
symmetry. Thus after some perturbative motivation, we
looked at the class of massless spinor field theories
generated by the (formal) interacting Lagrangian density

L1 = 9, (FRNEF W) +9, (FXN(FMNRY) v

We have found explicit solutions in the case g2=0. These

are in a certain sense trivial, 6 since they correspond to n

24.

independent self-interacting Thirring fields. The ope-
rator solution can be written in Klaiber's form

LY 0O i Gt
-\{a(x)sex Y&x)e ) -
(Iv.2) LA
N
where ¢ is a canonical free spinor field, - L
~
. > s q'
X=o2d +3BI) +a +x%9 ; a-0= =
2 > = (IV.3)
and we are using the same notation employed by Klaiber.
The N point function has Klaiber's form (see formula
IV.25 of ref. 14) with
az=met-2Vr 4 bemB-2VT(
J
P =.°(§ n - (“*‘3) f;
The dimension of the field is
1 2 \
— - “+ =
d.w[fn(q By« 221+ 3
and the spin has the value S = L + 2
2 27
We have also discussed the existence of other
solutions, associated with gZ#O. Following a Johnson
type construction we obtained the two and the four
point Green functions associated with the value 92=£.
The dimension of the spin 1/2 field is (15)
X
el [t m—mhm) el
== + Iv.4
3 \_(q'/"“)'l- LPM." ( ) .
The existence of a second non trivial solution -
¥
was already conjectured in a paper by R.Dashen and Y. .
(

Frishman (7). These authors, following an algebraic »
construction similar to that of ‘ref. 13 claim to have

solutions fbr g2=0 and also for gz=4ﬂ7n+l. However,

as Schroer has pointed out (15), Dashen and Frishman's
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second solution is only a different parametrization of
the first one (IV.2) and not a really new solution.

More precisely

W».ﬁ. =¥ Y (Iv.3)

where Y, is a solution of the type(IV.2) with A =-2T.
It satisfies

,La/q.'ar-‘. =7 brfh%.a‘ —%v’);‘“‘?\;‘i’»_a‘(lv.s)

. & — 2

This can be verified by using _il,_ A
=) -2 - 2P oA &
'5; = :»efr)“ug:

. . . (o) )
Tey= —2‘_:: {'Sr (e )40 = 0 TY wol

(IV.7)

and the fact that if ¢ is a free spinor field then
$'=%¥o¢ satisfies

. S s - .
(.3/\? = :sh\*r‘fl: -+ = ')\A‘ J?*‘A‘PI' (Iv.8)

which resu}ts f;om
Aan® -2 DY SaeSca + 2(M+V) Sac Swa

m
The field Vg5, has spin 1/2 and dimension
m-
d= i*- '_71.(%5 /7.1\’31* -

According to the arguments of ref. 7, there
is only one solution corresponding to the value
%,= kW /mev and having the same short distance be-
haviour as a free field. We conclude therefore that
f,\¥,< and Dashen and Frishman's solution
are identical. There is another point with relation
reference 7, which deserves some more comment. I

one wants to introduce mass in theories that are not
free one should start considering composite objects

N L¥ w1, where N indicates some normal product pres-
cription (in the case of the Thirring model we could
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use Lowenstein's normal products for example). The mass

is then introduced by modifying the Lagrangian to

L+ m N[Ty] (IV.9)

where € is the original (not free) Lagrangian and the
mass insertion operator N [¢w7l can have an anomalous
dimension. In this scheme the eguation of motion for
should be derived and a priori there is no reason at all
to restrict the field spin to the value 1/2.

Finally we want to comment on the removal of .
the question mark in the title. A complete solution is
most probably not obtainable by applying an exponential
depending on the currents to a free spinor field, be-
cause of the noncommutativity of the A -matrices. We
expect the 2N-point Green function of ‘a nontrivial
(gz#O) solution to consist of a sum of terms, correspond-
ing to the number of independent tensors made out of
the A's and ¥y's, each one multiplyied by a combination
of exponentials. Since the number of these terms in-
creases with N, an operator solution is probably very
difficult to obtain.
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-t %tb\c { : 5
+ 3e cosfay. b, C) +Uscn ¥ £ ]+
In this appendix we want to show how the SU2 - T ) Qa"b\'c) & )
algebra can be used to rewrite the four point functio -3iq,b,C ,
g P ion sSsoc [-¢ WP (s (39,8, - ¢ HR (39,6,C) V58 (5 +

given by egu. (I¥I.9) in a form where the A -matrices

in the exponent have disappeared.Consider the expansion

()™

. < nbe (cos(5,3,C) ~& sin (5,9,C) 15® a”)j%
explad Fa@Ca = |+ (& Ta®Cq « = Sb Ca © T, Fqn.-.

= 4 - 2((—.‘)%(\&-4&6‘&@6‘& - ‘bn\,-i@]:)

" which can be used to remove the § -matrices from the -

exponent in a straightforward way.
where the relation G456, 2 cEgpe Se +~ Sab

was used. The numbers a, and b, satisfy
QM = - bN\, “ |
bm - ‘3 bm-\‘*‘ 3

and so are given by

Q= - (—3)% - -‘G (-l - (-3)’“")

bm = )™t (32 DY)

Thus

. ik g Bk g _-3iw -
tlptdc‘@G:Q 'U-L;e- -Trt pre

T Y. q -¥x

- T e 43 e s C

+ L-2 e T ]

Besides that the relation o - <
Q_,(}[Q«-Lb“&’é?s-l'o' (esb+i sinb. 459 ¢5)

is easily verified. Therefore we get
axp-i s- a,(0,-2, 358 1) +Q, OF (b,-b, 5@ E"& C.

e.CQ‘CQ\ [CDS(%\'“LC7 +U 8n (Q\Q\.C) t‘@fs-x ®

!
Ty
i C
® x TeT [ ™ (cos(3a,5,0) - csin (39, 5.0) 150 ¢ ) &




