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ABSTRACT

Scatterina properties éﬁd the decay of prepared states
in a scheratic potential landscape are studied by means of_a'
coupled-channel calculation. Structure related to the topo-
araphy of the potential is found in inelastic spectra énﬁ"

fraoment enercv distributions.
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Potential effects in the. collision of two. complex
nuclel {or the related phenomenon of biﬁary nuclear fission)
must be described in terms of moYe or less complicated potential
landscapes which involve at least a numberrof fragment intrinsic
collective degress of freedom in addition to the main scatterina
coordinate which goes asymptotically into the relative coordinate
between their centers of mass [lj. Althouah these potential
landscapes are.particular at least to each mass number and charae,
there are some general gualitative features that are shared by
many of them. One such feature is the presence of-"windinq" oOT
"misalioned" valleys corresponding to different minimum potential
paths for processes leading inwards ("fusibn") or outward§
("fission") respectively [2]. In any case, the topography of
the potential landscapes is important to determine the type
and the strength of the couplings of the different degrees of
freedom. It is, in this sense, one of the important inoredients
to determine the features of inelastic vyields in a scattering
situation., 1In this note we report on a study of the qualitativé._
scatterine features produced by such potential surfaces by °
considering in some detail the scattering scolutions of a soluble
schematic model. It consists essentially of a two-dimensional
enrichment of the simple potential model studied some time acdo
by McVoy, Heller and Bolsterli [j], which is conveniently handled
in terms of a set of coupled equations whose solution can he
reduced to a problem of matrix inversion. A suitable
adantation of the treatment allows as well for a study of the
decay of a prepared state in the two-dimensional potential
surface. Amonda other results, interesting effects emerae in
the spectra for the enerqgy of relative motion in each case.

The model we consider is best defined by the Hamiltonian
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HM = Hr + Hx' .+ Hb =

{Lz"%V(r)] + [—’5—2- + -]-'-umzxz:'-i- Aaf (x) § (z-a)
2m 21 2 . |

The first bracket, Hf, cchtains a one-body kinetic energy (witﬁ
constant, scalar, mass parameter m) and a potential V(f).

This potential includes an infinite potential barrier at the
oriagin (r=0). This makes this part of the problem equivalent
to s-wave scattering by the spherical potential V(r). Although
a generalization to arbitra;y partial waves in three dimensions
is straightforward, we felt that it would be inadecquate in

view of the form chosen for the last term H_ of H. The second .

b
bracket, Hx' is a one*diménsional harmonic oscillator with

mass u and frequency w. It describes qualitatively ﬁound,
intrinsic excitations of the colliding particles. Its coordi-
nate x must therefore he seen as being associated qualitatively
to some sort of intrinsic (e.g., deformation) deqgree of freedom
with a discrete spectrum. Finally, the_last term presents a 
sch§matic barrier to the colliding particles at r=0 with a
barrier height that depends, through the function f(x}, on the
oscillator degree of freedom. This function couples the.
different channels that correspond to the eigenstates of the
oscillator. The implication of this is that the existence

of many channels reflects the exiétence of intrinsic degrees
of freedom whose behavior affects also the transmission
amplitudes through the potential barrier [1,3]. The main
advantage of the thin (G*function).barrier is in the simplicity'
gainéd in the treatment of the model. Although guantities

like transmission coefficients, etc., have for this barrier a

much less pronounced energy dEpendEnce as compared with more
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realistic thick barriers, we still expect to get an adequate
qualitative picture of_the main scéttering patterns for
potentials of this type. Our choice for the é0up1ing function
f(x) has been‘; |

fix) =1 - o exp(— p(x—xo)él

so that it dlffers from unity by a gaussian dent of depth o
and!widthtpflzzp'centamed about the vaiue X of the oscillator
coordinate. Thiis is: intended to simulate the existence of a
fission pass in the potential landscape which is not alighed
with the=mamﬁ7fusﬁon valley (given here by x=0). In.this:
respect our potential model ektends the topoaravhy of the
two-dimensional Fission model studied recently by Massmann,
Ring and Rasmussen E4T , in which the channel coupling is
caused‘byra localized symmetrical narrowing of a straight
valley. This situation would correspond quaiitétively'té
gsetting xo=0 in our model.

The Schrodinger equation for Hy, can be very simply
solved for a variety of potentials V(r) and of coupling
functions f£(x). The wavefunction ¥(r,x) (with apprbpriate"
scattering boundary conditions) is conveniently expanded
in the'eigenStates'xn of the harmonic oscillator

¥(r,x) = % u (r} X (x
n
and the amplitudes un(r)‘Satisfy equations c0uplea at r=a bf“'
the matrix elements, in the oscillator bésis, of the coupling
function f(x). For simple choices of V(r) the amplitﬁ@eé'un"
are given analytically both in' the internal {i.e., r<a) and

in the external region, and the cbupled equations problem -

reduces to that of a linear system driven by a term related
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Lo the incident waves sPecified in the boundary conditions.
We use the standard boundary_COnditions-with incident waves
in a given oscillator channel ng and outgoing waves in all
channels ("fusion" calculation).

As an extension of this calculation we also treat
the case in which a qiven resonant state in the r<¢a part of
the potential landscape is fed through an independent channel,

orthogonal to those described by H This state is allowed to

M*
decay and the yield distribution in the oscillator channels.

is studied ("fission" calculation). This case differs from the
preceding scattering situation in that the oscillator channels
are now driven by.a source which is in a definite oscillator
state in the "inside" region of V(r). The general framework
adopted for such an extension is as follows. We first add to
the system as described by HM another (orthogonal) channel

described by a Hamiltonian H1 and coupled to the degrees of -

freedom of Hy, by separable terms of the form

R,

H wl =y

w = lvy> g% <w

where |v,> and |wM>'are states in the space of H; and of H,

respectively, and g is a coupling constant. The extended

model is now described by the Hamiltonian

H = HM + Hl + HlM + HMl

The amplitudes corresponding to the new and old channels’

"satisfy the coupled equations

(E - H ¥ |wM> g <v1| ¥q>

R

(E - Hl) ]W1> = ]vl> q*<wM]1WM;:
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and it is now poséible to use an incident wave in the newly’
introduced channel and to require outgoing waves only in all
other channels. These waves are fed.by the effective source
term, proportional to lwy>, on the right handISide'of the =
first of the two coupled equations. The special separable
form chosen for HiM' ‘on the other hand, alloWé for the
complete formal solution of these equations in closed form.

One %ets

gevy o>

Ca<vy Yy
111 1

E+in-H

1l - <w lwr,fr'}lglrz'cvll

M

Ivl)"
1l

[ 1
n E+in~H
where |¢l> is the scattering state. for the uncoupled channel -
described by Hl' This form quarantees, in particular, that
unitarity is properly maintained for the complete scattering
problem. . - | S e e

There is still much freedom in the choice of Hy and
of the ingredients of the coupling texrm Hle In order to
study the properties of the potential landscape of H, without
additional effects brought in by the new channel, we chose
the latter to be "featureless" in the following sense. We .
take g<vl[¢1> = Yl,_constant withIE'and consistently with

this, ,

1

912 <vy|
E+in-H

lvy> = —inlal2levy 422 = = dnlyy |2
1
‘One still has to specify IwM>. This normalized source state
can be defined as the product of an eicenstate of the oscillator
with the appropriate.eigenstate of H, in the internal reaion,
confined by an infinite potential barrier at r=a. As it is o _ ' B

known, this choice essentially exhausts the residue of the
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Green'’s function of Hr at the corresponding reeonance pole [5].
We report here on several-"fusion" ana "fission" cal-
culations for potentials with V(r})=0. We used arbitrarily
a reduced mass m—20 AMU and a radius a—l fm. The oscillator
frequency was chosen to bhe 0.6 MeV and, for each.value of the
energy, all channels having positive kinetic enequ.on either
side of the thin barrier were taken into eccount. In the
cases shown the barrier heith A was 25.Mev ‘and the parameters
of the coupling function f{x) were a=0.8 and p—O 8. The value
ef the pass displacement X, was varied near the value x0=2. |
The last two parameters are in units such that the oscillator
parameter b=l, This choice for the parameﬁers in £(x)
impliee Ehat the dent in the potential.harrier is eomewhat
wider than the gfound state of the oscillator and is displeced
away from the origin by distances of the order of its width;
In a fusion calculation elastic scatteriﬁg and.
transition amplitudes for all open channels were obtained.as.
a‘fﬁnction of total'energy in order to stﬁdy resonant behavier
in the two—dimensional potential landscape. For the sake of
comparison, the pure elastic scattering obtained by nealecting
nondiagonai elements of the couﬁlihg matrix based on f(x)
was also calculated.. Results for pure elastic, coupled channel
elastic and total reaetion cCross seeiions are shown in fig, 1.
Here xo=2.0, and incident waves contained the ground state Qf_
the oscillator. &2 stroﬁg_coﬁpling to inelastic channels in this
case essentially removes the resonant peak from the couplea¥.
channel elastic cross-section. A2An Argand plot of the
correspending elastic S~matrix element shows that inelastie
processes, together with many-channel unitarity requiremenﬁs;

cause the resonance loop to shink until it nearly touches the

origin [3].
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In a fission calculation fragment yields in all open
oscillator channels were obtained. A suitably small value
was taken for Yy in 6rder not to broaden the prepared.state '
appreciably through the coupling to the feeding channel. o
Single oscillator channel results involving no off—diagonai
matrix elements of f(x) were also obtained. This, together
with the total fission yield in the many-channel case is |
shown in fig. 2 for the samé resonance aé in fig. 1. The
source involves the ground state of the oscillator, and the.
broadening of the fission line due to coupling to excited
oscillator channels can be clearly seen.

We show next,.in fig. 3, spectra at different values
of total energy for the fusion and for the fission calculation.
The potential is again the same as that of fig. 1. They show
structure as a function of fragment excitation Q. .This
structureris not determined by resonant effects. It varies Q%
only_slowly with total energy (in the scale set by the resonance
width) and appears also iﬂ the transmission matrix obtained”
in a "one~dimensional" treatment of the r degree of freedoﬁ,:
in which the waves transmitted to the left of the barrier
are allowed to trével undisturbed to r=-=. This "one-dimensional“
transmission matrix is, of course, related to.the "three- -
dimensional" (s-wave) scattering amplitudes via an infihite
series of successiﬁe reflections, as done in ref. [3].

Fig. 4 shows the ﬁariation of the near-resonance structure

for different values of the parameter X of the coupling
functién. The minima in the spectra are seen to move to

higher excitation energies as the pass moves away from the . N
main valley, while new peaks appear eventually in the first 

chahnels.
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The results of this schematic model seem thus to-
indicate that, appart from the expected broadening of
resonant peaks by inelastic effects in the potential lands-
cape [6] ;, structure may be generated in spectra, as a
function of Q, hy the channel couplings produced by the
topography of the potential landscape. This structure could
be strongly damped, however, by non-potential absorptive
or "viscous" effects, involving the coupling to additional.
non-collective degrees of freedom on the potential surface.
L fuller investigation of these effects-is presently under way.
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during a stay at the CNEA, Buenos Aires, where ﬁhis work
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FIGURE CAPTIONS

FIG. .-l - Pure elastic (dash), coupled channel elastic (full)
and total reaction (dot) bross~sections as a function
of energy. Potential parameters are as shown, with
v(r}) = 0.
FIG. 2 - Single oscillator channel (dash) and many-channel
total fission vields for the same potential of fig. 1.
FIG. 3 - Spectra for fusion (circles) and for fission (crosses)
calculations. Potential parameters are those of fiqg. 1.
Full curves correspond to "on-resonance" total eneray
(2.40 MeV). "Off resonance spectra {(at 8.6 !MeV) are‘.
shown in the dashed curves. Black rectangles show
values of the "one-dimensicnal” transmission amplitudes.
FIG. 4 - Variation of the structure in fusion spectra with the

pass displacement parameter xo.'
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FICURE 4
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