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Tl ooy

‘e ‘equivalence between the sine-Gordon and massive °

Tirring modéls, that Coléman sHowed to exist for the quantiz-"

ed thed¥ids, is ‘i1lustratéd in a classical context.  Insis-

tence on a pure massive Tirring model with no extra dynamical
variables seems to require Skyrme's condition at least in the

classical theory.
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I. INTRODUCTION .

The pioneering work of Skyrme1 calling attention to
the possible applications of the sine-Gordon equation to Particle
Physics is almost two decades old. Some of the classical
solutions of this equation, the so called solitons, exhibit
particle like behaviour and conserved quantities appear which

one can hope to associate to fermionic charge. A lot of

effort has been devoted in the last years to see what happens at
the quantum level using semiclassical methodsz’3.
More recently Coleman4 compared the quantum sine-
Gordon with the massive Tirring model5 in the charge zero sector
and noticed that one can make a correspondence between field
operators (and at the same time among masses and coupling
constants) of both theories. The relations obtained lead to
very interesting conclusions. It looks as if the sine-Gordon . e
"elementary" boson were a bound state of Tirring's fermion-
antifermion. Since, on the other hand, this same boson can
also be thought as being a soliton-antisoliton bound state,
one could identify the soliton with the eleﬁentary fermion of
the Tirring model. This identification relies on the explicit
form of the relations found by Coleman.
Some of Coleman's results, obtained in the quantized
theory, do not seem to have an immediate interpretation in
classical terms. On the other hand, it is known that in most
cases classical results survive quantization and remain valid
as lowest order approximationss. Thus, it would be interesting

to have an understanding of Coleman's relations at the classical

level also. To try to develop such an understanding is our

main aim in the present work.
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In the following section we obtain sine-Gordon as a
special case of the c—mode17. Coleman's results are written
down in section III. 1In section IV and V we show how to go
from the Tirring model to sine-Gordon and viceversa. The last

section contains concluding remarks.

IT. SINE-GORDON AS THE NON-LINEAR o-MODEL

An equivalence between sine~Gordon and o-model was
already noticed by Skyrmel’s. In this section we will elaborate
on that equivalence emphasizing the Lagrange constraint aspect
of the problem since similar techniques will be applied later on
in showing the Tirring model-sine-Gordon connection.

Let us start for simplicity with the U(1l) ® U(1l)
c-model with bosons only and explicity broken chiral symmetry.
The Lagrangian can be written as

L=

[(0,0)2 + (3 m2?] - i9(c:2+1r2)+Co—B(o2+w2‘-A2)2 (1)
W ! 2 ’

N[

where o is'a scalar field, = a pseudoscalar and everything else
are constants.

The chiral symmetry can be realized linearly with ¢
and 7 being independent fields. Or, one can have a nonlinear
realization in which now o is no more an independent field,

being related to © by the constraint equation

62 + w2 = a2 (2)

In this case the fields can be parametrized in terms of a new

pseudoscalar ¢ as




o = A cos B¢, m=A cos B¢, (3)

where B is a constant.

Our Lagrangian is now
2 2
L = -;-(auq;) + X cos B¢ (4)

where we have set

-1 2
A=, c=X | (5)

g2

Eq. (4) is the Lagrangian of the sine-Gordon model, with mass
m and coupling constant (m282).

The point we would like to stress is that one can
interpret the last term in Lagrangian (1) as a constraint
imposed on a theory that otherwise would describe two nonin-
teracting fields. According to this interpretation the parameter
B would be a sort of Lagrange multiplier. Such Lagrange
multiplier methods will be used in section IV in ConstrUcting a
model that illustrates the sine-Gordon-Tirring model relation-

ship.

III. THE COLEMAN CONNECTION

Coleman has gone a long way in showing that the '
quantized version of the sine-~Gordon model is equivalent to the
massive Tirring model in the charge zero sector.

5

The classical massive Tirring model~ Lagrangian is

| =\ v M - n - _l. s U
Ly =1y 0 - Mby - > g3ty (6)




e
A

;

where the self interactioh is given in terms of the current j“.

f

b
This current and the pseudocurrent are defined by
s M A T 35 = PPy (7)

The Hamiltonian density of the Tirring model can be

written as
=1 0 1 -
&p=3 [0 + bl + M (8)
while for the sine-~-Gordon model this density is

; 2
Bow == [0%)2 + (319)2] - ™ (cos e-1) | (9)
SG 2 g2
A comparison of Egs. (8) and (9) could provide the motivation
of Coleman's strategy for the identification of both models:
1) Show that in the quantized theories there exists

the operator equivalence
- m2 -
-Myyp = — cos B¢ (10)
82

in the sence that the Green functions for both field operators
can be made to be equal.

2) Once that is achieved, comparing the commutators
u I : u
[s% o %]+ [o%, cos se] | (11)

one can establish an equivalence between j! and 2"¢.
More precisely, from a comparison of Green functions

and commutators one arrives at the identifications




-2 sP(l+tvy )y =mN e iB¢ (12)
m ’ .
and
4 = - B e“"avcp ’ (13) .
2 4

where Nm refers to the normal ordering operation with respect
to the mass m and Z is an (infinite) renormalization constant
from which we extracted the finite number s.

As a necessary condition for Egs. (12) and (13),

the coupling constants have to be related by

(1 +g/m”" = &2 (14)

and to go from Eqg. (12) to (10) (up to the renormalization

constant Z2) one also needs
M=s T . (15)
82

From Egs. (14) and (15) we see that the mass m of the sine-
Gordon boson is given in terms of the mass M of the Tirring

fermion by

m=-d1/8 y (16)
1+g/m
which suggest that the boson is a bound state of a fermion-
antifermion pair.

On the other hand semiclassical studies yielded the
conclusion that the sine-Gordon fundamental boson is a bound
state of soliton-antisoliton modes3. The classical soliton
mass is given precisely by Eq. (15) with s=8. Considerations
of this kind, among others, lead Coleman to the conjecture that

the sine-Gordon soliton is the fermion of the massive Tirring

model.




-

7.

The very interesting analysis of Coleman was done for
the quantized theory. A natural question to ask would be: Is
it possible to obtain Coleman's results in a classical context?

The following sections are devoted to answering that question.

IV. FROM TIRRING MODEL TO SINE-GORDON

The appearance of infinitely many superselection
sectors in the sine-Gordon model is what encourages one to look
for something like a fermionic number. As a matter of fact a
good candidate for the fermionic charge would be

- _ B o1, 1 _ B 0) =4 (—wm
Q = | etate axt = & Lote) -o-al] (a7

27

since as we go from one superselection sector to the next Q
changes by one2’3. Thus if there is a relationship between
the sine-Gordon model and fermions,suvav¢ would be the natural
candidate for the fermionic current.

A comparison of the Hamiltonians (8) and (9) leads
us to expect some connection between Py and (cosB¢e+ constant).
In that case, chiral symmetry would also dictate a similar
relation between @ysw and sin B¢ . And now we have to see
how to incorporate all these features in a model.

After all the preparatory considerations let us start
with a self coupled massive fermion ¥ and a free massless boson

¢' with no interaction between boson and fermion. The Lagran-

gian is

Lo = 10v"2,0 - Miw = 2 giv"viv v + 5 v (5 0")2 (18)

(the reason for introducing the constant y will be explained




later).

At this point ¢ and ¢' are independent variables and,
as usual, the variation of ‘£o with respect to them yields the
equations of motion.

If, on the other hand, we knew that y and ¢' are
coupled somehow (or, equivalently, that there are constraints
between them) we could not perform independent variations of
the Lagrangian unless we incorporate to it the constraints
according to the Lagrange multiplier method. Let us follow
that procedure in our case adding to Eq. (18) the expected
constraints

- 2 -
L, = xl(wy“ysw +a3¥e") + A ([Vv +u(cos 8'9' + D)2 +

+ (19ys¥ - u sin 8'¢' )2}, (19)

where a, b, ¥, »; and Az are constants, the last two having
the role of Lagrange multipliers.

It might be worthwhile at this point to compare what
we are doing here with what was done in Ref (4). Hoping to
find equivalences (between the boson and fermion models) of
the type of Egs. (10) and (13) Coleman inquired whether the n
point functions of the field operators under consideration
could be made equal in both theories and under what conditions
would that happen. In our case, looking for a model with that
kind of equivalences, we introduce them in the Lagrangian
(through the constraints (19)) to see what relations (if any)

emmerge.

Our constrained Lagrangian is now




— - 4 H - - -
oLy =L + L, = 19y 2 ¥ (M=2bux, ) $¥

_l. - o s prg '
> (g 2A2 + ZAl)wY ¢¢Yu¢ + 2X13¢Y Y5¢3u¢ +

+ Aau b(cos B'¢' =~ 1y, sin B'¢')y +

.]; 2 '2 2 [N ]
* 3 (y + 23 a )(au¢ )~ + 2bu®r, cos B'¢', (20)

where a constant was dropped and use was made of

B9)2 + oy w2 = Iviedy v (21)

which can be easily checked using the explicit representation

0 1
Y =0,, 7= io2 and Y= -03.

We see that in the Lagrangian (20) the four-fermion

coupling and the mass term disappear if

=2 (A = 22
g ( ) 1) ’ (22)
and
M = 2ubx2 . (23)
In this case, we can introduce
-4 (B'¢'+m)Y
y' = e L 5 v (24)
in terms of which the Lagrangian reads
L = 10'v"y' + (22 a - s'/Z)E'v“vsw'8u¢'-2uA2?ﬂ'w'
+ %(y + 2x1a2)(au¢')2 + 2bu2A2 cos B'¢"'. (25)

The derivative coupling term is easily gotten rid

off with

A = Bg'/4a

, , (26)
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and what remains is ;f
- 4wy H ' TN l 2ﬁ .
4& ip'y auw M"Y + 2(3u¢) + 2 cos B¢ (27) |
with
Mo = Zukz , (28)
m’/82 = 2bu?), (29)
and
1
o = (y + 2x,a%) 2 ¢', B'¢'=8¢. (30)

Eq. (27) is, of course, the Lagrangian for a sine-Gordon field
plus a massive free fermion.

" From Egs. (23) and (29) we get

m2/82 = uM | (31)
M can be adjusted to be the classical soliton mass with

B = m/8 (32)
which gives for the second of the Lagrange multiplies the value

A= (5=)8B (33)

obtained from Egs. (23), (31) and (32).
If, as is suggested by Eq. (17), we take for the

parameter a, in the constraint relation (18), the value

a=8"'/2n ) (34)

the first Lagrange muitiplier (Eg. (26)) turns out to be

Al = n/2 (35)
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The four fermion coupling in the Lagrangian (18) is now
almost completely determined. From Egs. (22), (33) and (35) we

have
g= (=8 -1, (36)

which would reproduce Coleman's relation (14) if b=16/n . Why
should such a special value for b arise at the classical level
we have not been able to figure out.

With the manipulations we have just gone through,
we have shown how to get from a massive Tirring plus massless
free boson (plus constrainsts) model to a free fermion plus
sine-Gordon model. The starting point could even be a pure
Tirring model since ¢' can be eliminated from Eq. (18) by
putting the constant y equal to zero.

The journey from Tirring model to sine-Gordon can
also be done in the oposite direction as will be shown in the

next section.

V. FROM SINE-GORDON TO TIRRING MODEL

Now the starting point is a model with a free massive

fermion plus a sine-Gordon field based on the Lagrangian

- ' M [ . Tea _1_, 2 5‘_2. -
oL ip'y e Mv'y' o+ 2(3u¢) + o2 (cos B¢o-1) . (37)

In terms of the new fermion

i
7 (B¢+")Y5 'b'

y = e (38)
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the Lagrangian, up to an additive constant, can be written as

o 2A2m2 _ o
Lo = 13v"a v - —2— Jv = 0,2 Vv edv v
BZM 1 u
o
1., _q2 2 - U B 2
+ 2(l_B /Sll)(3u¢) + Kl(wY Ys¥ + " 2,4 )
1
- M 2 2 - M
+ A (ww + x>~ cos B + m + (iwy P - 2 sin Bo)2
2[ .27; BZMO) 5 2)‘2 ) ] .

(39)

If once the theory is quantized, it turns out that

all matrix elements of

M

- - 2
Fy'y v + £ s"4), (Iv + -2 cos B¢ + =),
5 4x, 2 B2M
2 o
(iyy ¢ =« —— sin B¢) , (40)
S 2x2

vanish in the charge zero sector, then we effectively have in
that séctor a massive Tirring plus free boson model. The mass

of the Tirring fermion comes out

2
2A2m

" (41)
BeMg

With the procedure (plus wishful thinking) outlined
in this section all the results of the last one (Egs. (33),
(35), (36), etc) are recovered. The boson ¢ can be eliminated

from Eq. (39) as an independent dynamical field 1f we put

B2 = 8, . (42)

This, together  with Eg. (35) would fix B8 at the
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value

B2 = 4 (43)
Eq. (43) is Skyrme's condition. He speculatedithat in order to
have an equivalence between sine-Gordon and Tirring models,
Eg. (43) has to hold.

In the classical massive Tirring model one has

" -
aujs Zivasw (44)

Thus, if the identifications (13), (15) and

s i Eysw = m sin B¢ (45)

hold, it follows that

2

47 ™% Jin B¢ (46)
82

B

which is the sine-Gordon equation if B = 41 (Skyrme's condi-

Do = -

tion again).
At the quantum level Eq. (44) is not so easy to
prove. Eg. (45), on the other hand, follows directly from

Eg. (12) obtained by Coleman.

VI. CONCLUSIONS

The work reported here grew from an atempt to
understand, already at the classical level, the conditions
for the sine~Gordon-Tirring model equivalence derived by

Coleman using quantum perturbation techniques. We have seen

how one can obtain in a simple manner the relations among
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coupling constants and masses given in Ref. (4). In particular,
the nice relation (14) leading to the Eq. (16) which suggest
the interpretation that the sine-Gordon boson is a bound state
of fermion antifermion of the Tirring model. This, in turn,
points to the identification of the massive Tirring fermion
with tﬁe sine-Gordon soliton.

One difference with respect to Ref. (4) is that our
simple treatment gives Eq. (14) up to an undetermined constant
(the b in Eq. (36)).

Skyrme's condition g8 = 44 appears to be related to
the complete elimination of extra dynémical fields when the

theory is described in the Tirring model language.
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