IFUSP/P-57

RIGOROUS LOWER BOUNDS TO CRITICAL EXPONENTS FOR FERROMAGNETIC ISING SYSTEMS

W.F. WRESZINS

Instituto de Física Universidade de São Paulo Brasil.

RIGOROUS LOWER BOUNDS TO CRITICAL EXPONENTS FOR FERROMAGNETIC ISING SYSTEMS

W. F. WRESZINSKI

Instituto de Física, Universidade de São Paulo, São Paulo Brasil

ABSTRACT:

Rigorous lower bounds to the critical exponents γ , ν in ferromagnetic ising systems are derived, using an idea of Glimm and Jaffe (1) and some ideas and results of Fisher (5).

I) INTRODUCTION AND SUMMARY

Glimm and Jaffe (1) have recently proved that the critical indices η , ν and γ (3) are bounded below by their classical (Goldstone) values in the $(\phi^4)_2$ quantum field theory, namely

$$\eta \geq 0 \tag{I.1}$$

$$v \ge 1/2$$
 (I.2)
 $\gamma \ge 1$ (I.3)

$$\gamma \geq 1 \tag{1.3}$$

In their paper they also derived, among others, the inequalities

$$2\nu \geq \gamma$$
 (I.3)

$$2\nu \geq \alpha \tag{I.4}$$

Probably all the above field theory results hold also in statistical mechanics. In fact, one of them ((3)) is in field theory, a corollary of an inequality which holds for ferromagnetic ising systems (Lebowitz's inequality (8)), together with the so-called lattice approximation (2). However, most of the proofs given in field theory for (I.1-I.5) are specific to field theory: for instance, the simple inequality (I.1) is, in field theory, a simple consequence of the Kallen-Lehmann representation in space-time dimensions higher than two (1), while in two dimensions it follows from a result of Simon ((2)). A proof of (I.1) in statistical mechanics exists, however (and is trivial) only in two dimen sions, if we define n by*

$$\Gamma_2(r) - \Gamma_1^2 \sim \frac{1}{r^{d-2+\eta}}$$
 (1.6)

where Γ_{r} is the (infinite-volume) r-spin correlation function. The proof of (1.3) in statistical mechanics following the method of ([1]) also requires some additional argument, which we provide in sect. II. In particular, two assumptions

* The notation $f(x) \sim x^a$ means $\lim_{x\to b} \frac{\log f(x)}{\log x} = a$ for $x \in R_+ \rightarrow f(x) \in R_+$, as is standard ([3]).

((A) and (B) of section II), some applications of Griffiths' inequalities and a result of Fisher ((5)) are required. The r.h.s. of (I.3) is just the mean-field exponent (see, e.g. ([1])), and we feel that the importance and interest of this result makes isolation of the necessary assumptions and a complete proof desirable, although the central idea is, of course, provided by ([1]). As a corollary of (I.3), we have, by Fisher's inequality (5)

$$(2-\eta)v \stackrel{>}{=} \gamma , 0 \le 2-\eta \le d$$
 (I.7)

the bound

$$v \geq 1/d \tag{I.8}$$

(d is the dimension of the system), which is weaker than (I.2) and coincides with it only for d=2. Of course, (I.2) would follow from (I.1), (I.3) and (I.7), but a proof of (I.1) is at present missing, as remarked previously.

II) RESULT

We consider a ferromagnetic ising system. If $\Omega_{\mbox{\it N}}$ is a finite lattice region of N spins in $\mbox{\it Z}^d$, we define its Hamiltonian by

$$H_{N}(\{S_{i}\}_{i}\in[1,N]) = -\frac{\dot{\Sigma}}{p,q\in\Omega_{N}}J(p-q)S_{p}S_{q}$$
(II.9)

where $\{S_i\}_{i\in[1,N]}$ are spin variables $\{S_i=\pm 1\}$, $J(p)\geq 0$, and Σ $|J(p)| < \infty$

$$\Sigma$$
 |J(p)| < ∞ (II.10)

(II·10) is just the usual stability condition. We shall be concerned with the thermodynamic limit along a sequence $\{\Omega_N\}$ of lattice regions such that $\Omega_N \supset \Omega_N$, if N>N', of the susceptibility per spin χ_N , defined by (h>0)

$$\chi_{N}(\beta,h) \equiv \frac{\partial M_{N}(\beta,h)}{\partial h}$$
 (II.11a)

where

$$M_{N}(\beta,h) \equiv \frac{\beta^{-1}}{N} \frac{\partial \log Z_{N}(\beta,h)}{\partial h}$$
 (II.11b)

is the magnetization per spin, and

$$Z_{N}(\beta,h) \equiv \sum_{\substack{S_{i}=\pm 1\\ i \in [1,N]}} e^{-\beta \left[H_{N}(\{S_{i}\}) - h \sum_{k=1}^{N} S_{k}\right]}$$
(II.11c)

By the GKS inequalities ([4]), $\lim_{N\to\infty} M_N(\beta,h) \equiv M(\beta,h)$ exists and is an analytic function of h for Reh>0 by the Lee-Yang theorems ([6]). The (infinite-volume) susceptibility is defined by

$$\chi(\beta,h) = \frac{\partial m(\beta,h)}{\partial h}$$

By the Lee-Yang theorems ([6]), this definition coincides with the following one:

$$\chi(\beta,h) \equiv \lim_{N\to\infty} \chi_N(\beta,h)$$
 (II.12)

(h>0), where the existence of the r.h.s. of (II.12) is also guaranteed by (6). However- there is at present no proof that

(A)
$$\chi(\beta,0) \equiv \lim_{h \to 0_{+}} \chi(\beta,h) = \lim_{N \to \infty} \chi_{N}(\beta,0)$$
 if $0 < \beta < \beta_{C}$

which we assume as a reasonable conjecture ([5]) (or, alternatively ([5]), define the susceptibility in terms of which the critical exponent γ is defined, by $\chi(\beta)\equiv\lim_{N\to\infty}\chi_N(\beta,0)$). We assume further (see ([5]) for a discussion)

(B) $\chi(\beta,0) = \lim_{h\to 0_+} \chi(\beta,h)$ is analytic in the open disk of

the complex β -plane with center at the origin and radius β_{c} (B) has been proved only for $0<|\beta|<\beta_{c}'$ with $\beta_{c}'<<\beta_{c}'$ (7).

The critical exponent γ is now defined as usual (3) by

$$\chi(\beta,0) \sim (\beta_c - \beta)^{-\chi}$$
 (II.13)

Theorem: Assumptions (A) and (B) imply (I.3). Proof: The idea is in ([1]). As in (5), we define the "reduced" susceptibility $\widehat{\chi}_N(\beta,h) \equiv \beta^{-1}\chi_N(\beta,h)$, $\widehat{\chi}(\beta,h) \equiv \beta^{-1}\chi(\beta,h)$, $\widehat{\chi}(\beta,0) = \lim_{h \to 0_+} \widehat{\chi}(\beta,h) = \lim_{h \to \infty} \widehat{\chi}_N(\beta,0)$ by (A) $(0 < \beta < \beta_c)$. Of course $\widehat{\chi}(\beta,0) \sim (\beta_c - \beta)^{-\gamma}$. We have

$$\widehat{x}_{N}(\beta,0) = \frac{1}{N} \sum_{i,j \in \Omega_{N}} \left[r_{2,N}(i,j) - r_{1,N}(i) r_{1,N}(j) \right] \quad (II.14)$$

where $\Gamma_{r,N}$ (i_1,\ldots,i_r) is the r-spin correlation function for the region Ω_N . Now.

$$\frac{d \bar{\chi}_{N}(\beta,0)}{d\beta} = \frac{1}{N} \sum_{i,k,p,q \in \Omega_{N}} |J(p-q)| \{\Gamma_{4,N}(p,q,k,i) - \Gamma_{2,N}(p,q)\Gamma_{2,N}(k,i)\}$$
(II.15)

As in ([1]), by the Lebowitz inequality ([8]) and ([1].]5), we have

$$\frac{d\hat{\chi}_{N}(\beta,0)}{d\beta} \leq \frac{2}{N} \sum_{i,k,p,q \in \Omega_{N}} |J(p-q)| \Gamma_{2,N}(p,k) \Gamma_{2,N}(q,i) (II.16)$$

By the GKS inequalities (4), $0 \le \Gamma_{r,N}$ $(i_1, \dots, i_r) \le \Gamma_r (i_1, \dots, i_r)$ and $\Gamma_{r,N}(i_1, \dots, i_r) \xrightarrow{r} \Gamma_r(i_1, \dots, i_r)$ where $\Gamma_r(i_1, \dots, i_r)$ are the infinite-volume correlation functions. Hence, from (II.16)

$$\frac{d\bar{\chi}_{N}(\beta,0)}{d\beta} \leq \frac{2}{N} \sum_{i,k,p,q \in \Omega_{N}} |J(p-q)| \Gamma_{2}(p,k) \Gamma_{2}(q,i) =$$

$$= \frac{2}{N} \sum_{i,k,p,q \in \Omega_{N}} |J(p-q)| \Gamma_{2}(p-k) \Gamma_{2}(q-i)$$
(II.17)

Let R_N be the diameter of Ω_N . Using now the GKS inequalities one more in the form $\Gamma_{r,N}$ $(i_1,\ldots,i_r) \leq \Gamma_{r,N} \cdot (i_1,\ldots,i_r)$ for $N \leq N'$, we have from (I.17)

$$\frac{d\tilde{\chi}_{N}(\beta,0)}{d\beta} \leq \frac{2}{N} \sum_{i \in \Omega_{N}} \sum_{q;|q-i| \leq R_{N}} \sum_{p;|p-q| \leq R_{N}} \sum_{k;|k-p| \leq R_{N}} \sum_{q;|q-i| \leq R_{N}$$

$$|J(p-q)|\Gamma_2(p-k)\Gamma_2(q-i) = 2 \sum_{|r| \le R_N} |J(r)|(\sum_{|r| \le R_N} \Gamma_2(r))^2 \le$$

$$\leq 2 \sum_{r \in Z^{d}} |J(r)| \chi(\beta,0)^{2}$$
 (II.18)

using Fisher's result (5) that $\chi(\beta,0)=\sum_{r\in Z} \Gamma_2(r)$. By (B) and the bound (([5]),(A14)) and Vitali's convergence theorem we have that $\{\chi_N(\beta,0)\}$ converges uniformly in any compact subset of the open disk with center at the origin and radius β_C to $\chi(\beta,0)$, hence

$$\frac{d\widehat{\chi}_{N}(\beta,0)}{d\beta} \xrightarrow[N\to\infty]{} \frac{d\widehat{\chi}(\beta,0)}{d\beta} (0<\beta<\beta_{c})$$

Hence, by (II.18),

$$\frac{d\widehat{\chi}(\beta, 0)}{d\beta} \leq c \widehat{\chi} (\beta, 0)^2$$

with
$$c = 2$$
 $\sum_{r \in Z^d} |J(r)|$, whence $\frac{d\tilde{\chi}(\beta,0)^{-1}}{d\beta} \le c$ (II.19)

Integrating (II.19) from β to β_c , and assuming (II.13), we obtain (I.3).

Remark 1 - For ferromagnetic ising models characterized by

$$J(r) = r^{-S}$$
 $d+1>s>d$ (II.20)

one has Suzuki s inequalities ([9])

$$v(s) \geq v(t)$$

$$\gamma(s) \geq \gamma(t)$$

if $d+1 > s \ge t > d$. If the somewhat looser statement that " γ , ν decrease when the interaction range increases" holds, one has:

$$1 \le \gamma \le 7/4$$

$$1/2 \le \nu \le 1$$

$$d=2$$

and

$$1 \le \gamma \le 5/4$$

 $1/3 \le \nu \le 5/8$ d=3

Remark 2 - If the assumptions of Suzuki's paper (9) are true, then the exponents γ_I , ν_I of the Heisenberg-Ising model also satisfy the inequalities

$$\gamma_{\rm I} \ge 1$$
 $\nu_{\rm I} \ge 1/d$

REFERENCES

- ([1]) J.Glimm, A.Jaffe Phys.Rev. <u>D10</u>, 536 (1974).
- ([2]) B. Simon The $p(\phi)_2$ Euclidean (Quantum) Field Theory Princeton University Press 1974.
- ([3]) M.E.Fisher Rep.Progr.Phys. 30, 615 (1967).
- (4) R.B.Griffiths Rigorous Results and Theorems", in "Phase Transitions and Critical Phenomena", vol I, ed. by C.Domb, Academic Press 1972.
- ([5]) M.E.Fisher Phys.Rev. <u>180</u>, 594 (1969).
- (6) C.N. Yang, T.D.Lee Phys.Rev. <u>87</u>, 4,10 (1952).

- ([7]) G.Gallavotti, S.Miracle Sole, D.W.Robinson Phys.Lett. 25A, 493 (1967).
- (8) J.L.Lebowitz Comm. Math. Phys. 35, 87 (1974)
- (9) M.Suzuki Phys.Lett. 38A, 23 (1972)
- ([10]) This is the theorem of Lebowitz and Penrose for magnetic systems, see, e.g., ([11]). App.A
- ([11]) C.J. Thompson Mathematical Statistical Mechanics - Macmillan 1971.