IFUSP/P-58

GOLDSTONE'S THEOREM FOR QUANTUM SPIN SYSTEMS OF
FINITE RANGE

WALTER F. WRESZINSKI ,%S‘

\ .
L J
Institute of Physi&‘

University of Sao Paulo
S.Paulo-Brasil




GOLDSTONE'S THEOREM FOR .QUANTUM SPIN SYSTEMS OF FINITE RANGE

WALTER F. WRESZINSKI
Institute of Physicts,University of Sdo Paulo,S.Paulo -Brasil

ABSTRACT :

Goldstone's theorem is proved fér quantum spin syé—
tems of finite range with rotationally invariant Hamiltonian
under the assumptions that the ground state of the infinite

system is unique, invariant under a subset of the translation

group (which depends on the system) and has long range order.




In this paper we prove that the spectrum of the
physical Hamiltonian of a quantum spin system of finite range
with rotationally invariant (finite-region) Hamiltonian has
no gap, under three assumptions on the ground state of the
infinite .system. This result, which is a form of Goldstone's
theorem (whose analog in quantum field theory is (6),
which we also refer for additional and original references),
was proved by Streater in (2] for ferromagnetic Heisenberg
systems of finite range. As Streater, we use the results of
{6), but have to generalize his Theorem 7, which relies upon
structure specific to the ferromagnet, in particular upon the
fact that the physical Hilbert space is the direct sum of
dynamically independent ''n-magnon sectors', and the restric-
tion of the physical Hamiltonian to each of them is a bounded
operator (see specially ((2),(23))).

In a recent paper, Reeh ((7)) proved by explicit
construction the existence of zero energy ("Goldstone') states
in the spectrum of any rotationally invariant antiferromagnetic
Hamiltonian, under a number of assumptions on the ground state.
Although he did not prove Goldstone's theorem, we shall scc
that just three of his four assumptions (unicity, translation
invariance and long range order) suffice to provide a proof:
his assumption of invariance of the ground state under
rotations around the z-axis will not be needed. Furthermore,
his prqof, as given, seems to be restricted to one dimension(l)
while ours holds for any number of dimensions.

For clarity, we divide the forthcoming proofs into
two parts: the results of part 1 are independent of the above
mentioned assumptions on the ground state (which will be more
precisely formulated in part 2), while part 2 contains the
results which explicity depend on them.

(1) Reeh used the fact that the number of terms in the commu-
tator | Hy , S, ] ,» which is considered in part 1, tends
to a finite constant as A»o (see paxt 1 for this notatlon),
which is true only in one dimension.




1) RESULTS INDEPENDENT OF ASSUMPTIONS ON THE GROUND STATE

We consider a quantum spin system in z° in the sense
of ((2),(3)). Specifically, to each finite region A C zZV we
associate a Hilbert space ‘}a/ﬁ ’@A é‘?—x » where Rx are Hilbert
spaces of dimensions (25,+1), Sy being the magnitude of the
total spin associated to the site x, and a matrix algebra
= B (8,) generated by the matrices \ sy, S s S’L‘S,ixe A
satisfying [8{". 521 = ‘2-1;5:5)5,"," plus cyclic permutations.
For further use we let also S, = é/\ S S = (8" s s,
For A, B, C finite sets, let

T s(u T S(z) 3)
Sasc = Sl“A * xes " ddc >
if none of A,B or C is empty,otherwise S =1

: ABC
To each A C ZY we associate a rotationally invariant Hamilto-

nian

" ': > C(A,BC) S

ABC
N AUBUC C A (1)

where c(A,B,C) are real functionals of A,B,C such that c(A,B,C)
is zero unless A,B and C are mutually disjoint and c(A,B,C) =

= c(A',B',C"') whebever there exists a translation in the
lattice carrying simultaneously A into A', B into B' and C into
C' (translation invariance). We also assume c has finite range
O ((3)), i.e., the set ’

N:-0 = {X € Z such that X 210} and X =AUBUC ,with

c(A,B,CcYyz O} | (2)

is finite. We also assume that the functionals c¢(A,B,C)
occurring in H, have a bound independent of A,B and C:

\C(A.Bif)\ < const. (independent of A,B,C) (3)

Rotational invariance of the Hamiltonian means that for all
Ac z° [_HA ,S,1:0. An example of (1) is the rotationally




invariant antiferromagnetic Hamiltonian (''ferrimagnetic" if
there are somé unequal spins, farromagnetic if one of A or B
is empty):
Hy = - 2 T x-9§,. 8, - Z : Ja(x-y.) 2 8yt
Xy EACA X, yEBCA
v 2 J (x-y) S, .8y (4)
x€EACA ,JEBCA B

where J,(x) 2 0 and J,(x) = 0 if ix!> diam (A) (diameter of
the range A of the potential), i=1,2,3, and A and B are
"sublattices" of A, with A U B = A (not necessarily uniquely
defined, see ({70))). Let Cl Acz"c%\ be the local algebra
and Ol be the quasi-local algebra (norm closure of Clr). It
is shown in ((3)) that

3 n-lim edrHA Ae—LtHA

A —ow

T4 YAE O

1]

(5)

where the "lim'" is in the sense of Van Hove (see, e.g., (11)),

[~ ] ?
Ao

and that ©t may be extended to an automorphism of OL . Let
QA be a ground state of H,in éiA. We construct a (ground)
state § on O by taking the limit along some subsequence of
Q.- ©,). It defines by the G.N.S. construction a represen-
tation T of (1 on a Hilbert space & with cyclic vector L2 (the
physical ground state), such that ®@(A) = (, T(A)L) VAelL.
From the time translation automorphism T and the space

translation automorphism (see, e.g., (2)) one constructs the
unitary groups on ¥ t€R - U, .xeZ" = Wi(x) , such
that VV S; Sl VV(;YJ = sib23’ and the generator of U is

the physical Hamiltonian, a densely defined selfadjoint oper-
ator on H{ satisfying HQ-0, H 20 (see (9), which is
also the standard reference for ground state representations).

The main result of this part is the following
theorem, which is the precise analogue of Theorem 7 of ((2))
for the ferromagnet, and may be considered as a generalization
of that result. For conciseness, we always omit explicit
reference to the representation 11 , which is however 1mp11c1t
whenever operators on R are considered.




. , t
CTHEOREM 1 - Let +€ A(R) Aec(Ollngand T be the automorphism
corresponding to a rotationally invariant Hamiltonian of finite
range of the form (1). Further, let A(§) = (dt §Ct) = (A)

(6)

Then, oo
Lim (Q,03,,A(H1Q)= (o_,{sA,,A]Q)S b gu:)

A-> o=

-

Remark: The integral (6) is a norm integral on Ol , which
exists since the sutomorphism T is strongly continuous ((3)).
In the proof of the above theorem, a crucial role will be
played by the following proposition, which is a trivial conse-
quence of the results of Lieb and Robinson ((4)).

PROPOSITON: For all A € Ol(,) there exist constants a and b
(depending on A and Ao) such that for all i=1,2,3:

“E,..t (SU) C AT < b QXP[-’/z vl.ist(x,/\o)l VieR

such that |tl < a ix| (8)

Proof of Theorem 1: since HQ = 0, we have

@, [, THA1Q) = (Q [T (5, AIQ) 9)
Now, we have ((3)) t

~t (s )= S, +¢ (LH SA1) VA st

tf(g) = 2 g A Deneny OO0

as an equation on 0Ol , the above integral, as well as the
following ones being norm integrals on (Ul (they are applic-
ations of Dl into O\ ). Now,

ﬁﬁt(s)/\] . (s, A}*\,Sds (T8, 5,0, AT -
= (S'AD.A] +£Stcls t((HA‘-SA]),A]
o -

vV A st A D (Ax )

(11)




We now prove that, V{§ €& A(R), wA € OL(A,) , and H, rota-
tionally invariant -

%0 t '
3 lim “ f dt £ (t) Sods [TSC[HA,,SAD,A:\ “ =0

Ao (12)
(125 and (11) yield
tim | [TY(s), AY - [s,,AY[I =0
Aovom ° (13)

whence, in particular, (7) results.

To prove (12), we use the proposition. By rotational
invariance of H,, [Hy,S,1=0yANCA . Hence, [Hy S, ) for
A D (A+A) , is a sum of a number, N(A) say, of operator
monomials of the form d(A,B,C) SABc: con-
centrated in a region 3(A,A) within A of the boundary of A
(i.e., AUBUCC B(A,A)\in the above monomials). The coef-

ficients d(A,B,C) depend on the c(A,B,C) occurring in the
Hamiltonian (1) and are, by (3), uniformly bounded by a constant
independent of A,B,C. Let r(A) be the diameter of A. It

y follows then easily that there exists a constant e independent

of A such that

N(A) < e (r(/\))\"'1

(14)
t _ F : |
Let I, = S ds [ T° dH/\‘,S,\])' A]
(&4
and P(A®) = dist (DA B), A)

Clearly, one may find a constant g > 0 independent of A such

that p (A) 2 gr (A) (15)
We now write

(e g TV - L) 1

. (16)
m % )y 1%
. where -lx = g dt t(t I (16a)
it s a pli) '
A2) _ t
and . lA = S dt {(i) I (16b)

iz a‘P\A)




where a is the constant (depending on A and Ao) occurring in
the proposition. Using now the pmoposition and eqs. (14),
(15), we find that there exists a constant h independent of A
such that '

»-1 pout
[ I,f')\\ < h (rMY exp [ grin] Sdithif

(17)
Further, by (14) and (15) there exists a constant s and a
positive constant m independent of A such that
2 p-{
VTP ¢ s (et [ dEreiigce
A - _ (18)
ikl zm r(a
[
By (17), 1lim .Ik = 0O and by (18) and the property that
A\ -1 00
{ ESLR) f_n‘m IA(z) O Those two facts and (16) imply
12). g

2) RESULTS DEPENDING ON ASSUMPTIONS ON GROUND STATE

In this section, we state more precisely the
assumptions on § (or 92) mentioned in the introduction. To do
that we restrict ourselves to the model describelby the
Hamiltonian (4) which includes a large number of cases of
physical interest. The same proof is applicable to several
Hamiltonians with more complicated interactions and similar
structure. We assume that: .

i) ¢ is pure, i.e., @ is the unique state in # such that

HQ = 0;

ii) 2 1is invariant under translations within A or B, namely:

W(x-y)$ = @ for all x,y € A or x,y € B;

iii) @ has long range order, i.e.;
Liem @, s2s’0)- ¥ >0
=yi~es ; x,y€ A or B (19)

From these assumptions and Theorem 1 we have as a corollary
""Goldstone's theorem":




THEOREM 2 - For the model (4) and under assumptions (1)-(3),

there is no gap in the spectrum of the physical Hamiltonian H.
Proof: Using assumption (1), we may, as in ((2), pg. 245)
follow the proof of ({6)) to prove ((2), Lemma 3) holds as
long as the spectrum of H has a gap. This lemma, in conjunc-
tion with Theorem 1, implies that, as long as the spectrum of
H has a gap, for all A € OLA) , that

bim (2,15,A7Q) =0

A= oo (20)

*

2)
Specializing in (20) A to Si
of S, , we have

)
0- bim (@[50, s10Q): 20 @5, 2)
e (21)

, and taking the l-component

On the other hand, using assumptions (2) and (3) it is a
corollary from asymptotic abelilanness ({1)) that

’_La) 4 -
(Q‘ So Q.) = T \Y # C (22)

Eq. (22) contradicts (21) and hence the fact that the spectrum
of H has a gap. &l

Remarks: a) Assumption (1) was not known for the ferromagnet

at the time of writing of ((2)) and was only proved later (cs)).
llence it was replaced by ((2), Lemma 1), which was also suffi-
cient. b) Unicity and long range order arc open problems even
for the isotropic one-dimensional antiferromagnetic Heiscnberg
chain, where much is known about the grond state for finite
volume ((7)). If they were proved, the conjectured ((5))
absence of an energy gap would follow from Theorem 2. Finally,
we mention a related work of Swieca ((12)) which proves Golds-
tone's theorem for many-body systems, under an assumption of
falloff of the commutator. similar but more general than the
onc in the proposition, which so far, hoﬁcvcr, has not beecn
rigorously proved.
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