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ABSTRACT

We perform the "first quantization" of the sine-
Gordon Theory. We obtain the classical potential that
describes the long distance interaction between solitons.
The "first quantization" is achieved by inserting that
potential in the Schrodinger Equation. The nonrelativistic
region of the DHN spectrum is easily reproduced by using
our procedure. We also compute scattering amplitudes for
non relativistic soliton-antisoliton and soliton=-soliton
scattering. We improve Faddeev'squantization rule. That

improved version leads, in the non relativistic region,

to the scattering amplitudes obtained in our approach.




1. INTRODUCTION

Recently much attention has been drawn to semiclassical

(1-6)

methods in Quantum Field Theory . That is the case for

the W.K.B. approach. In this context we would like to mention

(2)

the pioneering work of Dashen, Hasslacher and Neveu (DHN)

which, by extending the W.K.B. method to Q.F.T., succeeded in

(7)

getting many features of the quantized sine-Gordon Theory

(SGT). Other interesting characteristics of the guantized
version of S.G.T. has been studyed by other_authors(3_6);
Although the technique employed by DHN was an approxi-
mate one, there exists a region in the coupling constants
space (A/m2<<1) where we would expect the method to be reliable.
We will refer to that region as the DHN region.
When applied to S.G.T. the approach described in ref.

(2) might leads us directly to answer many questions concern- .

ing the spectrum of the theory and scattering of particles
without going over the intermediate step of a " first
quantization" . The " first quantization " or quantization
a " la Schdédinger " of the SGT is what we study in this paper.
That is the kind of guantization which, as we recall, allows
us to get sensible results concerning energy levels of many
bound state systems - for instance, the positronium - by using
the Schrédinger Equation.

First of all we show that asymptotically (see below
what we mean by asymptotically) the classicai interaction
between a nonrelativistic soliton-antisoliton (5A) pair in the

S.G.T. is well described by a classical potential of the form

V0 = —g M e (.1 *




where | X| is the distance between the soliton and the
antisoliton; m is the mass of the elementary meson whereas
Mc is the classical soliton mass; and g is a dimensionless
constant of order of magnitude one.

When we said that the potential description works
asymptotically we meant that expression (l.l) describes the
classical interaction between SA pairs whenever

IXI >> Yom
(1.2a)

or

I+ >> 4/,,,” Uoo (1.2b)

LQD being the modulus of'the interacting soliton velocity
for early and late times (t > F =). We say that we hﬁve
the nonrelativistic domain of a.given process when o§$«<<< 1
for all particles involved (l);; stands for the asymptotic
velocity of the i-th particle).

It can be verified that the soliton-soliton (SS) po-

tential k;SCX) is, in the Asymptotic Region, given by

ygs-éx) = — y;v4éx) (1.3)

Such a property confirms what one would expect from an
intuitive reasoning.

The classical "size" of the soliton is of order (1/m).
Then, in the Asymptotic Region we can consider the soliton
as a point like particle. We point out that a similar
approximation is performed also in the treatment of the

Hidrogen Atom by a Coulomb potential wherewe consider the

proton as being point like .




We justify this by arguing that the proton radius is much
smaller than the Bohr radius.

(2)

It is known that in the DHN Region the meson of

mass m has a twofold role: it is the fundamental meson of

S.G.T. and the lower bound state of the SA system. We note

that the potential given by (1-1) is a one-dimensional

Yukawa potential associated with that meson. In this way

we conclude that this particle becomes the one which

mediates the interaction between solitons at large distances
Once we have established that the classical

interaction between solitons is determined, in the Asymptotic

Region, by potential (1l.1) we proceed to the non relativistic

guantization. That quantization amounts to inserting the

potential into the Schrodinger Equation. Fortunately,for

the potential (1.1) the Schrodinger Equation is soluble,

and due to this it is straightforward to get the binding

energies and scattering amplitudes of the SA and SS system.
Before proceeding we would like to discuss the con-

dictions under which we shall expect the method employed

here to be a reliable one. Concernindégﬂe non relativistic

approximation, we feel tempted to say that this approach is

valid whenever

El << M

(1.4a)

(1.4b)

V)| << M

Where E is the energy of the state under description,

Condition (l1.4b) seems to be too much strong. If it was




always necessary we couldn't understand the succesfull
non relativistic description of the Hidrogen Atom. That's

why we will addopt a weaker and more pragmatic condition

I(\/(x)>‘ << M (1.5)

Another aspect of our approach which we would like
to comment refers to taking only the long range tail of the
potential. As it is known, states corresponding to large
wave lenghts are not sensible to the behavior of the
potential at short distances.

Such wavelength can be obtained once we know the
wave function of each state.

Then, by computing the wave function, the energy
and<V> we will be able to check a posteriori the validity
of the simplifications introduced in our scheme.

After elucidating these points we understand also in
which region in the DHN spectrum we should look in
order to compare with our results. That region will be the
non relativistic limit of DHN region; As expected, we
achieved, in this part of the spectrum, a perfect agreement.

With regard to the scattering region, our results
differs from those obtained by Jackiw mthbo(3). One reason
for that discrepancy is that the approach used by them
doesn't work in the neighborhood of the threshold, which is
just the non relativistic region where our method is
reliable;

Still concerning the scattering of solitons, we

would like to mention that Faddeev's(s) rule for "quantizing"




the S-matrix has a little flaw. The S-matrix obtained by
that procedure does not discriminates between even and
odd parity states. 1In spite of that sﬁch rule can be
improved in order to take into account parity. The
scattering lengths obtained by that improved version agree
with the ones computed by us in the DHN region.

This paper is organized as follows: the classical SGT
is presented in section II whereas some of the DHN results
are presented in section III. In section IV we get the
ésymptotic potential. Section V is dedicated to the cal-
culation of the bound state energies and scattering
amplitudes. We finish this paper with a section reserved

to conclusions and two appendices which complement some

parts of the text.




2.CLASSICAL SINE~GORDON THEORY

We shall present in this section a summary of the
classical S.G.T.(7). This two dimensional model is described

by the following Lagrangian density

»((X,f) 4 (995) (%—f)zj-l- —%?—4601%‘.?)-%

(2.1)

By minimizing the action obtained from (2.1) we get

the sine-Gordon Equation
2?2 ¢ + W’ S (_\[_; ¢)
M 9x2 /A m

From (2.1) and (2.2) one can easily see that when 2‘—’9

(2.2)

the S.G.T. is a field theory of a free scalar meson of mass m.
Before presenting the solutions of (2.2) relevant for

our considerations in this paper, it is convenient to change

the variables x and t into dimensionless ones. That can be

achieved by defining

‘L‘ - ?ﬂ‘t (2.3)

' | 'y Pl
Q. t') = Jva\ d(x,4) -

Now we proceed exhibiting some solutions of (2.2).

A whole set of solutions can be obtained by making use of




the "Backlund Transformation” (6'7). The procedure works

as follows: suppose 7%% is a solution of the sine-Gordon
! !
Equation written in terms of light cone variables O = ?ngg

and e )&__;i; . Then, another solution 'y% can be

generated by plugging ZL» into the "Backlund Transformation"
22 (%-%)= a u (@'1‘%)

(2.5)

1 2 (y+h) - %M(%‘%)

Z

The "vacuum" ’(/; = O is an obvious solution of (2.2).
From it the procedure sketched above leads to the so called

soliton solution:

'xu:t

éu(f‘t') 4 +a’” ‘%P \/“_" Z21 (2.6)

where 14 stands for the soliton velocity. 1In figure (1l.a)
we sketch the function that represents the soliton. Other
solutions on which we will be interested are the ones
corresponding to the two soliton scattering. They can be

generated by making"yg = szc . We shall get
S
),
n _ , wt /?':““'2'")
¢(9('i')_-_ 4 ‘f&w:" ._s_{ﬁ[‘( /4 W5 2.
5 m Look(X' /1_1,[2.")




We note that (2.7) describes the SS scattering in the frame
of the center of mass of the pair; and u is the modulus of
the velocity of each particle when /fi/-9<29. The solution

corresponding to SA scattering is

(2.8)

Bt < 4 i [ sonk, (Y= 5)
54 ook (%t Lfu)

We shall mention also the "Breather" solutions. The
simplest of them is the doublet solution, which can be
obtained from (2-8) by making the substitution W —> ’f(}—
The solutions so obtained corresponds to a SA bound state.

An interesting feature exhibited by these classical
solutions is that they describe extended objects. That
property can be verified by looking at the energy density
of some solutions. Following the usual classical treatment,
we can associate to each solution 92: an energy density

#oo () - LB

The soliton, for instance, is a bloc of energy which moves
with velocity u without deformation (see fig (1.b)). The
total soliton energy in its rest frame will be
3
_ 8 m
M = — (2.10)

A
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which is interpreted as the classical mass of the soliton.

For a free soliton we can determine the position and
the velocity of its center of mass. No uncertainty at all
arises from simultaneous measurements of physical quantities
(as expected from a classical description); The "first

quantization', which is performed in section 5, should

implement the uncertainty principle.
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3. THE DHN TREATMENT

Quantum corrections to a classical theory can be
obtained, within Feynman's Path Integral framework, by
expanding the action functional around classical solutions.
In particular, when we take into account fluctuations up
to quadratic terms, that procedure is equivalent to the

1,2
usual W.K.B. approach (1,2)

(2)

Dashen et als, succeeded in applying the W.K.B.

method to the S.G.T. We would like to exhibit some of

their results.

The quantum correction to the soliton mass (repre-

sented from now on as M) is the following

Tc. a———

M= M, - 2= + 0(x) = 3%13_1% + 0(3)

(3.1)

= 8m + O )
T

where Mc is the classical soliton mass, and 'f is given by

2 /o2
1 - 231 wm?

The spectrum of bound states of the SA system, that

T =

(3.2)

was obtained from a kind of "Bohr-Sommerfeld quantization

rule"(z),is

1oM < i (m_l‘ 3.3
a%

EEPJ = 1‘8
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where M = 1, 2,... <L ‘..8_:7,;\‘_/ . The region defined by

!

A
~ m . (3.4)
m: S g g << 1

we shall refer as the DHN Region. In there we should
expect DHN results to be reliable. From now on we shall
assume that the parameters of the theory satisfy condi-

tion (3.4). From (3.3) and (3.4) we can see that the lowest

bound state energy is(2’6)

E = m (3.5)

i.e. the meson of mass m is simultaneously the "elementary
particle” of the theory as well as the lower bound state
of the SA system.

It will be convenient for our pourposes to make an
inverse ordering of the energy levels, i.e. to start order-
ing from the one at the top of the spectrum (3.3). That
can be achieved in a very simple way. If Nmax is the total

number of bound states, there exists an & satisfying

0 £ &< (3.6)

such that

Nt 2= T o
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Now we define p in the following way

P = Nwmx - (3.8)

Then if we obtain n in terms of p and £ (with the help
of (3.7) and (3.8)), after substituting it in (3.3), we

get the following dependence of the total energy on p

P

E

Tofa’_—. 2 M (/oﬂ[l’\%’_ (e +;P)] (3.9)

Now, by inspection of (3.9) ,we see that by varying p we have
an ordering from the top of the spectrum to the bottom, or,
in other words, p=0 corresponds to the highest binding
energy, p=l is the one just below that and so one. In the
DHN Region we cam, for small enough p (p KL %), expand

the function in (3.9) obtaining

| 2
¥ m*

N ool M - (P +6} (3.10)
tTo"a\ 4M |

Expression (3.10) is a very convenient one in order to
compare with some of our results. The range of values of
p, for which (3.10) 1is a good approximation for the

spectrum, corresponds to the non relativiséic domain.
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4.THE POTENTIAL

In this section weléhall study some aspects of the
Soliton-Antisoliton classical interaction. We will compute
the potential 2;46X/ which describes the asymptotic
dynamics of the SA system for non relativistic processes.

The y&SCX7 potential, corresponding to the interaction
between two solitons, can be computed by an analogous
procedure but the calculations will not be presented here.
We would like to report our finding which is expressed by
(1.3).

We shall search for classical solutions of the sine-
Gordon equation describing non relativistic SA scattering.

In order to fix conventions we shall éssume that the soliton
is moving in the positive direction of the coordinate axis,
and that the origin of the coordinate frame coincides with
the position of the center of mass of the SA pair (see fig.2).

The problem of determining the asymptotic potential
can be solved if we know the velocity v of the center of mass
of the soliton in the asymptotic region. The argument goes

as follows: we can always write

U = Uyp + AU (4.1)

obviously in the asymptotic region Z)Lf is only a small
correction to va . On the other hand energy conservation

implies

2 |
M, Up = Moot AV) + sa (4.2)
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From what we said above we conclude that, for

,X|>>'34M , the potential is

VSA X) = -2 MU AU (4.3)

Expression (4.3) indicates how the knowledge of the asymp-
totic velocity leads to the asymptotic potential. With
regard to that we would like to make some comments. Although
the positon and velocity of the center of mass of the free
soliton can be determined accurately, the same is not true
when it is interacting. For example, when the separation
distance |X| between two solitonsis of the order of
magnitude of the soliton size, i.e. '>(| ~ 1/%*\ , the
two particles form a single bloc of energy in such a way
that it becomes impossible to sdy where is the center of mass
of each one of them. Each particle loses its identity.
On the other hand, if |X| is large enough (when

‘t >> 1/‘rsr\l)'ao) , we shall observe two distinct blocs of

energy - each of them representing a quasi-free particle

(see fig. 2). Under these circunstances we can determine,

within a very good degree of accuracy, the position of the
center of mass of each particle, allowing us to determine
also its velocity. It is precisely for those values of [X|
that we calculate the potential.

A brief analysis of some features whicﬂ characterizes
the free soliton will shed some light on how to proceed in

order to get information concerning « the positions and

velocities of the quasi-free solitons. Figure (l1.2) represents
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a solution gé(kﬁﬁ ) corresponding to a free soliton moving
with velocity U . We shall be very much interested in three
points of the soliton which somehow characterizes its
position. These points labeled as )2 ’ )g and 'Zé are

defined as solutions of the equations

25 pirt) -0
2t Y=Y, (4.4)

and

2° v, t)
TR AN NI

2> Ply,t)
gfﬁsﬂy ))’=\/z(4.5)

Figure (l.b) exhibits the behavior of the energy
density associated with the soliton. By comparision of
figures (l.a) and (1l.b) we conclude that )é (the inflection
point) gives the position of the center of mass, while,
loosely speaking, we can say that the soliton extends from
)4 to )é . We shall note that in the case of a free
soliton all pointi of it moves with the same speed v.

In figure 2 we represent an interacting SA pair in
the asymptotic region. From a close observation of that
figure we can see that when |X\ > 4/m the center of mass

'y;,h of the quasi-free soliton is somewhere between
)ﬂ and '73 and, more specifically, close to the inflec-

tion point ){' (8). From that we should have
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g =2 Us ' (4.6-a)
and
. J, ¢ U L Uy
A (4.6-b)

where U is the velocity of the center of mass of the
soliten and U}’l}h and (}E are the velocities of the
points )Q’ )q and )&_ respectively. These asymptotic
velocities L&, Lﬁ, and TJ} are computed in appendix I.

The results obtained are

A -2l O(e—4m'7°') (4.7-a)

Uy = Ugy + — +
Vo : ® 7

—2m|¥] ~ 4mix
| Uy = Voo + 5-25) e + O(ﬁ ')(4.7-10)
. o0

and

=zmlY,\ ~4m| L 7-c
()-z= U°°+(SJ-:E)6 iO(—e. m’il)u 7-c)

From expressions (4.6) and (4.7) we conclude

that:gelocity of the center of mass of the soliton, in the

asymptotic region, can be written under the form




18.

4.8
Voo (4.8)

where

g ~ 1 (4.9)

and we recall that IXI in (4.8) is the distance between the

centers of mass of the soliton and the antisoliton, i.e.
Xl = 2 Y, .

Comparing (4.8) and (4.1) we infer that

- mixi|
A2 X e (4.10)
Vo

After substituting (4.10) into (4.3) we are led to  the

VSA(x) potential. It can be written under the form:

—-mix|
V.. %) = - az.%} M e (4.11)
SA
This potential is responsible for the SA interaction at

long diaiﬁhces.

We shall add here that the relevant

characteristics of the non relativistic bound state spectrum

is by no means dependent upon a specific value of g.
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5.PHASE SHIFT AND ENERGY LEVELS

The quantization of the soliton-antisoliton
system will be performed in this section. As previously
explained, that procedure is implemented, in our approach,
by substituting the potential (4.11) in the Schrddinger
Equation

'Z)L(X)i-oZ? Mce lx,Z/"X) —EZI'E(X)
M d)( (5.1)
where IAE(XI is the wave function describing a stationary

state of energy E.

Our primary goal will be to compute the

S-matrix elements associated with the potential (4.11). From

® S(E) we shall compute the scattering amplitudes, whereas,
by looking at the positions of its poles, the bound state
energies will be determined.

Since the potential (4.11) is symmetric under
the transformation X —» — X , there exist solutions
of equation (5.1) with well defined parity. This means that
for a given energy E we shall have an "even "kmatrix

even odd
element S(E) and an "odd" one S(E), which are obtained

from the asymptotic behavior ( X —%» % oo ) of the wave

function
-4k x LUt R
7'/’0:) = € + SeE) el X (5.2-a)
X 0o *
LUtn R X 2vtn kX

e + SE) €&
00
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odt -cﬁx cEX
’éﬂzx)d = & Sn;) e
X => oo
dd 'k —1hx
77L0('x) = - x+ S (;) e (5.2-b) .
X —>» —00

where ‘k is the modulus of the momentum of each particle in

the center of mass reference frame.
The SA forward scattering amplitude is
odd
_) S(b) - S (e
ME - 1
2 (5.3)
-fouwand.

We note that this is an invariant amplitude that can be

analytically continued to the S8 channel(4).

The SA backward scattering amplitude is .
given by aﬁ‘
o o
S — SE )
M € = 2 | (5.4)
backwand,
Being %‘E) a generic matrix element we
define the phase shift S;(E) as
S-_U(E) = 1 [’7 3, (6)

while the scattering lengths 4 are defined by the limit

a = v&m A4 [é‘.u('z)- 5,,(‘;)] (5.6)

e 20, R )




21.

For the discussion which will follow we

found convenient to define a function p (E) as

) = "”_;“\“E (5.7
and a constant A as
A = \18% "\{\:‘M (5.8)

The meaning of all constants that appears in (5.7) and (5.8)
can be understood by looking to (5.1).

In appendix II we show that the matrix

eléments %E’ are given by
L0¢M / - 2
ScEe) = — J‘ﬁu) f'(4‘ &) (—2’5—) (5.9-a)
j{; @ r@+e)
and
odd - (4) (- S
S(E)' = \7:'60‘) a-¢) (é) (5.9-b)

T (A) [a4p)

where % is the Bessel function of order ﬂ and J/; stands
for its derivative.

In order to obtain the bound state energies we
will study the behavior of S(E) for &£ < © . In that

region /3 (E) can be represented as'?

(5.10)

-
= o (E) = 2 yMIE]|
P (E) E<O ( ™m
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From (5.9) and (5.10) we conclude that the
binding energies will be‘given by the positions of the 2zeros
of ~L/(A). and \70.(/74) . Since in the DHN Region
A > 1 (because there M/m>>4 ) we can make the following

approximation

TA

J, (A ) LA B (A,o() (5.11-b)

where 8 (A & ) is defined as
)

—
J—N’(A) '-'-"-\}-?-2—‘—- sw B AN) (5.11-a)

and

e(A,O() = A- °<....2.... --1-5— | (5.12)

From (5.9) and (5.11) we can see that the

even odd
positions of the poles of S (E) [S (E) are

approximatelly given by the positions of the zeros of sin@ (cos ).

We can always write

1 ‘
-IC—( N + Vl“" - (5.13)
2
where N is, by choice, an integ*er number and

”] <1 o (5.1

By using (5.13) and (5.14) it is easy to see that, in the

DHN Region, the binding energy spectrum will be given by
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}

(5.15)

m? 2
E»? = v <?+Yl)

where p is an integ#er such that if N is even (odd) the
levels corresponding to p = 0,2,4... will have even (odd)
wave functions and the levels corresponding to p = 1,3,5...
will have odd (even) wave functions.
By comparing (5.15) with (3.10) and identifying
47 with & (see also (5.14) and (3.6)) we verify that ,
in the nonrelativistic limit of DHN Region, our spectrum
coincides with that of DHN .
It can be explicitly verified that our results
obey the criteria for the validity of our approximations
[ see (1.4-a) ana 1.5y ].
In the scattering region ( E > O ) B (E)
(9)

will be a pure imaginary number, i.e.

ﬁ(E) = —4 (5.16)

where

n = 2ym E - 2 L (5.17)

The S-matrix elements are
, ~-24
SZEU)M—‘Z - \7:""'64) /—(47"1/&2 (A (5.18-a)
V)

J! (A) FG-1n)
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and

5oak/ TnA) /’(7+¢/L) A"‘z""'
i) [~U-11) EY,

(5.18-Db)

By using (5.5) and (5.6) it is straightforward
to compute phase shifts and scattering lengths. In the SA

channel we get

__,_[J,{n Ihp-I) 4 tnfeg 2 4 7] 5 10mm

odd

CZ, ‘L('/néﬂ) TC-%@_I_ +{>Mj QM {IJ (5.19-b)
where.ip is the Euler constant.

In an analogous way we can compute the SS
scattering lengths. If the solitons are fermions, as
suggested in the literature(2'5’6'12), Pauli's exclusion
principle will imply that we need to take into account only

states described by odd wave functions,Then the SS

scattering length will be

odd oL -
= 17 4 79
a&s TW{ M(—-—-—M)+ wm Z%M'E + ] (5.20)
In the introduction we have mentioned that

3) rule for " quantizing " the s-matrix 10 hag

Faddeev's
a little flaw. Now we will clarify this point. It is
known that parity is tipically a quantum concept, and/as a
consequence of this, the classical S--matrix(102 does not

discriminates between even and odd parity states. The flaw

of Faddeev's rule lies on the fact that it extends this
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"blindness for parity " to the quantum S-matrix. Fortunately
it is not difficult to remediate this problem. Recalling that
the parity of the wave function of the n - th(ll) SA bound

state is given by (-1)n+l, we can split Faddeev's quantum

©VeN that contains the poles of

the even parity bound states and an SOdd that contains the

S-matrix into two parts: an S

other set of poles.
Faddeev's quantum S-matrix can be written in the

following form(lo)

N
<S F.:: —T-(; <:?1|
TM=1

(5.21)

where Qn is the factor which contains the pole of the
n-th bound state. Note that in the scattering regions each
Qn is per se explicitily wunitary. The splitting above

mentioned consists in defining

N
even
5 = ' C Q?\ (5.22-a)
M= 14 ,

odd

and

N
SOdd = I C Q‘n ‘ | (5.22-b)
m=2 ‘

e utn

One observes that the improved quantization rule leads to
unitary S-matrix elements whereas the spectrum' remains the

same as that of ref.(5). It also leads to scattering amplitudes
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which agree with the ones obtained by Us in the non
relativistic limit of the DHN Region[ Note that in

the DHN Region ~€'n (? %) and 7‘ can be negleted
when compared with Jn(M/m) J
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6 .CONCLUSION

By using a quite different approach, with
. regard to that employed by DHN, we were succeeded in giving
a non relativistic quantum treatment to soliton interactions
within the sine-Gordon Theory. Our method is essentially
the well known non relativistic quantum mechanical approach.
In order to do this, we had to compute first the potential
which is responsible for the interactions between solitons.
After that we studied the non relativistic motion by
substituting the potential into the SchrBdinger Equation.
That way we were able to compute the soliton-antisoliton
bound states, reproducing part of the DHN spectrum, and
the SA and SS scattering amplitudes in the non relativistic
region.

(12) has shown that the sine-Gordon

Coleman
. Theory is equivalent to the massive Thirring Model, strongly
suggesting that the soliton is the fermion of this model.
On the other hand it is well known that the massive Thirring
Model 1is equivalent to the two diménsional massive Vector
Gluon model in the limit

/A. —~o00 , &€ —» 00
(6.1)

with £ = g fixed
where/p( is the mass of the Vector Gluon and € is the
Fermion-Vector Gluon Coupling constant. From that equivalence

we should naively expect that the fermion-fermion interaction
(13)

potential should be given by
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. _ pulx »
Vi) = G [gue = ag sex)

(6.2)

where %p, exp(szIXl) in (6.2) is the Yukawa potential
associated with the Vector Gluon.

Of course the naive argument just above presented
can not be true because the correct SS potential, given by
(4.11), is rather different from (6.2). Then we conélude that
here the dynamics exhibits a very interesting feature, namely
the fact that the lightest fermion-antifermion bound state
happens to be the responsible for the interaction between

fermions at long distances.
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APPENDIX I

We compute here the asymptotic velocities U] .
2 .
In the non relativistic domain ( ([, << 4/ ) the SA solution

can be approximated by the expression.

(a.1)

D (yt)= Im_ tan sinh(Vem?)
SA 77
Uao Cath (7 x)

>

The positions of the inflection points y,(t) and
- yo(t) are defined implicitly as solutiomsof (4.4). By

solving (4.4) we conclude that

Y

. .szt(myo /Yl(t [7 +’}-()] (a.2)

where

1) = A sinh(Veomt) e
Uzo | :

On the other hand, the third derivative of sgéA

vanishes at the origin and at the points which we call

Yo (Y1) and Y, (=Yz) - Then Y,(t) anda Y,(t) are the

solutions of the equations (4.5). After plugginginto (4.5)
iven by (A.l) we will get
céA(y, +) g y g

! 4/2' (A.4-a)
th(m%):?(t) 3‘25[ *j_’i *gg;[i’




30.

and | | /Z
l"(myz)=4@ '3+ZE\/4 7-2 6’;’ ] (A.4-b)

where f(t) was defined in (A.3). When 't >? yml&we shall have

<
(remember that % << 1 )

where the coefficients .} are given by

ao - ‘ % (A.G-a)

o, =(3-2{2) (A.6-b)
1

R = (3 + 25)/2 (A.6-c)

.From (A.5) we conclude that the asymptotic velocities

JX of each point Y - will be given by equations (4.7).
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APPENDIX II

In this appendix we shall solve Schrddinger
Equation (5.1). Being [$ and A given by expressions (5.7) and

(5.8) respectively, that equation can be written as
Z 2 -mkl 2
’lzé__ + A e "4 :—‘_@__4'4/ (3.7)
m* dx? 4
we shall perform now a change of variable

— mix|
§___A€z. (A.8)

In terms of § equation (A.7) becomes

*d° d & = A.9)
ga_?ﬂwia?lpdg )Y =0 (

Equation (A.9) can be easily recognized as the

Bessel Equation. The even solutions (even under the change

X —> =X ) are given by
L c [Z 8 = T4 249)]
/S = _./5 (@ p -A( (A.10-a)

/
where ;z; is the Bessel function of order f’ ’ ;%5 is its

derivative and C is a constante. The odd solutions can be

written, for )()O’ as

77L/:a/af = [ LW -Zm T p(;)] (A 10-b)
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Since in the limit X —> 00 ‘§ tends to
zero, we can make use, in this limit, of_the following

approximation for Bessel functions(14)

o A apf
J/:(g) ¢>o0 [U+p) (2 §)

(A.11)

From (A.10) and (A.ll) it follows that when
X - OO0 we have

” (REX
,¥e( ] ~ [ (A) A)(& J_ (A) /A)Ge(b%x (A.12-a)

X-»00 m-@ m+ )\Z
and °
o @ G S e
q(o - I8 g ) @_51_. ____c:z_)__(ﬁ.) € 7 a2
# xow (FO-E) ra+e)

Remembering that in the séattering region 3 ( E)
is represented by (5.16), and taking in account our definitions

(5.2), we can deduce (5.9) simply adjusting suitably C and C'.
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implemented in the following way

_%gdg%(2+e )_—’Z'h_b‘ §+et9.,',w

,
LA g*n

where 9_“-‘: :%__'h } " = 4)2)-., N
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CAPTION

Fig.l.

Fig.2.

(a) Free soliton; (b) Energy density associated to it.
Yo is the inflection point (that here is the center
of mass); Y, and y, are the points where the third

derivative is zero.

(a) Soliton-antisoliton pair interacting in the asymptotic
region; (b) Energy density associated to them. * y, are
the inflection points; + y; and #* y, are the points where
the third derivative is zero; and *Yom are tipical

candidates to be the centers of mass of each particle.
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