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ABSTRACT

The "Bohr-Sommerfeld quantization rule" is shown to be,
under certain circunstances, equivalent to the quantization
of the charge. Charge conservation happens to imply the

stability of the semiclassical spectrum of a model.
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In the‘last few years much attention has been paid to
semiclassical methods of quantization in field theory(l'2'3).
Among these methods the simplest one is the "Bohr-Sommerfeld
Quantization Rule" (BSQR)(2’3). Beinggé (x) a gquantum
field of a given theory, and.zf(x) its canonical momentum,

the BSQR reads(2'3)
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are periodic solutions (with period &) of the classical

where n is an integer and 9é

equations of motion.

Another kind of quéntization we can perform on a
classical theory refers to the "charge quantization".
Consider a classical field theory invariant under gauge
transformation of first kind. This gauge invariance leads
to the conservation of a charge whose density is /£>C%?f}£)
The "charge quantization" (CQ) mentioned above is implement-

ed by imposing the condition

cl. -
//0 (‘%(/f) dx = N (2)

where N is an integer.

The aim of this note is to show with examples that the
BSQR is, under certain circunstances, equivplent to the CQ
defined by eq. (2). Although we have verified this equiva-
lence on a semiclassical level we conjecture that the exact

quantization of these theories also demands a quantization

of the charge; or, in other words, we conjecture that in




a quantum field theory invariant under gauge transformations
of first kind the charge is always an integer multiple of
an elementary quantity ~ as is the case for the electric
charge.

Let us look first to the charged scalar field theories

defined by Lagrangian densities of the form

(). [2-TEPh- - PU)
P (/¢/ 2) being a polynomial in /¢/ ° . These theories

are invariant under gauge transformation of first kind.

For them the BSQR is written as

fdz‘/dx 7§(xt) ogﬂ;(it) 2T 7

where ¢(¢\f/ f_‘) are periodic solutions (with period @ )

(4)

of the classical equation of motion
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A large class of these periodic solutions is given by

1 2L +

¢q{2/}7f)= 75(;)‘62 a ' (6)

=3
where 2; ()() is a solution (that we assume to be square
&

integrable) of the equation
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Inserting (6) on (4) we see that the BSQR implies
°a )

o?7Z//7[ (5?)/ dX = N
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Expression (8) "quantizes" the values of 25 leading
(2,3)

(8)

to a quantization of the energy
The classical charge density associated to this complex

field is

(3 (3.t) = WJ%P #7* “4]-
poof

Now, from egs. (9) and (2) we conclude that the CQ requires

f

(9)

that ) ,
£€%£L= ’~% Z}??)\ dx = N (10)

Then, comparing (8) and (10) we see that - for solutions of
type (6) - the BSQR is equivalent to CQ.

Of course this phenomenon may occur in any field
theoretical model invariant under gauge transformatio*of

first kind. Another example where the equivalence studied
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here becomes manifest is the massive Thirring Model (MTM). LN

There the charge density associated to the classical field

- L
;L(X/ t.) is given by

+cla la
Pl = By Y

(11)

whereas the charge quantization reads

f@br% Jx = N (12)

Here we mention that the CQ condition for the MTM
(expression (12)) happens to bedqual to a "normalization
condition" defined in ref. (4).
In the MTM the equivalence between the BSQR and the .

CQ can be easily verified when we deal with solutions of

- ,;)Mt
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the form

By using the BSQR(3)

or the CQ we deduce that this
theory has a discrete spectrum. The energy of the state

of charge , =7  will be
7

where /7)/ = 0/ 7/2 e < 71/6[ ; g is the coupling

constant and m is the mass of the classical Lagrangian den-

(14)

sity of the MTM.
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We want to mention that charge conservation will forbid
the decay of a particle of energy éiﬁ into two others of-
energies E%P' and £E7 (consider for simplicity that n, p
and q are positive). Charge conservation implies that

n = p+q. But energy conservation requires

EP"_?: EP + 57 + /</m73k; Emg% (15)

or

Ain [§-(p+9] 2 MG p) + A T) oo

because the Kinetic Energy is non negative
Inequality (16) cannot be satisfied since
o <(8a) P+1) < T/a
Then the decay under consideration is forbidden.
As pointed out in ref. (3), this spectrum is similar
to that of the sine-Gordon Theory (SGT) - in agreement with

(5)

Coleman's proof of the equivalence between the MTM and

the SGT. We mention that, in the context of the SGT,

(6) and Faddeev(7) had conjectur-

Dashen, Hasslacher, Neveu
ed that the decay studied above is not allowed. Our
conclusion about the decays prohibition - in the context
of the MTM - can be seen as another point in favor of
them.

In conclusion, we mention that the equﬁvalence discuss-

ed in this paper can be verified for any first kind gauge

invariant theory having classical solutions whose time

dependence is of the type (6) or (13). If this kind of
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time dependence is a necessary condition for the equivalence

is an open question.
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