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ABSTRACT

Resonant Raman scattering from LO phonons in the presence
of a constant magnetic field 1is considered. We calculate the
differential extinction coefficient, including effects of the
electron-phonon interaction, for a doped semiconductor. It is
shown that significant deviations from the Lorentzian 1lineshape
may appear due to hybridization of the phonon mode with the
cyclotron modes, when for certain geometries, a harmonic of the
cyclotron frequency is approximately equal to the LO  phonon

frequency. An application is made for GaAs.
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I - INTRODUCTION

Inelastic scattering of light has proved to be a useful
tool to study hybridization of elementary excitations in semi-
conductors, e.g. hybrid phonon-photon (1), plasmon-phonon (2),
(3)

plasmon-polariton , different symmetry phonons (4), and other
coupled excitations. Raman scattering of light by crystals in the
presence of a constant magnetic field has been considered by
several authors, who studied scattering either by Landau levels,
more precisely, by Bernstein modes (5),or by the coupled electron-

(6’7). As shown by Wolff (5),e1ectrons in a nearly

-phonon system
parabolic conduction band, do not scatter light in the dipole
approximation. However, in n-type semiconductors having a non-
-parabolic conduction band, a small forbidden energy gap and a
small conduction band effective mass, the scattering cross section
is finite and should be detectable experimentally. This magneto-
-Raman scattering was later observed in InSb and InAs (8). These
éxperiments showed deviations from the behavior predicted (5) for
the Raman frequency shift at energies close to the LO phonon
frequency. These deviations were ascribed to polaron effects ,

(7).

i.e. electron-phonon mixing In these experiments, the Raman

line is composed almost exclusively of the electron-like contri-
bution to the hybrid modes (7).

In the case of parabolic band semiconductors, on the
contrary, the electron-like contribution to the Raman 1line is

negligible when compared to the phonon-like contribution (9).

Genkin and Zil'berberg (6) have pointed out the possibility of




resonant Raman scattering by LO phonons when the phonon frequency
equals a harmonic of the cyclotron frequency. An additional en-
hancement of the LO phonon Raman line can be observed in highly
photo-excited semiconductors (11). This enhancement is assumed to
be due to a LO phonon distribution strongly departed from equi-
librium, which results when injected photoelectrons cascade down
the Landau-levels with the emission of LO phonons. Raman scattering
experiments can be a very convenient way to study the LO phonon-
Landau level system in conditions of approximate statistical equi-
librium or in the presence of hot excitations.

We present here a study of inelastic scattering of light,
in a static magnetic field, by the coupled electron-phonon system
in a direct gap, n-type semiconductor with a parabolic conduction
band. We’consider the effect of the electron-phononi interaction
on the scattering amplitude and on the line shape. Signifficant
effects appear in these quantities due to the quantization of the
electron states in a magnetic field. Neglecting the lifetime of
the virtual electron states, the scattering amplitude ﬂuﬁs singu-
larities of a logarithmic nature. This fact, together‘ with the
effect of the frequency dependence of the phonon damping produces

a Raman spectrum possessing a complex structure.

I1. DIFFERENTIAL EXTINCTION COEFFICIENT

We consider a monochromatic beam of photons from a laser

source of frequency Wy s incident on an n-type semiconductor

crystal. The Hamiltonian of the system is given by




Ho= Hg + Hy + Hgy + Hp + Hgg (1)

-~
where HE is the Hamiltonian fot;the many electron system, HL is
that of the phonon system, HEL represents the electron-phonon
interaction energy, HR is the Hamiltonian of the radiation field
and HER is the interaction between the radiation and the electron
system. We assume the crystal to be in the presence of a static
magnetic field § , with the associated vector potential given in

->

the Landau gauge Ao = (-yH , 0, 0).

We neglect the deformation potential contribution to the
electron-phonon interaction energy since, in the case of polar
crystals, it is generally negligible when compared with the long-
-range electrostatic interaction between electrons and longitudinal

optical phonons. Therefore the electron-phonon interaction will

be described in this case by the Frohlich Hamiltonian (12). We
work within the effective mass approximation and take the one-
electron wave functions to be the Landau functions (13) |n, kx ,
k. , 0 >, where n 1is the Landau level quantum number and o the

Z

spin quantum number. The corresponding one electron energies are
E (k) = (n + 1/2)he_ + hzké / 2m” whefe w. = (eH/m*c) is the
cyclotron frequency of the conduction band electrons.

In Figure 1, we show the Raman processes which give rise
to scattering by LO phonons. The diagram (a) involves the A?
part of HER , where A is the vector potential of the radiation
field and which, here, connects intraband electronic states. The
diagram (b) involves the K.E part of HER twice, which,for the
resonant condition, w_ % nw. , connects interband electronic

o)
states.




In absence of the static magnetic field, the contribution .
to the différential extinction coefficient comes from the type (b)
diagram. In the present situation however, the first process (a)
is resonant and,in some materials, may dominate over type (b). In
the following discussion we assume this to be the case, and con-
sider only contributions from diagram (a).

We consider the anti-Stokes Raman process in which inelastic
scattering of photons results in the productionAof a phonon with
the virtual participation of the electrons. In our present treat-
ment we neglect temperature effects since a finite temperature will
broaden the Raman line and may wash out the éffects resulting from
phonon hybridization in which we are interested.

The scattering Hamiltonian is taken to be H=#H H which

EL""ER .
connects the specified initial and final states only in second
order of perturbation theory. To obtain the differential extinction ‘
coefficient it is necessary to calculate the transition probability

between the specified initial and final states. For this purpose,

we evaluate the second order contribution to the S-matrix expansion

s(2), L:i§§li Ifdt dt' P { Vg (t) Vpp(t') +Vgp(e) Ve (1) ) (2)

where
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are the relevant parts of Hpp and H;  respectively for the
process (a) in Figure 1.

In Eq. (3) and (4) we have introduced

A - 2mhie? (ek'éu) 5
MO mte /2 (%)
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and
. 1/2 _ _1.1/2
Vg =i (TG el - egh (6)

We have simplified our notation for the Landau functions to either,
|n,i> or ¢nk(?). The radiation polarization vector are ék, éu’
v is the volume of the system and W, the LO phonon frequency
(dispersion has been neglected) and Cn,i , ba and a(iu) are
second quantization operators for electrons, phonons and photons
respectively. Finally P is Dyson's time ordering operator, which,
in the present case, can be replaced by Wick's time ordering
operator T without alteration. To include effects of mode
hybridization we assume the asymptotic stgtes to consist of free
photon states and interacting electron and phonon states. We

neglect the electron lifetimes and use Wick's theorem to find,for

the relevant matrix elements of S(z) s
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where LY

V(E.t) = I o 3(T) c 3(t) (8)
nk

and |i*>, |£f*> are the initial and final crystal states. Here

we also have:

AT Lt E ) v(EL) wTE L) p(@ErLt) ) it -
(9)
= - GO(Ft,TtT)CO(F 't Tt ) + 6O (Ft, T t)E0 (T e, Te)
where
GO(rt,r't') = -i <4, | T { v (T, (E .t ) 16, (10)
is the one electron zero temperature Green's function (14) in the ‘

presence of a magnetic field, and ,|¢o> is the ground state for
the electronic system. We find:
o

GO('r*t,_vatl) = ZK ¢n-lz(_{:) ¢:1,.12('r"v) J_(%_(.’ET)__ eiw(t-t')
n

-0

0k, kR ek (P -1k |

) } . (11)
w'wn(kz) +1is w—wn(kz) -is
where
wn(kz) = ‘ﬁ"l En(kz) ,
kgg) = | U‘(n+1/2)‘hwC } 2m” /42 ll/Z
and
k(n) =0 if n > n .
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u being the chemical potential which coincides here with the Fermi
energy of the electron gas and 8(x) the step function. The first
term on the right hand side of Eq.(9) vanishes in our case and Eq.

(7) becomes

) ik, -kp).T >
E|s@i>=F T 7 #AV /A <akle R ke
5 LR'q
n lff'q

. > \ i
x <nﬂi1 e 14T |n %> IQ% Ig% Jdt[dt' e

y ei(w‘w')t'<f*|b£(t')li*> Fooo (kK w,0") (12)

where

o (lk, |-k®e |k |-k{E"))

F__,(k. .k ;w,0') =
nn-tztz (w-w (k) +is) (w' -wn.(kz)+1s)

(n') ) (n) T
o (I, 1-kPe (R -1k D) e -Tk ek, I-kp °)

+
(m-wn(kz)+1s)(w —wn,(k;)-is) (w—wn(kz)—is)(w'-wd(kz)+1s)
(n)_ ')y
| Blgp - Ik, )0 (kg flle) 135)
(w-wn(kz)—is)(m'-wn,(kz)—is)
Using
an ¥] 1T |ni = s (k! Kk +Q )8 (k] k, QT (ke Ky Q) (14)
where

¢ > 1"’Qy(kk) > )
I (kK LQ) () (15)




v8—

and
| o A 2
Lppe @ = 20" W/2 80 & (qiqn™ e T LML oD
(16)
. 2 2 2 2 m
with Ql =Q Qy , A2= efi/cH and Ln(x). are the Laguerre

Polynomials.
Performing the integrations on w , w' and t in Eq.(12),
-
summing over k' and kx and using the resulting S(a’iL'iR) to

> .
sum over q we find:

iAy. V. v/m; e T
. RL L
<f|S(2)|1> = i\ ) ) |In n+2(ql)l2 J dk
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w-zwc-ﬁkzqz/m +is w+2wcdﬁkzqz/m -is
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where n, is the highest non-empty Landau level in the ground
state, w = w;-wp is the energy transfer and a = iL'iR the
momentum transfer. We neglect g4, when compared with kZ and

let s > 0 in the energy denominators in order to have a  well

defined integral over kz

We are now in condition to calculate the differential ex-

tinction coefficient (15)

d’h _ _ P(Q,w)
dQdw

. 18)
-1/2 (
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. Here P(Q,w)dewR is the transition probability rate for
a photon with frequency in the inverval w_ < w < w_ + du_ to be
. scattered in a direction Q(6,¢) within a solid angle dQ , i.e.
wl
R 1 wial(2) 5%y (2
P(Q,0) =) - | <£*|s'4/|i*> | . (19)
f* (2,") 3 m 1
1i o
im
fo b [
°  Ct
o}
Substituting Eq.(19) in Eq. (18) we have:
2 2
d*h _ _d*h l L (w) (20)
dadug dode ‘o 1
where
) o] = e |1 Pl )12 [ak,0 (U, |-k B0 (k- )
| do], 9 1321 n=o n,n+gt z z
1 1 2
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)\2 2 -
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o) R° "L -1 -1
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It is convenient to express Eq.(24) in terms of the spectral

density and phonén Green's function. We can rewrite Eq.(24) as

1 Tdt d ' e-iw(t'-t) .k b ‘f* f* b+ ' Py
Ly@) = 4 Jatfae T LIy £ett b |37

-0 =00

<]

IdT e " <bz (1) b} (0) > | (25)

2T
-0
where < ... > stands for the statistical average value.
Within the above mentioned limitations we have obtained an
analog of van Hove's result (16), and, therefore, the Green's

function formalism, as described in the already classical paper

by Zubarev (17), can be used to obtain:
d*h _ d%h 1 .
Ide, = Tdade |, v Im Ggluris) | (26)
where
Ga(m+is) = << ba Ib% ; w+is >> (27)

is the phonon Green's function.

We refer to the first factor in Eq. (26) as the scattering
strength, even though it is frequency dependent, and to the second
factor as the line shape.

If the phonon states are truly stationary the crystal state
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|r*> can be written as a product of electron and phonon states
and the line shape reduces to the energy conserving function

G(w-wo) .

I11. THE LINE SHAPE

Next we proceed to evaluate the one phonon Green's function

including Frohlich interaction. Using the standard decoupling

(17)

procedures we find, including terms up to second order in

the electron phonon interaction,

Gylwris) = (w-u, = Pylutis) )1 (28)
where
Pa(w+is) = Pa(w)-i Ya(m) (29)
1 . {EmkD-f@ K )
Pa(w) = p )] L% IVqIn,n'(ql)I
n',n,k ﬁw-en,(kz)+en(kz-qz)
(30)
Ya(w) = ™82 T L VI ., (ap]? (E(.k-D-£(n' k)
q n' ,n.k qn,n _L
s (hu-e (k) e, (K, -a,)) (31)

Here f(n,i) is the Fermi-Dirac distribution function and
e (k,) = hmc(n+1/2)+h2k§/2m*-u , u being the chemical potential
and p.v. stands for principal value. We will cgnsider the case of

concentrations n, such that the dependence of the chemical po-




tential on the magnetic field can be neglected so that o .
u o= (ﬁ/Zm*)(Swzne)z/S. After some computational work we find:

v Do D(ql,qz) pz_l(n+2)! wz-(ﬂ,wc-B(n))2

P>(w) = { 2n +
q" 'zzl nZo m (2!)% n! I wz-(zwc+3(ﬁ))2
w?- (Lo +p (8?2
+ %n wz-(EmC-B(n+zj)2_ } (32)
and
© no
Y>(w) = Y., (w) 33
L 221 nzo n,L (33)
where
-1 .
Y (w) = D(q.q )&Ml! if B(n+9‘) < |w-fw_ | < B(n) .
n"Q' .I. z (zv)zn. c
' * (34)
and ZERO otherwise. .

2
In equations (32) and (34) we have introduced, p==%r qi,

e2m*w 2
04l -1 -1

(n) _ (n) , * =
8 = 'Hq k /m and D(q ,q ) S —— (Eoo - ) . In
22k L+ Zﬁzqz(qi+q;) ©

deriving Pa(m) and Ya(w) we have used the fact that a (the
photon momentum transfer) is very small and one can assume p <<1
and q, << kgg) . Blank and Kaner (18) derived éxpressions for

Pa(w) and Ya(w) for acoustic phonons interacting with cy-
clotron modes. In their calculation the leading contributions are
due to electronic intralevel transitions, whereas in our calcu-

lations, involving low momentum optical phonons,electronic inter-

-level transitions are the most important contributions.
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To end this section we should point out that, in terms of
the real and imaginary parts of polarization operator Pa(w), the

line shape given in Eq.(26) can be written as:

1 | Vg (W) -
L+ (w) = 3 Im G»>(w+is) = - 5 3 (35)
9 q Iw-wo-Pa(w)I +(Ya‘(w))
IV- THE SCATTERING STRENGTH
. d%h . .
We evaluate the scattering strength - [oT: (T o as given in
Eq. (21) , introducing, however, electron lifetimes in a
phenomenological way (19) We obtain:
2 ' Lo
Sodr|, = Cq V'@ + N @) (36)
{
where
oo no ®
' = 2 1 (n+2) (n) _
N'@ =1 T el [ax 8l -k 30 (1@ |k, 1)
* *
» w-ﬂwc-ﬁkzqz/m i w+2wc-hkzqz/m y
2 2
(w-zwcdhkzqz/m*)2+(Fn,n+2) (w+2mc_ﬁkzqz/m*)2+(rn,n+l)
(37)
and _ n, © '
" - 2 (n+2) (n)_
N'@) = ST T (@) 1 fage g ke P 1k, D
x { I'n,n+IL + I‘n,nﬂl,
. 2 2 2 2
(w-lwc-hkzqz/m*) +(rn,n+2) (w+£wc—hkzqz/m*) +(I'n,n+2,)
(38)
Here T =1 L+ Ly, with ©. and = being  the
n,n+L 2 ‘T  Tpeg° n n+L g

lifetimes of the corresponding Landau one electron states.Clearly

Eq.(21) shows resonant denominators when w app}oaches a multiple

of the cyclotron frequency Lw. however the finite lifetime of
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electron states in Eq.(35) removes the divergence. 1 . ]

Again with p << 1 and q, << kzF we find:

w D * -,"(n)z‘ ’ 2
N ) =] ] —mel(neg): (w-2w *8 ")+ (Tp neg)

2=1 n=o thz(z:)zn:

{ an

+

(“""“’c"‘s(n))z“(rn,mz)2

(m-zwc-e(n+“))2+(rn
(w-2u +8 Py 24 (r

(et +8 ™)) 2e (r_

2 2
,n+2) ’n+2)

+ zn‘ ‘£n|

(et -8y 24 (r

2 2
n,n+£) n,n+£)

(“’HL“’C-B(n‘hz))%(Pnlnﬂz)2

- ln\

(39)

(wrtw 8 PN e Ly

and

w = Do
N (w=
° 221 n=o0 ﬂqz(Z!)zn! %,

* £ ' -
mp (n+f). {Z( 31(8(1'1"'2) ) -ng,:l)l(s (n) )+ZSE.21(B(n+£) )_Zg‘gl(s(n)) }

(40) - °
where

" 2T

B
n,n+f
arctan 2

+(w:2wc)2-82

2
(rn,n+2)

| : : 2
| if 62-(wtlwc)2 < (Ty neg)

2 I‘n,n*rJLB

+(wtlwc)2-82

‘T + arctan

2
(rn,n+2)

\ if B2-(utte)® > (T [ )°

(41)

In the next section we present numerical results ap- Y

propriate for the case of n-type GaAs.
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V - RESULTS FOR GaAs

We proceed to apply our results to GaAs. This material
was chosen because it has a nearly parabélic conduction band and,
therefore, the electronic‘contribution to the Raman spectrum,
through processes suggested by Wolff (5) should be small. On the
other hand,for certain experimental geometries,there should exist
a Raman spectrum which arises from scattering of light by phonons
mainly through process (a) of Fig. 1, and which should be strong
enough to be observed experimentaly.

In this material the resonant condition nw . X w, occurs at
values of H=217/n kOe. In our numerical calculations we consider
static magnetic fields of the order of 110 kOe, such that W, A ch.
We consider acarrier concentration of n, = &7XJ017cm-3 which leads

to n0==1v and a Fermi energy u==5.QXID_1“ergs. We consider the

o]
AL= 10150 A, Y.A.G. 1line which produces a maximum q value of

roughly 4 XIoscm—l. We arbitrarily choose a geometry such that
q=2 XIoscm—l. In the calculations we used the following values
for the parameters of GaAs : m = 0.068 my o, e =10.9 » g T 12.9 ,

Wy = 5.6><1013 seg_1 and €g = 2.43 XIO_lzergs. One should note that

the Raman intensity is proportional to |éL.éR|2 , but the most

interesting angular dependence is related to the orientations of the

phonon momentum with respect to the direction of the static magnetic

field. For fixed |q| , the angle ¢ between the phonon momentum q

and [ determines the magnitudes of q, and ql which, as we have

seen from thé calculations, are very important parameters. In what
' >

follows, we have fixed |q| and varied the direction of H ,

changing the angle ¢ in the calculations.

In Fig.2, we show Pa(w) and Ya(w) related, respectively,

e
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to the real and imaginary parts of the polarization operator Pa(w)
in Eq. (29) . We note that only the £ = 2 term in Eq. (33)
contributes to the imaginary part Ya(m) in the frequency region
w N ch » but there can be strong non-resonant contributions to
the real part Pa(m) in this freq;ency range. In Fig. 2 , we
plot not only Pa(w) , but also Pa(m) , the L = 2 resonant
contribution to Pa(w) from Eq. (32) . The influence of the
resonant contribution is apparent in Fig. 2 , however the ¢ =1
non-resonant term is also very big.

In Fig.3, we plot a hypothetical line shape Lg(w) , obtained
neglecting non-resonant contributions to Pa(m) , apd in Fig. 4
we plot the line shape given by Eq.(35), with non-resonant terms
included. In both figures we show the line shape for several
values of the magnetic field H . It is clear from these figures
that the effect of the non-resonant term is to shift the strongly
distorted lines to higher field regions, which is equivalent to
a shift in the phonon frequency W,

To give an idea of the strong angular dependence of the
spectrum, we show in Fig. 5 the line shape as a function of ¢
This angular dependence is the result of an enhancement of the
phonon relaxation with increasing ql , the momentum transfer
perpendicular to themagnetic field. On the other hand, we note that
the width of the frequency range for which Ya(w) is different
from zero depends on , - the component of the phonon momentum

parallel to the magnetic field. Therefore a delicate balance is

needed for the contribution from Ya(m) to the line shape to be

important throughout a reasonable range of frequency.




Finally we introduce amplitude effects,calculated in section
IV. In Fig.6 we plot Né(w) and Né(m) , real and imaginary part;
of the scattering amplitude, as a function of frequency for several
values of the electron lifetime. Here we approximate thé electron
damping T

by I, for the levels involved in the calculations.

n,n+f e

In Fig. 7 we plot the differential extinction coefficient
given by Eq. (26) as a function of frequency for two different
values of CHa The line corresponding to mc/wo==0.55 has a very
complex structure because the phonon mode interacts with a continuum
of electronic excitations and for this value of We the renormalized
phonon frequency lies within the continuum. For wc/wo =0.45 , on
the other hand, the renormalized phonon frequency does not lie within
the continuum and we clearly see a strong 1line around the re-
normalized phonon frequency and a small structure in a frequency
region corresponding to the electronic excitations. This spectrum
is very characteristic of a hybrid mode. We estimate the extinction
coefficient to be approximately 8 x10~° cm™' which is within the
detectable experimental range.

In computing the curves of Figs. 3,4,5 and 7 we have added
phenomenologically a constant damping Yo = 0.01 w, » to the
frequency dependent Ya(m) to take care of contributions to the
phonon lifetime coming from other processes not included in this

calculation.

VI - CONCLUDING REMARKS

We have considered the effect, on the Raman spectrum of a
type-n semiconductor, of the hybridization of the LO phonon and

cyclotron modes through the Fréhlich interaction. Neglecting the




lifetime of the electron states we have related the extinction

coefficient to the double-time Green's function formalisnl(ln.

We
have calculated the phohon Green's function for an electron-phonon
system coupled via the Frohlich interaction and in the presence of
a constant magnetic field; - We give special attention to magnetic
field values such that the LO phonon frequency is an integral
multiple of the cyclotron frequency.

Genkin and Zil'berberg (6) have shown that in these field
regions, the process (a) of ‘Fig. 1 is resonant and may dominate
over process (b). These authors neglect the kz dependent term
in the electron energy and made no attempt to calculate the effect
of mode hybridization which may be very important wunder these
resonant conditions.

Our results show the importance of including the kZ de-
pendence in the electron energy, not only because k(;) may be
reasonably big and the approximation of neglecting kz may be a
poor one in some cases, but because it.is vital for the existence
of hybridization effects on the line shape. These effects come
from the interaction of the LO phonon -mode with a continuum of
electronic excitations. If we neglect kZ this continuum is

destroyed. Furthermore, Genkin and Zil'berberg consider the case

of carrier concentrations such that the Fermi energy is less than

(3/2)'ﬁwC . This is equivalent, in our work to consider only the
case where n, = 0 , which in general 1is very restrictive .
Neglecting kz in the energy denominators of Eq. (21) and taking
n, = 0 , therefore retaining only one term in the sum over n,

we retrieve the results of Genkin and Zil'berberg as is expected.
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¢ FIGURE CAPTIONS

. Figure 1. Processes contributing to the phonon scattering.

Figure 2. Real, P(w) , and imaginary, Y(w) , parts of the
polarization operator P(w). PR(w) is defined

in the text.

Figure 3. The line-shape, LR(w), resulting when only the

R . . . .
resonant P (w) contribution is included.

Figure 4. The line-shape fuction L(w) for several values

of the magnetic field.

Figure 5. The line-shape L(w) for several values of the

angle between phonon propagation and magnetic field.

Figure 6. The real, N'(m), and imaginary, N"(m), parts of the

scattering amplitude.

Figure 7. The differential extinction coefficient for two

different values of the magnetic field.
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