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ABSTRACT

Iﬁ fhis_note we discuss some aspects of  the
fluctuation part ol the cross seclion at a doorway resoﬁance.
We show that in the strong ubsofption (SA) limit an
inequality‘is_derived for fT& namely ]”¢ > (-%j;‘l>le . e

where N is the number of open channels. In the SA limit no

doorway resonance appears in the average cross section.



INTRODUCT TON | o -3

[ﬁ discussing the fluctuation part . of the éross
sectinn at & doorway resonance the cus'tom has been to
assume that the absorption present in different channels is
weak and thus is completely negietted in all channels. This

thenresults in a siwplc expression for <ﬁf}fﬁ:> namely
. : ) ‘ A3 5
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Where VL <,Ai: < J ‘c 1s a typical compound
nucleus width (e.g. the -fl states in the case of isobaric
analog resonance) | r‘*‘:: Zﬂil and Tﬂf: i~ A + Y o
: a

One knows_however that in many situations,particularly in
isobaric analog resonance phenomena, the absorption could.
be”strong. The indiscri@inate use of equation {1) to estimate’

<<{T;£Q :> for all cases .certainly warranfs a critical
exaimination of the problewm . In this work ~we shall look at
the case when there is strong absorption is all channels. We
shall also derive ﬁn_exﬁression-for the fiuctuation crossr
section N the Lasé of intermedidte absorption. And lastly
we obtain an inequality for the spreading widith, YﬂL , of
.l he dooraay resonance. This tnequality should Dbe useful
in cases whece the number of chgnnels is swall (N <:4-) .

n what Ffollows we shall omit all y.m)mc:'l.'_r::'i.('.a;l

Farv tors sssoctated with the cross-section.




The S-matrix and its average

One can write the following expression Cfor

the S-matrix describing the transition from state a to

1)
‘state b via the doorway state.

(5 -i-«S‘ '/,
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rh 1s the partial width of the doorway resonance.

The sum 2},. is over all the complicated
compund nucleus states that constitute the fine structure of
the doorway resonance.

The doorway resonance becomes app-arent when one
considers .the average‘.s—matrix averaged over an enefgy_
in-_terva'l ~AE that satisfies f}({ﬂ&“( i where |{° is 'rthe_
total‘width of the doorway resonance. |

Then

- o - o 1
<Sc- LY = ai ¢ e
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Bhere <'Sq;’ >A._ o sa.b is used.

| A very imp.otrtant fact appears -conspicuous_ly in
(t) and (2) namely that eveﬁ in the absence of direct
reactions there is correlation among different channels due
to the doorway state. This correlation manifests itself in

L.he nondiagonal nature of Sa.h and <S‘ah >. -« It 1s then
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interesting to investigate the effect of the correlation on

the fluctuation cross section which in principle is determined.
: 2) -

from <SM,> by diagonalization =~ - ., In the limiting

cases of weak ( fdhli ) and strong ( Ta,m»o ) absorption in

all channels, however, a simple form for <’CT‘3Q > is
. [£N

obtained.

Transmission Matrix

The transmission matrix is defined as usual by:

7 . L
szl., = gdln - Zc__.<5ﬂ.c-> <Si,c_: > . (4)

Using equation (2) one can find an expression

for Fib for any absorption ’Zw

Po= (-T) fo te T

R 77 (5)

‘ s
ith
where | = z&‘:
174, in nondiagonal and it contains a non-resonant term

~and a resonant term (doorway resonance). The diagonalization

[

= Iy itself.by

of <Sak> results in a d;i:—'{gona],i,z:lt:ir:m.OF



proper - choice of the unitary operator that
diagonalizes | <S.a'b>

The ﬁhysical interpretation of  F2b_or
rather its diagonal part is that of a probability of passage
from one channel to thé other. Then the sum over all final
states must bé a positive quantity for all energies. . -
_Utilizing this fact we shall in the sequel derive an
inequélity.

| Thus one demands:

mP 2 o

~for all energies,

therefore from (5) one obtains

ZLhLr—n
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Evaluating the above at- E::Ek' we get:

N #Z T—'? = '%;_(‘%TQE [ _’(l—lﬂl) Z u- : v

£ CL
or: .: . | 5 | | o ~ (6a)
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. —_— a  Sem—— .
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Which is the desired inequality.
In the 1imit of strong absorption in. all

‘channels one obtains

TN (:}f') .

(6D) e

For. large N the above inequality is a o hng:

trivial one buf?if N4 one gets an interesting lower bound
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on fﬁ'¢'_ which Cén'be checked through a ﬁeasurement_of_'

rt . )

| In general,_howevér,_dne cannot reaiize
the strong~absorption#limituin—all—channel Cdnditioﬁ.and_thus
éqUation { A ) is to be used instead. To be consistent wifh.
the coﬁdition of unitarityone whould in principie_vary Jr#
in accordance with varying the resonance pérameters.'This is .
achieved through.the evaluation of the following:

< ; Suc Sbc > = g&b | , (7a) -

AE

which gives

[t (fel’y =T Pidel = e

a (7b]

Equation 7b is basically a relation between Ta and the
doprway_resonancexparameters r;., P) qu, E; - as well as
the energy E, '

Weak absorption in all channels.impliés aﬁ

L2 .
equation for <:\¥-\ > namely
. _ > T
Strong absorption in all channels implies

the following:

Pt GfTy =4 | (9)

“which is meaningfull only 1f there is only one channel or if
rT
a
when the number of open channels is large.

is the same in all channels which is approximately true

“The best one can do in order to utilize




equation__(7b). is to evaluate <l;|L> by utiliz‘ing the
.statis-tics of the ay,- s Or th.rough a dynamical model of the
c_:ompound'_nuclerus. But 'in the strong absorption case one can
still make use of eq’. (9) since by summing over a one
easily obtains <[)C|l = N/ ["4‘)2' i.e. no resonance appears
in <|FI > As we show in t_he next section this implies
that t_he average cross~section will show no d'oorway resonance -

in this limit.

The Fluctuatlon Cross Sectlon

In terms of / ,H >and l(-ﬁ)l the

fluctuation cross section assumes the following form:

oy = OL(GHY —e)

Since O— C(S‘))_I"‘PK}}I one immediately finds for the

energy averaged cross-section

. _ >
<0:{L> = r;~ <> an
tﬁe average <1r’ > in known namely:

| | S
<f"> = —— (12)

L—-l:e-i-t

The determination of <\ 9\ thus completely determins both

<D_F as well _a.é < L > .

One way of determining <H:]2 > is to use equation (8) in the

~
L
2

limit of weak absorption )’f&z\, .".L, this gives equation (1).In
~the strong absorption limit we have:
- o, -
<T., ) W_’_'N (rty - | (13)
Thus one sees that the strong absorption

in all channels washes-out the doorway resonance completely in the |




energy-averaged cross-section.

The presence of N in equation.(iB)'should
not be a cause bf alarm in'case the number of open thannels N is
1arge since the quantity ﬂ", (P11)=] can be considered as

N = la-—se _ '
an average partlal.w1dth'that renormalizes F; and rl
| To obtain an expression fdr<i@:jg>valid

in 1ntermedlate absorptlon cases where hﬂither equation%'(SJ nor
(9) are to be trusted requires, as was mentloned already, an:
exp11c1t dynamlcal treatment of the resonances. However one
stlll hopes that if the number of open channels is large
:unitarity .alone_is sufficiént to suggest a practical form for :

the fluctuation cross section. Utilizing equation ( 7b) again

by summing over all channel indices one obtains

'<IH?'>.(M)Z"" AN FK?‘)-[Z_ = _N'-ZT;- - ag

48

In principle the above equation should be considered as a
unitarity constraint on the absorption coefficients ?ZL relating

them to all possible variation in energy as well as the

‘resonance parameters.,

Denoting the average partial width by

F;E { i (P¢); the average absorption in all channels by

N dr

| e . . -

- = e 1 H AL .
’t“ H->mu3e( ﬁ_ j approximating . (____‘ *)"T [

" ' N Y lctrje,

. 2 ) 2
g/-“’lfl : Za’q" ~

and N one thus

hbﬁhujc
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, | o
obtains 4n approximate solution for<:|f:|>* namely:

| '"":-z- P | o
<‘H > f’ Q__T:_) E-E+ PL] (15)

Itzéhou1d'be réalized that_the.above
form for <\¥44“> is valid in the case.N, the number of openr
channels, is large as then one méy speak of average parfidl
‘width since the variation in r; from one channel to the
othér would not be so significant.'With.the abbve form fof

< r?ll >> - the energy-averaged fluctuation cross-section

becomes:

P r — "T- P
<<TM> "(l-“‘z)*r- G - )f.,_ ~ (16a)
C"E}g )T+ 1 r
and the energy-averaged cross—Section;
- (" ﬂ, -:ﬂ; ﬂ, A .
a = Ao ey 16h)

The above expression should be useful whenever one tries to
~approximate the absorption present in the feaction_to be roughly
the saine in all channels as thenf’wduld be the natural quantity

to describe such an absorption rather than say individual T, ,¢.

The larger the number of channels is the better the above type
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of approximation is. Of course in the 1imit when this average

e

absorption is weak (T ~ 1 ) or stfong (:%_'v 0 }. one
recovers equations (1) and (13) respectively.
Since a double check on equations (16)

. : . Y 1. - | S
is possible via . FgCI-* ;L(KZQQ > w§ get acFordlngly:

b
| | | SN .
b oDy BETD
ce | = o | G?~ o)+
i g

Naturally this is identified with E$.(4)

which indicates that, for equation (16) to be consistent with -

unitarity one must demand that .rh = and ’fa.: T

Since this connection between [1 ’-ta on the one hand and

|1 and T on the other 1s only approximately true = one

should thus keep this in mind when using equations (16) for
)
<>
' From equation (16b) one sees that off

resonance the average cross-section is basically given by

o o -  .”‘ L._
<'Uab > ::-"‘;gJ;?- (=% )
ADERER T S AR »

At resonance one has

g W, 1w
- N = S S,
< 0 th / : - - E L 2 ’?
R (& R)‘ﬁ—lz I’
. ) . _ 4
o i L\..— r‘q ‘.ﬁb rE-
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the ratio between these two numbers is then independent - of

the channels involved i.e.

— - (18)

> o (l-—-?‘ r

<or
<y,
Knowing P from other measurements one . can .in pr1nc1ple use

the above equatlon to obtaln the average abqorptlon T which

one needs to describe <3T;L>> for any_other reaction a —>b.

Discussions and conclusions:

‘Several points are worth commenting

upon in the light of the results we have:obtained_in this work .

a)'HausereFeshbach theory.

. : | § :
It is customary to express g:(T;j > . in

terms of the-diaoonalized form of the-transmission coefficjentz).

However it seems to us that if the interest 15 Just in the
EluCtuaLLon cross-sectlon then the form (16) should be just as
confenient‘td work with., As a matter of fact the transmission
Smatrix itself seems to be a more compllﬁated object and one has
to perform the_BngelhreuhtFNeﬁdénmU]ler transtormation- in
order to relate to the Fluctuatiun cross-section-Thus the need
For a dlauser-le shhdLh is certainly not so great 1is rﬁe.cuses

we have discussed. It is the doorway nature nf the intermediate
structure that renders the cr055mseption to have the simple
Form iﬁ (Ley. UY'cﬁurse the above mentinned anelhrecht—Weiden

miller transformation becomes indispensable in the presence of
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direct (non-resonant) reactions. For this one needs the
transmission matrix and thus a Hauser-Feshbach type of"

cross-section.
b) Strong ébsorption

Aé wé haﬁé seen in section 3 the preseﬁce
of strong abéofption in all channels results in smOching;ouf.
the intermediate structure in the eﬁergy-averééed:cross—séction.
This behavior can be traced td the condition that_unitﬁfity |
1mposes on the absorption in its connection to the doorway
. resonancé parameters and the energy. The averaged cross section
one obtains in this limit i.e. equation (13) should be
considered to be mostly valid when the number of open channels

N 1is 1afge;
¢) Intermediate absorption

In order tolgeneralize the result obtained"
above to cases where the absorption is intermediate and equal in.
all channels we éuggest a simple form, equation (16), valid
only when the number of open channels is large. Unitarity imposes
the furthel condition that the partial widths should be equal
in all channels. Thus one would guess that our formula for <Cr
in equatidn (16) 1is useful in elastic scattering To
"~ discuss 1nelast1c reactionsvia the doo:way one has to consider
equation (16) as an approx1mate one. Correction to <(U’XQ >
as given 1in eq:(lﬁ) can only be made it a detailed dynamical

description of the resonances is made.
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Laétly we have-exploited the oositivity _
of the total reactlon cross- section to obtaln an 1nequa11ty
.-‘whlch may be used in cases where N the number of open
channels, is small (Ni( 4) that gives a lower 11m1t to P& glven
‘an experlmentally determxned {1¢ ) For large N thellnequallty :
‘becomes a trivial one [ >t> . L |

| | It would be 1nterest1ng to analyze_ thg‘_7
problem of the fluctuatlon cCross- sectlon in the general casez.
of many doorway resonances and in the presence of dlrect
_non—resonant reactlons u51ng e.g. the Enéfbbrecht WeldenmU118T;
transformation or the Kawal Kerman*McVOy approach ) We are’

epresently explorlng these extentions.




-15-

Acknowledgement : - . . "

I thank W. Mltt1g for usgeful comments and

'cr1t1c1sm that clarlfled many p01nts in thls work




416"

"Footenotes and References

1) G{Graw, H,Clemeﬁt,-J;H;?eiSf. W; Kétschmer and P. Pr8schel
 Phys.Rev. C 10, 2340 (1974)
- 2) H.M.Héfman'_n, J.Richer"t; JV.W-.Tepel and H.A.Weidenmﬂllér |
Ann. Phys. (N.Y.), 90,403(1975)
403(1975) C.A.Engelbfecht and HfA.WeindenmUIIer, Phys.Rev.
C 8,859(1973). | |
3) M.Kawai, A.K.Kerman and K:W}McVoy - Ann Phys.(N.Y.) 75,156
(1973).






