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Abstract: We prove that for both the classical ferro -
énd antiferromagn;tic Heisenberg models the infinite vol-
ume iimit of the ground state energy‘per unit volﬁme of
.the system (Hamiltdnian plus A tiﬁes an operator‘is not
differentiable at zero in A for some operators. This
characterization of the singularity at T=0, which corre-
sponds to Fisher's ([5]) for positive temperature, adds to
a number of others, which are to some extgnt analogous to
the several characterizations of phase transitions at

>0 (|8]). A comment is made upon a related open prob-

»

_lem concerning the ground state of the quantum antiferro -

magnetic Heisenberg chain.




As far as we know no explicit examples of
Fisﬁer's (15]) characterization of a phase transition in
terms of the nondifferentiability of certain {nfinite vol-
ume correlation functions with respect to external parame-
ters exist., In this note we study the analogous charac-
terization for T=0, in the case of some classical Heisen-
berg (anti-) ferromagnets 1) and prove that it holds.
This result on grouhd stateé of classical systems (for
general ground-state representations, see [9]) adds to
gome other featureé of'the singularity at T=0, known for
the one-dimensional chain with nearest-neighbour interac-
tions, namely: divergence 6f the susceptibility xB as
B2 as B + @ ([3]), existence of long-range order (|4]),
(infinite) asymptotic degeneracy of the highest eigenvalue
of the transfer matrix as 8 + o ([4]) 2), which are to
gome extent analogous to some of the several alternative
determinations of a phase transition at T>0 (see, e.g.,
|8]). To display one more property in this set of alter-

nate descriptions, whose interrelation is not entirely

1) Some references on classical spin systems, to which we
refer for additional literature, are [11], [12]..

2) The eigenvalues §AQ(B)§ £=0,1,2,... of the transfer
matrix, of which the largest AO(B) is simple and the

remaiunder oneé are (2R+1)- fold degenerate, become

all degenerate with the largest eigenvalue for & odd,
ie., tia [A B/ A ®)]= 1F ([




clear, and the_ela:ification of which 18 a major problem
in the theory "b’f f:hase éransitions, is the motivation of
this paper . ‘?qr ﬁctational simplicity, we write out

the proof for the one dimensional case and nearest neigh-

bour interactions. However, the result and proof of the

forthcoming theorem hold in any number of dimensions,

l}
with a Hamiltonian for the region A C Z (v arbitrary

integer) given by
My = - Z_. Ja -3 T, ‘tj
“wIE€A (1)
->
where t., i€ A, are unit vectors, } |9)] <= by
» ' i€

re

i

stability ([10]), such that A may be divided into two
"sublattices" A and B (AyYB = A), with J(i-j)< 0 if i,
both belong to either A or B, and J(i-j) > 0 if i € A and
3 € B or vice-versa. If A is the set of nearest neigh-
bours of B, the above conditions correspond to antiferro-
magnetism, and if A or B are empty we have a ferromag-

netic system (see [2]).

Let P [0, N-1], be vectors in
N PO .
D=1%e R ; =» = l} » with t, =t (periodic

boundary conditidns), with components (Qis(ei, ¢i))

1 = +1 = 2 et 2 = .
ti(ni)~ ti = sin ei cos ¢i ti(ni) ti sinoi sin ¢i
'y =+ =

ti(ni) =t = cos 0y

(0< @0, <m, 0L ¢, <2m)




N-1
TP, .
on # i}::()) L% ($, df,), with dR = sin6;d6,d¢,,
it cre, 0 = Nfl tdt? (2a)
© N Tk i “it2r a
=0
- N s
CN(ryflg = izo t) ). | (2b)
(+) N-1
Hyo () =2 1£o by “ b g TER IO

with + (resp. = ) corresponding to anti- (resp. ferro-)
magnetism. The precise way in which a large class of
classical spin systems (including (3) and the more general
Hamiltonian (1)) is the limit, "ag the spin tends to
infinity", of the corresponding quantum spin systems is

described in [7] ,

Let
Comin |
(+) " I B C) (+)
Ser (V=g N [ @ +acg™ @] ()
. Lim : a
and let géi)(A) = M. gé?; (X . (5)
0 .

For fixed r , this limit exists‘by a simple adaptation of

the proof in ([9]).

Note that géil is a concave function of ),
. 14
Hence gét) is also a concave function of ), whence (e.g.,
| | atd(n
[1] ) it has both a right-hand derivative 3 and

CRCUPY

a left-hand one

dx *




o + U)( A) ' d-g(;)( A)
Theorem dJ\ (A=0) # B (r=0) .
Proof A possible choice for our ‘"sublattices" |is

A = {0'2100.-.,>N}'{B= l'3'otou' (N"l)} if N is even,
or .a=1{0,2,..., (N=-1)} and B={1,3,...,N} 4f N is odd.

Clearly, fér all N,

Now consider the state given by t} =t} =0, vie[o,N-1],

and t; =+1 Vvie€ [O,N-l] in the ~ (ferromagnetic) case,
and t/ =1 vi€ A and t{ =-1 vie B in the + (anti-
ferromagnetic) case. In this state and any A,
. i

L (+) (+) -
— > @ + acy" (r,0)] takes the value (-23), hence
é*’(x) < = 2J for any X and for all N. Hence,

I . )

o4
/2 [o5 . (N - o (0)] <0V2A>0, WN

Hence, 1/)«[9%()\)*9%(0).] < 0 ¥A> 0, from which we get

a’ g—-()\)
—ax—— =0 <

A
(=

(6)

-, ()
Now, ——%3 (A=0) = 2 (o) (o) - g (-n]/2=

liﬁ 1l Lim min 1l
e N {—~=
A0 N

(+) _ fim  miny {
v | Neo ged Hew (D) - 8 e N

+ -

% (™ @ - el ]y (7




Now, we clearly have

min '

aegh Ti“»‘:i) @)= -1 (8)

while

+ [i,ilf,-*-’ @ -2 g (r.m] 2=l =2,

and this minimum value is attained, e.q., for

ti‘ = t; =0 ¥vi€ [o, N,—l] , and t; =1 vie [o,n-f]m

the - case, and t; =1 v ieana, and t;= -1 viesB.,

in the + case. Hence, we have

min

o egV

1 (L) () .
L e @- 2 ¢ em] =-1-2 @
By (8) and (9) in (7) we get immediately

: d—géi)(k)
dx

(r=0) = AL [i-¢-1-n]=1 a0

The results (6) -and (10) imply the asser-

tion of the theorem. ﬁ

Rematk Consider the one-dimensional isotropic antiferro-

magnetic Heisenberg chain for spin S and periodic boundary

] R N |

conditions, described by the Hamiltonian (on i > ('x y
N-1L v oo _

s - 21 > < - < . c < e _ v g

‘ B
cﬁk k € 11,3], being spin matrices for spin §, and J>0.

The ground state $) of Hj is unique ([2]), and we define

’




bm o Lomoanf (23, 8% S5, 2,07 80

(‘-dw . N e

Hi

Ly

1f Lg 2 Y2 0, we may take this to mean that the one-

'dimensional antiferromagnet exhibits "long-range order”

in the ground state.

Define N-1
. p2 S’ 3 ‘\j . S
“u ()« L (J‘ a2 Se > 09
1 =0
- LW
C (s v.2) = & C (r:d)

- - (4)
H, (s Q) = %7 (32)
o : \
fur 8 0 Sunge {4 U “““ e % Gy (Sed]f - frng o Ml
Now fN r(A §) is a double sequence of functions concave in

Ae

£(A8) 5 2iminf 2iminf £ (A, 6)

Hence > o N~ o

is also concave in A . Now, (A, 6) is uniformly

Nr

Iy

continuous (in (r,N) as a function of 6 . Hence,

f'()\) - \()‘) _ *(o): i\m 5',.()\ S) - (tmm% Ko nk %Nl\}\.l;

¢ - oo N =

- Qn-wlv‘\(-.b E&m-n\. ['YNr()\ L) "*Nf (()‘.\)1

(a3 N 1o

From the r.h.s. of inequality (6.5) of [7] , transcribed

to vacuum expectation values, we easily get

Cy (x) s -1
f£iminf lm inf {im inf (nN, — 9 )/ §? > x  f(A\)=
8> r+® N » ® N -
-l -1
= giminf giminf A (A 1)=giminf giminf fim A fN (A, 1)
Yy > o N+ o ) N> o foroe 1T o8

o L (4,42) + 2 C Lt a2

<]

i
where fN . (xY)z- %E loghst¥”_n( e i e o
.,1."_\ scl‘)“ t‘-bHN\.l,l?.)




S SR ST S CPY N O A P C A
A "0.‘ ( TN N v e I} N N U

)y , ) : o |
D wnf Coiaf L Ln o N fae (W) = Yy
[ N -t i '\') 4o A - (-}‘ sty

by Refs. [3] ., [4] , which would follow if, e.g., for A

in a sufficiently small neighbourhood of zero one had
- 2

L B < (Cy(l,r,Q ) = <Cy(l,x,8 )>5) >,y 1/ N < const.
(independent of r,N,8 ) ; (13)

where : . ﬂﬁLHN(Lﬂ)r'ACN(Lf‘l)
ALY 30{_;1. ¢ At )
§ oL - co—
L N7 Sds)_‘ (—r"[ P\N(l “1)" )( t&‘ l)l

then we would clearly have Ls >y>0 for sufficiently large

s, on putting (12) into (11). Unfortunately, we have been

unable to prove (12) (or (13) to date. (3
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