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ABSTRACT

We discuss a class of non-abelian gauge theories
characterized by the gauge condition /\ o \4//“_“-_- h_a’ , where
/\fy is an arbitrary four-vector and h?' denotes a set of
arbitrary functions. We show that this class of theories is
ghost free. Using the method of gauge variation of proper
vertices, we prove the gauge independence and unitarity of

the S-matrix elements.
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'I) INTRODUCTION

Non-abelian gauge theories provide the framework for
uni fying the weak and electromagnetic interactions(l).
Furthermore, they exhibit the phenomenon of asymptotic freedom
which represents a good approximation of scaling observed in
strong interactions(z). As is well known, in order to
quantize gauge theories, it is necessary to choose a definite
gauge. In many classes of gauges, such as the covariant Lorentz
gauge, there will appear the so-called Faddeev-Popov ghosts(3).
The renormalizability of gauge theorié%?fhese gauges has been
discussed by many authors(4), one of the most careful analysis
being contained in the recent review by G.Costa and M.Tonin(s).
However serious complications due to the presence of ghosts
arise principally in the context of the renormalization of gauge-
invariant Wilson operators, Which becomes in this case a
highly non-trivial problem(s). On the other hand, calculation
involving Wilson-expansions of operators are much more simple
and direct in ghost free gauges(7). Furthermore these theories
may provide a way of investigating the behaviour of renormalization
group parameters beyond perturbation theory(s).

For these reasons, among others, it is interesting to

study gauge conditions which do not lead to the appearence of

ghosts(g). Consider, for example, a massless Yang-Mills theory(lo)
containing a set of vector boson fields Méfldescribed by the
Lagrangian:

Lo, - F>p > (1a)

Iym = Y v MV

e is given by:

where the covariant curl Efa'
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5‘% 9“/'3“} +}}“ /W“) L1b)
In the above expression a is an isotopic index, g is the coupling
constant and }fbbo are the antisymmetric structure constants
of the gauge group. |

As is well known, this Lagrangian is invariant under

the infinitesimal gauge transformations given by:

ba.,c, o ab b

\A/ M/ +(2 §M+35¢ S w? '-:’:\A//u_-f/ww (2)

In order to define the vector boson propagator we will

introduce the gauge fixing Lagrangian:

Lg =

where /\ is an arbitrary four vector with dimension one and

(/\ w, > )* (3)

1"

M~

such that /\ #£C . Then, the free pronagator for the vector

hoson fields becomes.

r.ab‘ L _ thy+kvAw__ kwku!;- --fi 4)
’)/bw) ‘ga.b k""gl‘"" - kA = (k. A) (.1 /\z)J (

Notice that the second term in the round brackets is a
function of dearee minus two in the gaucge parameter

and does not lead, by superficial power counﬁing, to a renorma-
lizable theory. On the other hand, all other terms are
functions of zero degree in /\ and have a aood high momentum

behaviour.

n
Writina /\r~~3 ~V£F; and letting /6~9<3 we note that
the last term disappears while all other maintain the same
form. Furthermore it has been observed that in this case no

chost fields will be present(ll). The renormalization of this

theory has been extensively discussed by W.Kummer  heing

(12)

later extended by W.Konetschny and W.Kummer to a class of

adauge theories including matter fields to allow for



spontaneous symmetry breaking**: ,

On the other hand, due to the underlying gauge symmetry,
one would expect that the above gauge dependent, non-renormali-
zable terms to drop off for observable quantities. It is the
aim of this work to show that the S-matrix elements are indeed
gauge independent quantities. The proof is facilitated by
the fact, to be shown in the next section, that ali ghost fields
decouple for any values of the gauge parameter A . We shall
make use in this paper of the methods developed by G.Costa and
M.Tonin Lwho derived a set of identities for the cauge variation

of proper vertices(l3)

and which provide a simple way of
proving the gauge independence of the S-matrix. Although , due
to the hich momentum hehaviour mentioned above, our theory is
not a special case of the class discussed by these authors, our
analysis is similar in spmirit. Furthemore, due to the absence
of ghosts, we are able to derive in a more direct way a set of
rather simple identities for the gauge variation of proper
vertices.

In order to avoid the infrared difficulties, we shall
consider a theory consisting of a set of Yang-Mills fields
interacting with fermions and scalar fields to allow for
spontaneous symmetry breaking. We shall assume that after
the occurence of the symmetry breaking, only one massless vector
boson field remains in the theory , so that the infrared
problem can be treated like in QED. We remark parenthetically
that off the mass-shell, the structure of this theory is in
many respects similar to that of a pure Yang-Mills theory. We
have used this fact in order to check explicitly in the one-

loop approximation, many of the results stated in this pavner.

** I thank these authors for kindly sending to me a copv of
their work.
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In section II, using the Faddeev Popov ansatz for the
generating functional of Green functions, we show that no ghost
fields are present in our theory. Using this fact we derive
a set of simple identities satisfied by the Green functions,
which reflect the underlying gauge symmetry of the theory.
Section IITI is devoted to the study of the Lee's 1dentities(l4)
for the one particle irreducible Green functions, which are
very suitable for the discussion of the structure of the
counterterms. In section IV we derive the identities for the
cqauge variation of proper vertices. Using this identity, we
discuss in section V the two point vertex function. After
defining the meaning of physical states, we show, among other
things, the gauge independence of the physical masses. Using
these results, we show in the last section that the S-matrix

elements between physical states are gauge independent and

unitary.

IT) IDENTITIES FOR GREEN FUNCTIONS IN THE ABSENCE OF GHOSTS

We consider a theory of Yanag-Mills fields, described
by the Lagrangian agiven by equation (1), interacting with
matter fields. We shall use a compact notation where all
fields are collectively denoted by ﬁg ’ ¢ standina for all
attributes of the fields. Unless otherwise stated, repeated
indices imply summation and integration. We assume that the

Lacrangian describing our theory is invariant under the infi-

nitesimal gauge transformations:

. " 4 & R w™ (S)
where ’DC is simply the gradient and is present only for

vector boson fields (see eq. 2). In terms of a real basis of
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‘ a
fields f?( » the matrices t will be real and antisymmetric.

We may write our invariant lagrangian as follows:

&
o ST A €
- e - Ad - . P » b\
L{T\.V_ y%;_a n'. ‘ Li..Ln ,QLL n“\, (

The gauge fixing Lagranagian (3) may be rewritten commactlv as:

2

L.g :—,L(AZWﬁC)L / /2

o
where /\‘: equals /\ §ab for vector boson fields and is zero

M
otherwise.

We shall include spontaneous symmetry breakina hv
assuming that the potential of the scalar fields has a minirum
at a non-zero value Ecc . In higher orders the vacuum
expectation values of the fields ’QJ (which can be present onlv
for the scalar fields) will be denoted by é:. In what
follows, unless otherwise specified, we shall rewrite everv-
thing in terms of the shifted fields:

A= A - € [§)

In terms of the primed fields, the cauaqe transformation (5)

becomes:

Al Ae+ (D5 4 gt A )w® (9e)
where

Br - aﬁ&"}t‘? &y (95)

In equation (9b) the index ¢( of the matrix tfh'reffers to
the Goldstone fields which provide the vector fields with mass.
Notice that the gauge fixing Lagrangian is not affected
by the shifting given by eq. (8). (In what follows we shall
for simplicity drop the prime indices).
In order to derive the Ward identities we shall

consider the generating functional for the Green functions in




the presence of external sources fIt .

W(3,) -j‘LaLnJ det (NS D) exp £ [ Liny - S (NTAY+ 3. R¢ )

(10)
Usually the determinant is written in terms of the

so-called- Faddeev-Popov ghosts fields:
det (N:5D;%) sto(«C')'[ del exp CTN_ D7 ¢ (10a)

However, in our case,this is not necessary since, aswe
will now show, the ghosts fields decouple from all other

fields. To see this we write:

det (ATD*) = det (A, D) = det N.D elet (1- dJ ? JLO" "\’/c: M)

(11a)
where we have defined the function Jé;_ by the relation:

: 4 -
(23.N) g,("'j):g x-y) (11b)

We will now expand the second determinant on the right hand

side of equation (lla) as follows:

det (1-9 3}“%&/\» = exp Tm@n(i-}lif"‘w;;/\ﬁp

L - Wi | ("w° x,)
= e&'o{- TA"_QZ%— /\/Wli()\,'xg)} W/\A.L(xz.)“‘ g(x(.'x.t)} Mot
(12)
A typical term under the trace sign in the above

equation can be represented graphically by the Feynman diagram

shown in Figqure 1.

Pa)Mar®y Pe Mo Te

FIG. 1




In this figure all momenta are 1ingoing and we have ZZPJ-
The dashed line represents the ghost propagator which in

momentum space is given by:

N T

We shall regularize our theory using the dimensional

(15)
regularization scheme which preserves the gauge symmetry

(13)

of the theory. In this scheme the Feynman inteqrals are
performed in a M -dimensional complex space. Using the
Feynman parametrization, the above diagram can be expressed

as follows:

Cewoe 4, o (e (e-n)!
T A A S I (14)
> *e-u A" & —
. ) —_——
S d,xl... S d"t"l SLAQ*‘ -/\.PZ v’\z_le

< <

Performing a shift of variables and integrating over the vari-

ables x we obtain:

—0ay.. A, £ | T (% (%= (1Sa
-L/“if'u.:?' /\/“1"'/\/“'11. J\«:s ...& I )
with |
n
1sb
1‘—_& A (15Y)
(N.R)
Exploiting the Lorentz invariance of this integral we find:
| 1 ([ AR
L= C,(hye) yOl & -—E;E- (1¢)

where C is a constant independent of /\ which'depends,in general,

on .2 and n.

Now, in the dimensional regularization scheme the last

integral vanishes(ls). This implies the decoupling of the




ghost sector in the theory.

There is still another way of understanding this
result which emergegs when one considers the "derivation "
of eq. (10). We start from the generating functional in
the absence of external sources where the gauge condition

is ensured by the presence of a delta functions:
Wiy = N [Lah) det MDY S (AR - n™)expil],, (17)

As is well known W(¢) 1is independent of the path h*

~>e

\ k&.t:l.

b

Due to this fact, usually (17) is multiplied by G (h)= e
and then an integration over h. is performed. This does not
modi fy W(O)except up to an overall normalization factor

which is included in N. After introducing the external

sources we then find (10).

However, since V\/(O) is path inderendent one could .
as well have multiplied eq. (17) by Fé(k)= G(h)d—d-i(l\',‘)‘j}ah )
Then because of the presence of the delta function, we see
that the determinants cancel and hence the ghost fields
disappear.

Therefore the generating functional can simply be

written as:

W(3,) - det(n a)jum expp (Lo - £ NI T A ] (8)

where the constant term det (N ;)) has been maintained
in order to ensure a convenient normalization condition .
We now perform a gauge transformation given by (5)
in the path inteoral. The integration measure and -Loc',w
remain unchanged under such a transformét:!.on. The only
changes occur in L} and in the source terms. From the

condition that W is stable under a change 6f variables of

integration, we find®




=Lal+ate (£ 455)] 3w 49
J

This equation can be simplified using the antisymmetry
o o
of the matrices L . Furthermore, using the fact that /\‘_
is connected only to vector boson fields and that the matrix

A®  does not mix vector fields with other fields, (19)

-

reduces to:

ab D ér o
/\J (“"")“j ‘20} J ’S_J) ;W (202)
where
e b b S .
DJ:" (.53 )': B, B A Q%" -é:j_k) Lt

Successive functional derivatives of eq. (20a) yield the

following set of Ward identities:

M Wi =G AT, Wi o 43D W, o) (e

P

with
: 2Lb
WCL...\.'\z-——i . ‘.L w ¢ )
(83, <83,

and where the sum S__ are taken over all non trivial permutations
of the indices (_‘lmPg‘W. For the case when = 1 we

get:

Ny W= LD 3w, + D wl (22)

J Jd Ll J J 3 4

This relation will be very useful in the study of the

gauge dependence of the Green functions.
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III) LEE IDENTITIES AND COUNTERTERMS

In order to discuss the structure of the counterterms
in our theory it is useful to derive an identify for the
proper vertices. 1In terms of the generating functional of
connected Green functions 2 = %’-,Q/n V\/ » the generating

functional of the proper vertices is a Legendre transform of Z

T’(F)L'CF 2(J) -3 A° (23)
where the classical fields ﬂf are defined by:

ne. 82 (24a)
5 J.

so that from (23) we have:

o' . . (24b)

Using these relations, together with the antisymmetry properties

o ,
of the matrices T » we obtain from (19) the identity:

s
A ohey & A a e N2q _ o~ - _ 25
DA = [T+ 2 (AAT)Y1=2DI(A) T, =0 (29
oA,
Following reference (5), in order to study the
structure of counterterms, it is more convenient to express
~

our quantities in terms of the fields Hl"’ which are related

to the original unshifted fields by the relation:

v -
Ao = A - & (2¢)

' *
which coincide with the fields Ht only in the tree
approximation.
Note that in deriving eq. (25) we did not make use

of the fact that -TZ_ (A<= 0) =o.
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Therefore, in terms of the shifed fields (26) we will

get a similar relation, namely:

A ~ A ~
o c -1 L Y (-2?@—)
where
~/ A a ’\JC

3)"“(,:) =97 -rg E +oqtv A:“.,.thj F’J
(22s)

A
although now }of course, Ti (}Q C--.—O) vanishes only in the tree

approximation.
By takino successive differentiations with respect

~ ~
to R at A = 0 we obtain a set of identities of which

we list only but a few:

/\ A Sa)
o o T
A A
o o~ ™ t.. 1! =0
HE = B~ T~ gt T
A A
~
He = RS T aqtS, T v gt Thy z0 (25¢)
Py Jil.tl-‘-% ‘:('1 LY g' Lo, LLJ.
H“ o~ &m_,l‘j ’ _1. -z 8 { gl: t?" ;«r:.’ ":O (,ZKJ-)
g_",;tj‘ v oL 243 }P 2-‘)‘ 3)3 ) LJ‘_SB

etc, Where in general the above vertices depend on the
(dimensional) gauge parameter /\ . We observe that, due to
the arbitrariness of the gauge parameter, the above identies
must be satisfied independently for each‘set of terms
with a definite degree in /\ . In particular, the terms of
zero dearee in /\ satisfy separately the identities (28).

In the dimensional reqularization scheme, the vertices

in eq. (28) develop poles at @ =MN-4z0 Introducing a loop
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A

parameter VL , we obtain for ‘ » ’ *
(--1' .~ (-n
n

Ao ' N

T - T L/ R

‘:.l.'”[ - (:‘_‘:“‘* a C ¢ (29)
w N g “

where the quantities T‘: ; with wn QL. are precisely
Lt

the factors appearing in L‘:- y (see eq. 6).
"

From power countina, we know that the part of zero
A
- L
degree in A of T; tn for W>4 contains no poles at & :o.
e

On the other hand, due to the asymtotic behaviour of the part
of the vector boson propagator which is not of zero degree in
A , the corresponding part of ﬁil' R will contain poles
for all n. - "
Remark however that all these divergent parts are
related by virtue of the set of identities (28). We shall
show in the next sections that all these gauge dependent terms
vanish on mass shell, between physical sources. Hence, for the »
purpose of calculating gauge invariant quantities these terms
are not relevant. For certain other purposes however, it

will be convenient in what follows to add a set of counterterms

which render finite the Green functions. We have:
A ~ ~/

s A L
Lut"'—%z—' T T\\. ‘o }q‘:x"nch-: (30)

A A f\/ ~/
:'~ZL—L% A3 a A sant o ]
Z “n:4 Ml oeq .ty nc;~--n¢n +m miEol b, g em

where we have explicitly separated the part of zero degree

in /\ ’ denoted by —Pl
C, Ll b
Due to the structure of the vector boson propagator,
1
Fo Lvl U
(Of course they must be invariant under the reflection AN—=-N\).

must be functions of negative degree in AN

Therefore, in eq. (30) no counterterms with the structure of

L; (see eq. 7) are allowed. We then conclude that the
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gauge fixing Lagrangian is not renormalized.

We will now show that L. = Lo,_.w+ Lee is in-
variant under the gauge transformation (9) (where of course we
must use 2& since the fields are shifted according to eq. 26).
By assumption LGv is invariant under such a transformation.

We then obtain:

SLlin _ SLot t?wlz}\l ) = (31
Sw®™ é§’qL Q [x é? )

--n a? P~ 4 aP VN 4 a ~J «/ N) ]
C[H + W }Qéi-\—;H.‘.F‘r%n-‘r? f-) .

v L L
LJ.L p

where the functions |4‘kp are the residues at the poles of the
functions appearinag the Lee identities(28l and hence vanish.
The invariance of the Lagrangian with counterterms
added can be similarly established inductively to all orders,
due to the fact that LéL is not renormalized.
In the renormalized theory, we will now reexpress
all quantitiégvlerms of the fields shifted by the full vacuum
expectation value E . Then, the renormalized Lagrangian,
expressed in terms of the fields ;qb (see eq. 8) will be in-
variant under the set of gauge transformation expressed by (9).
Due to this fact all formulae derived thus far will be valid
in all orders of perturbation theory provided we replace in the

generating functional l. by the full Lagrangian Lgnv=lmnv'*Lc¢

tny
Of course, the requirement that

the Green functions be regular at - ¢ does not fix uniquely

the counterterms. What is still necessary is another finite

renormalization yielding propagators with residue 1 at the phy-

sical poles. We will return to this question in section 5.
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IV) GAUGE-DEPENDENCE OF PROPER VERTICES

In this section we will derive an identity for the
gauge variation of proper vertices which will be very useful
for establishing the gauge independence of the S-matrix.

Consider the generating functional for the renormalized Green

functions.
w(3): det (9.A) |Ldh] exp C{Liny =5 (ANTRY+ T R:]

(32)

Let us vary the gauge fixing Lagrangian by making an
infinitesimal transformation in the gauge parameter
[\‘?"_9 /\C‘L-f {/\L“’ . Under this transformationW also changes
v %

and we obtain (the determinant is also being varied) :

A+ SA

RSN N
cg\.(.’(,l):' W/ (3) - w o (J)= (33)

SATLEU N ) ¢ £

This expression can be put into a more convenient form with
[~ S
the help of eq. (22). using the antisymmetry of the matrix t/
' o
together with the fact that /\b is connected only to the

vector bosonbfields,we obtain:
. Q a..b b _
W) =-8A] G Dh(gi})jh%. (34)

We now reexpress (34) in terms of the generating functional of

the connected Green functions. We get:

SZ(I) = ZA+5A(‘3")._‘2"(3) - (3s)
- -5AT G (OLAy g ie Zay) i
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An identical expression can be obtained for the gauge variation
of the generating functional for the 1PI Green functions.

. We recall that (see eq. 23):
ey 273N -3 RS (3¢)

A .
where 3 is obtained by inverting eq. (24a). A similar

relation is obtained for “) by replacing on

the right hand side of (36) \ by N+ &N\, we obtain:

b
- = 5/\ cpe * v p
=82 Ny A A, -g-;é-/\J-g theZCJ’FL
. where use has been made of the Lee identity (25). Note that

the first term represents the contribution which results in
the tree approximation by making an infinitesimal change in

the gauge fixing Lagranagian.

Defining
M, = =g SN C\?f“" ﬂJ | (38)
we can finally express eq. (37) as follows:
S (A= -5/\;“/\:" /‘41‘ A + M Ty (39)

The quantity Mh. is represented graphically in figure 2.

k., A
FIG., 2 ¢ N g/\
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In this figure the vertex denoted by () is propor-
tional to gtb’ The dashed line represents the " ghost "
propagator . The full line stands for sz.(j) which at
3 = O r» gives the full propagator.

Note that the fields /) are determined by the
condition TCA (FI c.io):O. Let us now define Jﬂc’ so that

Tlt.’\*;/\ (S/Q‘):o . Then by definition, the quantity:

EN A g
AT(pe =T / (Ae+she) - T (RF) (4e)
is such that E T (R€-0) = O. From (37) we see that:
ART(Re) = § (A r SAST] (A (41)

We now remark that, due to the antisymmetry of the
k ab
matrix t and since ? is symmetric in its indices, we

have .

M, tA%=0)=0

Therefore we see that & T:. (A®) also vanishes at

(42)

HC-‘»O . It then follows that & A®= © . This fact implies
that in the modified gauce the vacuum expectation values (V.E.V.)
of the fields are the same as in the original gauge, i.e. that
they are independent of the gauge parameter /\ We can
understand more directly the above result at least for the
part of zero degree in A of the V.E.V. of the scalar fields as
follows. The only way that an expression can be a non trivial
function of zero degree in /A 1is through scalar products with
the external momenta. As the V.E.V. are independent of momenta,
they must, at least to this degree, be independent’ of the gauge
parameters /\ . |

By taking the 'functional derivatives of eq. (39) with
respect to H° , at A% 0 we then obtain a set of identities

for the gauge variation of proper vertices. We will close
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this section by making a final remark concerning this variation.
(See also ref. 5). E

Note that, in order to obtain equation (39) for the
gauge variation of proper vertices, we have varied only L}lin the
exponenti&l of the generating functional. However, as we
have discussed in the previous chapter, Z-Cnv also depends,
through l-c,b » on the gauge parameter /\ . We remember
that these counterterms were explicitly constructed so that
the Green functions corresponding to L;_ be finite. Therefore,
in the modified gauge the Green functions will have in general,
poles at €:=0 . 1In fact, the divergent terms will be given

by the corresponding parts of:

AT 4,2 - DLy = - %%Ec SN (43)

We will show that on mass shell, between physical
states, these Green functions give the same gauge inderendent
contribution. This implies in particular, that all of the above

diveraent, gauge dependent terms must vanish in this case.

V) TWO POINT VERTICES AND PHYSICAL STATES

Let us now consider the gauge variation of two point

vertices. Using the fact that Mk. (A% o0)=0 , we obtain

from (39):

o “ AN, @ - (IY‘I
573.(0):-(8/\?/\_,' + ENAT) + My, Tyt Mej ke )

where /b7h c is given by:

. @b, b _5/\ e .
SA ;5 "4 ¢ 5,9*- ﬂjl ﬁj u. TJ,(G:;{)

- 7? h
Ip this expression Gzaland .cQJV represent the

pronagator and the three point vertex functions, respectively.
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We represent AA&.[ diagrammatically in momentum space by the
/

Feynman diagram shown in Figure 3. »
- -~ ‘
FIG. 3 k,»” N
—_— q w- SN
.
4

In this figure?étands for the external momentum flowing
into and out of the diagram.

Before we can proceed further, we must consider first
the diagonalization of the two point vertex. Let E:é- and E?f

be a complete set of orthonormal vectors which render diacgonal

the vertex 7;1
J

77 Yy Erfr T S =so =
1122 6 I E "+ 2 EST, €° (46)

J r s J
Due to the orthonormality of these vectors, we have the
eicenvalue equation (we now drop the summation convention on r ): .
'T7 \'r'_-j Iy

< cj =1, EJ (41)

and a similar one for the vectors EU' » with ’r replaced by'775
We now want to define physical states. We shall require
—r
that the vectors &, , which correspond to these states, be

J
eigenvectors of the eq. (47) with eigenvalue:

T = (/Q?‘Q- m: ) 'Z_',:L (4£)

r

which exhibits a zero at the physical maSS'%ﬂpﬁ

Here Zq.is a finite wave functions renormalization constant
determined by the requirement that the residues of the renormaliz-
ed propagators at the physical poles be equal to 1.

In order that eaquation (47) be satisfied, the eigenvectors

r\
J must fulfil certain conditions. To obtain these/we i

=
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apply on both sides 6f these equation the operator D:».

Using the Lee identity (25) we find:
“pr. -TL €% pb B (49)

We now remark that because of this relation the

b G -

vanishing of AJ EJ-'. implies the vanishing of /\J' E - )
and vice-versa. In general, it is more natural to call

physical particles those corresponding to the eigenvectors E‘r

J
satisfying (5):
‘ b - , -
Aj Es =9 (59a)
which implies:
o~ _v _ (Svb)
/\J EJ =

There is however one special case where (50b) arises
more directly, which then implies the condition (50a). This
case arises in the gauge /\?H" =0 whiqh can be formally
obtained in eq. (17) by writing /\t: = ‘3;’: and taking f 0.

A
This interesting situation has been discussed in detail in
reference (12).

As a side remark, we observe that for massless vector
bosons satisfying: 'E)J-O'EJ-"= /\f' Ej‘rza with N\ space like, it
is not possible to construct polarization vectors of finite
norm when A. F=0(6) . However, since, as we shall
show, the S-matrix elements are caude independent, we can alwavs
avoid the singularity at /\.an by an appropriate choice of
the gauge parameter /\ .

Let us now consider equation (44) taken between

physical states. Using (50b) we obtain:
r —r _ 11 r .. "" -
E‘: ST}J' t) = 2 ’r E(, M‘/J EJ (‘Sl)
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On the other hand we can also calculate & T:,J from

eq. (46). In the modified gauge the appropriate eigenvectors will
be:

v ,
E: = EL‘P-r SEJ” (52a)

which are also orthonormal. Due to this fact we have:
~ v
Ec Y Eb'r:O (52 L’)

with the help of (48), we then obtain:

-1 2 K (53)
E"PS T"'J EJ'P‘: Z,. ( gmr‘ - 6 Z,— r‘)
We now compare eq. (51) and (53). From equation (45) we

see that M‘J does not have poles at the physical masses.
Hence, on the mass shell, the left hand side of equation (53),

as agiven by (51), vanishes. This implies that:
< -
gmr =0 (54)

i.e., that the masses of the physical particles are gaudge
independent. Furthermore, near the mass-shell, eq. (51) and
(53) imply:

Er_ L (zts2 - (5s)

We will now proceed to study in more detail this equation since
it yields important information concerninag the wave function

renormalization constant.

We will define the quantity N‘;L as follows (see
¢
eq. 45): /
A a
ML)J—:. g/\e A{e(/j ‘ (.S'éa)
where b b S
Ve, =g Bt e Bae



21.

We want to show that on mass shell, between physical

states we have the relation:
AT R T (57
BN M) E -0 )
g J

To this end, we make again use of the identity (22)
written in terms of the generating functional of connected

Green functions, i.e.:

b -
Ne 2= (W ADIAL - < 4D+ D a5 + 90 2,0 ] T

oo (58)
Using the antisymmetry of the matrices U we then

<
obtain, at H =g !

b 4
a2 G ¢ ¢ pex i
A,{ 1 ‘}; b “hn hc? /ej (59)

which, in virtve of (47) vanishes on mass shell hetween phvsical
states.

We are now in a position to investigate the
contribution of cauce denendent terms with non-zero deqree in A
to the wave function renormalization constant. To isolate this
contribution we consider a change of gauge which modifies onlv
the modulus of /\:\', but not its direction: /\‘f - (1+&) /\?
Clearly, under such a transformation a function of zero deqree
in A rémain unchanged while one of dearee different from zero

1

will be modified. Usina eq. (55) (56) and (57) we see that (2~ ~62)

r

vanishes in this case. It then follows that the wave function
renormalization constant must be a function of zero degree inf\.
Due to this circunstance we may now ﬁse power counting
-1 )
to investicate the decoree of divergence of (Z $Z e From Fiqure

3, we see that this expression is at most locarithmically

divergent, the divergent part being independent of the external
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momentum 9 Remark that according to the previous discussion,

between physical states on mass shell, the quantity A% . *
LoJ
is of degree minus one in A . Purthermore, due to the property

(57), the divergent part of /\/;L. must in this case have
“J

the form (note that 2 and therefore 8 must he Lorentz indices) *

a v A, N =~ a :
N[_LJ = (52,3 B ;\2_5 ) Nsyj (50)

is of dearee minus one in/\ and is independent

—
S .
tnce Ny ;
of the momenta, it must be proporcional to 7\-’%— where Yn is

one of the indices S, ¢ or J' . When m =S , then clearly this

implies the vanishinag of NZ dw. When ™. equals i or j, acain

a duw ¢
Lc)
to the condition (50bh).

vanishes on mass shell between physical states, due

Y
Consequently (Z'iJ ?:),. vanishes, whence it follows,

since Zr- is finite, that

(& &)rcttv’ = 0 (IE.L/’) *

This result has several interestina consequences.
In particular it implies that the divergent part of the resi-

dues of the propagators at the physical poles, which arises

from the Feynman diagrams, must be a gauge independent quantity.

VI) S~MATRIX ELEMENTS

We will now discuss the S-matrix elements between

physical states. We recal that, given the connected M -point

N
Green functions G N C . (wm 7 3) , the S-matrix elements for .
1 tn

physical states \are aiven by:




~ A N - /\
s 5... - = |l Z (h +m" ) E ‘ C ...l: 2 2 (G‘Z)
17N k=1 k' 4 n h-z'm'—b
. Similarly, using the fact that the physical masses are gauge

independent (eqg. 54) we obtain for the S-matrix elements in the
modi fied gauge:

/\+5/\ " A . /\N'/\ 63
-i (z o, )"' m,)(t *+SE, “)G (62)
"‘- t 2
kzem
Y
Keeping only infinitesimal terms, we obtain for §9% o

the expression:

85, - -ZZ'V‘W s ER ¢ SEC ).

‘s
| — = + N
‘ “ A(hl r)EZL G;...C“\ z.+
‘ hf‘-" - ~ ' hl“m"k,
T Z '/‘UJ ER I X U R 1)
& h— k. Q'k' fi8 h b.’z:__m

N
In the Green function GL' S which appears in
.

the first term on the right hand side of eq. (64), let us single

out the index Cs ~» We have:

a -
G/\ . = 6 . (5. S (‘6‘6)
where in the expression Go' .
L‘.-. j . LV\;
Now, since 6%) is essentially the inverse of the

two point vertex ’Pc J , wWe get/ near the mass shell, usina
3

the external line j is
amputated.

(46) , the result:

G, t-EBg T ek | (6¢)

. ".5\) L

s J
We then see that, when this expression is multiplied by the

factor & =E%°
Ty
virtue of the relation (52b).

» which appears in eq. (64) we get zero, in

Furthermore, using eq. (55)
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together with (65) and (66), we can rewrite the first term on

the richt hand side of equation (64) so that 5\5(-‘ e

becomes:

SS‘_' . “:T Z:_L/L(‘ﬂ-a'fml) E"‘L.

k=1 k. "o "'h,

'L%—Mo TECTR R -t L.,]

) Jatartn 'O

We must now calculate § G;

L tn We recall (see eq. 37

and 38) that

$52=-3N N, RS A, Tt M TLE-SNTAL ATA T A2 (e8)

The variations SG; are obtained by taking
4

B
functional derivatives of (68) with respect to J" , at jt':
Let us consider now the first term on the right hand side of
eq. (68) . We obtain:

"v\ (69)

L(SNA+ SN 2Z 2 G G
p >

‘_ (vs hcs.*‘.,“ Lw

H

The sum on © extends over all possible ways of
dividing the N indices among the two Green functions and the
sum on F extends over all non-trivial permutations of these
indices. We now remark, using the identity (21) that the
above expression contains only (Y\~1) poles at the physical
masses, when 1< S< h-i. Therefore, this contribution to
eq. (67) taken on mass shell vanishes. When Sz §{ or S=n-1
we see, using eq. (22) that although the above expression

contains M poles at the physical masses, it is proportional
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ot
to bc for some k, . Due to this fact, in virtue of (50a),
'Y
this contribution also vanishes between physical states.

Consider now the second term in eq. (68). Performing

the functional differentiations with respect to j; , we find:

-

‘. Js - 'm

G o (%)
Jae T ‘

N

~
The indices Lz'” L“_ represent a given permutation of the

set Qz“‘ Ln + The sum on S is taken over all possible ways

of dividing these indices among the & Green functions.and the

sum over p extends over all non-trivial permutations of the

indices.

Equation (70) is represented graphically in Fiqure 4.

FIG., 4
-1 v
TS
Fs:z (& )S/\

In this figure, we have singled out the term
corresponding to S 4 , which containsa pole in the variable
Qi all other terms being free from physical poles in this
variable. However, this term is precisely canceled by the

first term in the brackets of eq. (67). Therefore

. A -y .
S =— 1l 2 7" (Rhaawm?® e,
L\ \i‘:\’,‘.\'" - L é-r-h_ (‘ h""mr‘> E"h-
n

(71)
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vanishes on mass-shell, whenc¢e it follows that the physical
S matrix elements are gauge independent.

Given this fact, the unitarity of the physical
S-matrix can be proved by showing that, in some suitable
chosen gauge, the generating functional can be derived starting
from a Hamiltonian formalism. This however has been done by
S.Coleman(ll) in the Arnowitt-Fickler(g) gauge, defined by

ol

\4/3 =0

We can therefore conclude that the S-matrix elements
between physical states on mass shell are gauce independent

and unitary.
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