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In the course of the last few years we tried to derive
consequences of the analyticity and unitarity of the scattering
amplitudes on rising Regge trajectories in an essentially model-
independent frame(]). The main result obtained was that the
widths of the resonances interpolated by the trajectories grew
linearly with the mass of the resonance. A crucial test for
our result was thought to be the eventual discovery of a
resonance at the same time massive and narrow.

Would the recent finding of the psion fami]y(z) point,
in this sense, to the breakdown of the standard ana]yticity(3)?
In the following analysis we show that the answer is "not
necessarily".

According to an investigation of Chang and Ne]son(4),
the psions are consistent with a Reqge classification under
the 0(4) group, in the sense of Freedman and Wang(s). The
details are not relevant to our discussion, but the result
that the narrow resonances sit on Regge trajectories that are
Tinear in s is very important. As the proposed mechanisms to
explain the inhibition of strong decays are not much dependent
on the growth of the mass of the resonance we will consider,
for simplicity, the case of narrow resonances of very high
rass. Is the existence of these particles compatible with
the usual assumptions of analyticity and unitarity?

Ne start by assuming that the mesonic trajectory o(s)
has the following properties:

a) is analytic in the complex s plane cut along the
real axis above the physical thresho]ﬁ and conti-
nuous in the real axis;

b) is real analytic, i.e., a*(s)=a(s*);

c) arows slower than an exponential in s for |s|+»

on the upper half-plane of the physical sheet;

4




d) Tim as) = -C, (1)
s+tw  (-5)€|an(-s)]|®

e and B being real numbers.

Under these conditions the Phragmén-Linde]gf(G) theorem
can be applied to the function a(s)/(-s)elzn(-s)ls, with the
consequence that C+ = C_ =0C, a positive constant, if the
trajectory is to rise with s.

For large values of s it follows that
Rea(s) = -C cos(me)s®(ans)® + gnC sin (me)s®(2ns)P! (2)
Ima(s) = C s%(2ns)P”! (sin(me)ins + w8 cos(me)) (3)

The widths of the resonances interpolated by a(s) are

Ima(s)
/s Re a'(s)

(4)

r(s) =

the prime denotinag differentiation with respect to s. Using

(2) and (3) one aets
r(s) = /s &ns [sin(ne) ans + Bncos(we)]

[—e cos(ﬂe)(zn§)2'+ gans (re s1’n(1re)-cns(1re))-Hs(B-l)1rs1'n(1re)]-1

(5)

The unitarity requirement (from potential theory) of

positivity of the imaginary part gives origin to the restrictions

S e <01 (6)




where the extreme values are included only if gg0.

Assume, according to Chang and Ne]son(4), that the ¢
trajectory is very close to -a straight-line, taking e to be
very close to 1. Trajectories of this kind have been
extensively studied and are, in our opinion, good candidates
to be the "real life" trajectories that interpolate the
resonances known before the psions. Their prominent feature

is that, as follows from Eqts. (2-5),

r(s) = - —tan(we) o (7)

€

thdt is, a width of a very general form which grows linearly

with the mass and does not depend on any trajectory parameter

other than €. The problem then is: putting the psions on

trajectories of this type that are almost linear means giving

them widths of the same order of the widths of "ordinary"

resonances. Is this an evidence that the psions lie on

trajectories of different analyticity properties? n
Not so. Obsérve, in fact, that we can get very near a

linear trajectory in a different way. Take, in equation (1),

e=]1 and B#0. The trajectory is then, for large s, linear

except for a logarithmic factor. From equation (5) we have

for the width now

/s
ans+B

r(s) = -gn

(8)
and for the trajectory,

Im a(s) = -gCns(ans)B™! (9)

Re a(s) = Cs(ans)f (10)




Positivity demands that B be negative. By choosine
it large enough in modulus one can, as follows from Eq.(8),
3 obtain widths that are orders of magnitude smaller than the
widths predicted by Eq.(7).
So, if the psions lie on a trajectory of this kind,
thé analysis of Chang and Nelson is compatible with the

asymptotic consequences of the standard analyticity of mesonic

Regge trajectories.
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