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ABSTRACT

We investigate the relationship between the Johnson-
Baranger time-dependent folded diagram (JBFD) expansion and
the time independent methods of perturbation theory.

In the non degenerate case we show that the JBFD
expansion and the Rayleigh-SchroedinQer perturbation expansion
for the ground state energy are identical.

In the degenerate case we show that when the last
time of the box is chosen as its time base the JBFD expansion
of the effective interaction is equal to the perturbation
expansion of the effective interaction of the non hermitian
eigenvalue problem of Bloch and Brandow-Des Cloizeaux; for the
two simplest symmetrical choices of the box time base the JBFD
expansion of the effective interaction differs from the
perturbation expansion of the effective interaction of the
hermitian eigenvalue problem of Des -Cloizeaux.




I. INTRODUCTION

In degenerate and quasi-degenerate perturbation theory
the idea of an effective hamiltonian is of great utility in the
studies of the properties of nuclei (see reference [5] for a
review) .

The are many different approaches for deriving the
effective interaction and the equivalence of these various appro-
aches is not at all obvious.

In the degenerate case, Bloch [2], Des Cloizeaux [3]
and Brandow [4] derived the effective hamiltonian for ordinary
(non-many body) quantum systems.

We give below a bief outline of the work of references
[2,3,4]. Consider the hamiltonian

H=H +V (1.1)

where Ho is the unperturbed hamiltonian and V is the perturbation.
We suppose the eigenvalue problem for Ho solved, therefore we
know its eigenfunctions and eigenvalues. We decompose the full
Hilbert space into a model space 0, and its complement which is

a space orthogonal to Qo' The projection operators in the model
space and in the orthogonal space are Po and Qo respectively.

P, and Qo satisfy the usual relations

The eigenfunctions of Ho which belong to the model space are
called active states and the ones which belong to the orthogonal
space, passive states.

As an example of this decomposition suppose that one
of the eigenvalues of Ho’ €qt is D fold degenerate. The D
degenerate eigenfunctions span the model space Qo’ and the

projection operator P0 is equal to

P =

o |ao><a°| (1.2)

L
ao € Qo

All the other eigenfunctions belong to the orthogonal space.

When we introduce the interaction in general the degeneracy is
lifted and we obtain D eigenfunctions of H.
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. H [v,> = E, 9,2 (1.3)

These D eigenfunctions of H span a sub-space 1 of the
full Hilbert space of dimension D and the projection operator
on @ is

P = |¢a> <¢a|

L
a€nq
In references [2,3,4] the eigenvalue problem (1.3) which is defin-

éd in the full Hilbert space, is replaced by an eigenvalue problem
defined in the model space Qo'

(p_ H_ P_+ H)|e_>=E_|¢ >
o o o 1l ao o
(1.4)

where H is the model hamiltonian and ﬁl is the energy independent
’ effective interaction. This replacement is done only for the D
eigenfunctions in Q. In the Bloch equation [i], the eigenvalue
problem (1.4) is written as:

B N
(e P, + W - Ea)|¢ao> =0 (1.5)
where |¢a > is the projection of |y > on @
o
I¢ao> = Polv, (1.6)

WB is the non-hermitian effective interaction which is equal to

B op vy (1.7)

W )

and U is given by
U= P, + Qg / a (Vu - uvu)

uQ, = 0 (1.8)

The equation of Brandow [4] and Des-Cloizeaux [3] is




~-DC
(e, P, + W - Ea)|¢ao> =0 (1.9)
where W OC 15 given by
B-DC > 1 n B-DC, I
w = & 2, P, ( K(e,)) (W) (1.10)
* den
. n=0 o

and K(¢ ) is the reaction matrix [5]
K(e,) = VP + Vo, /a Kie ) (1.11)

The perturbation expansion of (1.10) is given in refe-
rence [3]

W = I W, (1.12)

W is equal to

W = z {ul,u

n ull UZ-..-Un } (1.13)

zoooun

where { eesd } is |3
ulluzl un []

My M,
{u_,u u.l} = % : P, @ K(e ) P, d K(e )....
r geoe Y
1 2 n ulouzo . .un. degl de°"2 —
u
Pd " Kley)
*® o o0 0 o (1.14)
deMn
u o _
d"K (e,) th
" means the u derivative of the reaction matrix.
de
O

The p's are positive integers satisfying the relations

u +u 4....4+ . =n=-1
1 2 n
(1.15)
+ Foooot > p-1 1ip<n
u1 M, Yp P P
The perturbation expansion (1.12) gives rise to the
folded diagram expansion of Brandow.

In references [3,6] it is shown that WE Caw®,
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The proof given in reference [6] 1is based on egs.
(1.7) and (1.8).

In order to transform the non hermitian eigenvalue
problem (1.5) in a hermitian one Des-Cloizeaux rewrites eq.
(1.5) in the following form [2,3] :

(Bey + A - E) | ¢ao > =0 (1.16)

A and B are hermitian operators and

wP = ap~! (1.17)

The states {l$ao>} are the states biorthogonal to the
states {|¢a >}. The operator B is a positive definite operator
[2,3,4] which transforms the states{IEa >} into the states

tle, >} °
(o]

B |¢a > = ¢ > (1.18)

Considered as an operator acting in Qo it has an in-
verse [2,3,4].

= -1
¢ > = B “|¢_ > (1.19)
aO ao

Defining the square root operator 31/2 which is her-

mitian and positive definite the equation (1.15) can be written

as

(B-l/z AB-l/z‘(Ea‘eo)) I;a > =0 (1.20)
o

where |$a > = Bl/2 |¢a > ére the so called half-way bases states
(o} o
(3,4].

W€ o p~1/2 5 5172

= p~1/2 B g1/2 (1.21)

is the hermitian effective interaction of Des Cloizeaux [3].
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In the approach of Johnson and Baranger [I] the effec-
tive interaction is derived by a time-dependent method and up to
now there is no investigation about the relationship of the
Johnson-Baranger folded diagram expansion (JBFD) [1] and the
approaches of references [2,3,4]. In this paper we make an
analysis of the relationship between the work of reference [1]
and references [2,3,4] . In the case of non-degenerate perturb-
ation theory we compare the JBFD expansion to the Rayleigh-
Schroedinger expansion [5].

In the case of degenerate perturbation theory we compare
the perturbation expansion of the non-hermitian effective inter-
ation of Bloch, eq (1.5), to the JBFD expansion of the effective
interaction when the last time of the box is chosen as its time
base. In the hermitian case we compare the perturbation expansion
of the effective interaction of Des Cloizeaux, eq. (1.20), to the
JBFD expansion of the effective interaction for the two simplest
symmetrical choices of the box time base: an average of the first
and last time of each box and a linear combination of the first

and last time of each box.

II. OUTLINE OF THE JOHNSON-BARANGER FOLDED DIAGRA}M EXPANSTON

The basic point in the Johnson-Baranger derivation of
the folded diagram expansion of the effective interaction is the
exact replacement of the matrix elements of the time-evolution
operator T (+w,-=) between states in the model space by a model
time evolution operator T (+w,-»). The intermediate states of
the model time evolution operator are active states only. The
active states are connected by the effeetive interaction ﬁl'

It is shown in reference [1] that the eigenvalues of the model
hamiltonian H, H = POH0+ﬁ1, are equal to the true eigenvalues,
E . We give below an outline of the Johnson-Baranger derivation.
Consider the matrix elementsof T(t,t') between states in the
model space as shown in fig. 1. The perturbation expansion of
T(t,t') is calculated according to the usual Feynman rules. In
the evolution of the system the intermediate states can be active
or passive states. However the matrix element shown in fig. 1
can be written in such a way that the intermediate states are
active states only as shown in fig. 2. The active states are

connected by a "box", whose Fourier transform is the reaction
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matrix, eq. (l.11). The reaction matrix is not instantaneous it
has an extent in time. The next step is to replace everywhere
the box by an instantaneous interaction as shown in fig. 3. The
time at which the instantaneous interaction will act, the "box"
time base, is completely arbitrary. However the instantaneous
interaction is hermitian only if the choice of time base preserves
the symmetry between past and future.

In the above replacement we have to make sure that the
model description is equivalent to the true description. This
is easily seen not to be the case since in the model description
the "boxes" can overlap and this does not occur in the true
description.

As an example consider the model diagram shown in fig.4.
This diagram does not occur in the true description so it must
be removed. To do so we define an instantaneous interaction,
the double box diagram as shown in fig. 5. Now it is easily seen
that in general in the model description we can have n overlapping

th

"boxes" whose removal gives rise to the n "box" folded diagram.

These diagrams are calculated according to the usual Feynman rules.
Therefore the perturbation expansion of the effective interaction
is

H

H (2.1)
1 L

g

1 hn

th box folded diagram.

where ﬁln is the n
In the case of degenerate perturbation theory the term
having n overlapping boxes has a very simple structure.
+ - [ o]
(_1)n 1 (_i)Zn 1 lo a7

(2.2)
ieo(T1+T3+...

+T )
2n-1
P _K(T, )P e frdedT ar

47" 2n=-2

The difference among the various prescriptions for the box time
base is only in the region of integration TI-. In what follows
we will calculate the perturbation expansion of the effective
interaction for specific choices of the box time bhase.
1) Perturbation expansion of the effective interaction
in the non-hermitian case

In this case the time base of the various boxes is
the last time of the diagrams.
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The value of ﬁl up to the triple box diacram is given
by
Hy = {0} + {10} + {110} + {200} + .... (2.3)

The region of integration is given below (in all cases

Tl' T3,ooo'T2n-1 > 0)-
1.1) T, > 0 for the single-box diagram

1
1.2) —Tl < T2 < 0 for the double-box diacram
1.3) a) -T1 < T2 < 0 b) —Tl < T2 < 0
—T3 < T4 < 0 —(T1+T2+T3) < T4 < -T3

for the triple-box diagram.

The calculation of the higher order folded diacrams is
straichtforward but lengthy. However the followinc rule ercroes
from an order by order calculation which has been checked un to
n=5,

Consider n overlapping boxes:

1) Draw all the overlappinc boxes;

2) Consider all the permutations of the relative order
of the boxes time base (the last tirme of the hox)
keeppina the time base of the first box (from left to
richt) as the latest time.

Therefore if we have n hoxes, there are (n-1)!
possibilities.

3) Draw horizontal lines from richt to left leavino the
boxes time hase and finishinq’when a box is reached.

th box.

Let My be the nurher of lines reachina the i

Consider together all the permutations leadina to the

same set of numbers Myr Hgreeers Moo The sum of the

contributions of all these diacrams calculated

accordino to the usual Feynman rules, is {"1’"2”""

un}.

We have not analysed Kuo et al. [7] folded diaoram

expansion,however it seems that the rule aiven in ref. [7] is
identical to the rule cgiven above. )

Therefore ﬁl is equal to
n

jsad
]

1 - z {ul'uZIO"Iun} (2-4)
pl'u2'.."’un
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Considering the rule given above, it is easily seen that
the u's satisfy any one of the relations.

ul+ H2+‘t. .+un = n—l

2.5

2.6
up .<. n - p 1<p<n ( )

2) Perturbation expansion of the effective interaction

in the hermitian case: the time base is the average
of the first and last time of each box.
The value of ﬁl up to the triple box diagram is

given by

ﬁl = {0}+1/2{10}+1/2{01}+1/8{200}+1/8{0Nn02}+3/4{020}+3/8{011}+

+3/8{11C}+1/4{101} + ... (2.7)

The region of integration is equal to:

2.1) T1 > 0 for the single-box diacram

2.2) —(T1+T3)/2 < T, <0 for the douhle-box diagram

2
2.3) a) '(T1+T3)/2 < Ty, <0

-(T3+T5)/2 < T4 <0

b) —(T3+T5)/2 < T4 <0

—(T1/2+3T3/4+T5/4+T4/2) < T, < -(T3+Tl)/2

2

-(Tl/4+T2/2+3T3/4+T5/2) < Th < —(T3+T5)/2

for the triple-box diagram.
3) Perturbation expansion of the effective interaction
in the hermitian case: the time bhase as a linear
combination of the first and last time of the box.

The value of H up to the triple box diaaram is given
1l
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ﬁl = {0}+1/2{10}+1/2{01}+1/4{200}+1/4{002}+1/2(020}+3/8{011} +

+3/8{110}+1/4{ 101} + .... (2.8)

The region of integration is equal to:
3.1) T1 > 0 for the single-box diagram
3.2) a) -T, < Ty < 0

b) -(T1+T3) < T2 < 0

c) -T3 <T. <0

2
for the double-box diagram.

In this case there is a factor of 1/2 multiplying each
contribution.

3.3) a) =Ty < T, < 0
-T3 < T4 < 0

b) —T3 < T2 <0

-T5 < Ty < 0

c) =T, < T, < 0

d) -(T+T3) < Ty <0

-TS < T4 < 0

e) —(T1+T3+T5) < Ty < 0

-(T1+T3+T5+T2) < T4 <0

£) —(Ty#Tg) < Ty < 0

—(T1+T2+T3) < '1‘4 < 0

h) -7, < T, < 0

3 2
-(T2+T3) < T4 <0

There is a factor of 1/16 multiplying the first four
contributions and one of 1/8 multiplying the last four.
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It is worth mentioning that we have many more possibi-
lities for choice two than for choice three . As an example,
for the triple-box diagram, we have three possibilities in
case two and twenty four in case three. So, between the two
hermitian prescriptions, the easiest to calculate is case two.

In what follows we will compare the perturbation
expansion (2.4), (2.7) and (2.8) to the perturbation expansion
of the effection interaction of Bloch, eq. (1.12) and Des
Cloizeaux, eq. (1.21).

III. NON DEGENERATE PERTURBATION THEORY

In the case of non-degenerate perturbation theory the
model space has only one dimension, so the projection operator

Po is equal to
P = [0><0]
The eigenvalue is given by

E, = €g * <0|H1|0> (3.1)

In the non~-hermitian case ﬁl is equal to eq. 4.1.
In the case of one dimension eq. (4.1) reduces to

n

jo 1

<0|K(e ) [0>) (<o|'ﬁ110>)“ (3.2)

- g l
<0|H,|0> = £ =,
1 n=o ™' de

os

Using (3.1) and (3.2) the energy Eo is agiven by

AE = Eo—eo
@ n
= 1 1 (&= <olk(e ) 0>) (am)® (3.3)
n=0 n: deg .

Using a formula of Lagrange [3,5], (3.3) reduces to

n-1
pE = 1 2, S (<0|R(e,) [05)7 (3.4)
. deo
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which is equal to the Rayleigh-Schroedinger perturbation theory

(5] - ' 3
In the hermitian case ﬁl is given up to the triple-box

diagram by the equations (2.7) and (2.8). 1In both cases, the ¢

expectation value of ﬁl is equal to eq. (3.2) to the order

considered. So, to this order they are aqual to the Rayleigh-

Schroedinger perturbation theory. It is certainly plausible

that the equality remains at higher orders.

IV. DEGENERATE PERTURBATION THEORY-~NON-HERMITIAN CASE

The effective interaction when the last time of the
diagram is chosen as its time base is glven to all orders of
perturbation theory by egs. (2.1), (2.4) and (2.5). This is
equal to the perturbation expansion of WB-DC

(1.122), (1.13) and (1.15). Therefore:

given by egs.

dnK(e
n
deo

B, = T 2,P, ( o) @p” (4.1)

So when we chose the last time of the diacram as its
time base, the JBFD expansion of the effective interaction is
identical order by order to the Brandow- Des Cloizeaux effective
interaction and to the Bloch effective interaction since the last
two are equal [3,6].

Therefore, the Johnson-Baranger folded diagram expansion
is identical to the Brandow folded diagram expansion of the
effective interaction.

V. DEGENERATE PERTURBATION THEORY-HERMITIAN CASE

The perturbation expansion of the Des Cloizeaux hermitian
effective interaction is [3]

DC
W = {0}+1/2{10}+l/2{01}+3/8{110}+3/8{011}+1/4{101}+l/2{200}+ A

+1/2{002}+ ... (5.1)

If we compare (5.1) to egs. (2.7) and (2.8) we see that
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they are all different. This tell us that WDC is not equal to
the JBFD expansion of the effective interaction for the two
symmetrical choices of the box time base considered in this
paper. The three effective interactions, (2.7), (2.8) and (5.1)
are related by an unitary transformation in the model space 90.
We did not attempt to find what symmetrical choice of
the box time base gives rise to the Des Cloizeaux effective in-
teraction.
It is interesting to notice that to compare the
di fferent hermitian prescriptions we should consider at least
the triple-box diagram since the way to make the double box
diagram hermitian is unique.

VI. CONCLUSIONS

In this paper we have shown that in the case of ordinary
(non-many body) quantum systems the perturbation expansion of the
Bloch effective interaction is equal order by order to the JBFD
expansion of the effective interaction when the last time of the
box is chosen as its time base. In the hermitian case, the
perturbation expansion of the Des Cloizeaux effective interaction
differs from the JBFD expansion for the two symmetrical choices
of the box time base considered in this paper.
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