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ABSTRACT

We study the stability of soliton-like solutions of a
classical relativistic field theory with logarithmic non-
linearities. For a given charge (not greater than a certain
value qmax) the model exhibits a stable state and an unstable
one. The latter state instead of being nonphysical can be
interpreted as a resonance. Problems related to the semi-
classical quantization of this theory are also discussed.

All calculations are done in any number of spatial dimensions.




1. Introduction

Due to‘their nonperturbative character, the semiclassical .
dpproximations to quantum field theories have gained conside-
rable attention.nowadays(l’2'3). Among these methods of
quantization we can cite the Bohr - Sommerfeld quantization
rule (BSQR)(1'4’5) and the extension of WKB to field theory(2'3).
In order to implement any one of the mentioned methods,
exact and well behaved (with finite energy) solutions of
the classical equations of motion are needed. 1In this context,

the question of the stability of these classical solutions

happens to be a crucial one. The definition of stability

commonly used(l) can be seen as an extension to classical field
theories of Liapunov's criterion of stability introduced in -
(6)

classical mechanics .

(7,8) studied two v

Recently Bialynicki-Birula and Mycielski
classical equations with logarithmic nonlinearities - the
Schradinger -like and the Klein-Gordon-like equation. 1In both
cases they were able to obtain exact soliton-like solutions
of the Gaussian type. We intend to study the stability of
the solutions of their relativistic equation on the light of
the stability criterion mentioned above.

An interesting feature of these theories is that their
classical version and the stability equations can be solved
in any dimension of the space-time, and in particular in the
1+3 dimensional real world.

The relativistic model is presented in section 2. There,

its stability equation is also solved. Our conclusion is that .

for a given value of the charge (not greater than a certain

value qmax) there exist a stable soliton - which we interpret
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as a bound state- and an unstable one - that we interpret as a
resonance, since its mass is larger than that of the former
particle.

These questions are discussed in details in section 3.
There, we also conclude that when the charge modulus is greater

than g there is no more bound state, nor resaonance.

max
Section 4 is left to conclusions and discussions about

the possibility of quantizing the model.

2. The stability of solitons in the relativistic theory

In ref. (7) Birula and Mycielski studied nonlinear wave
equations with logarithmic nonlinearities. They were mainly
concerned with a nonrelativistic version of the model, but a
certain class of relativistic classical solitons were also
obtained by them.

The relativistic theory is the one studied by us. It is

defined by the following Lagrangian density(a)

Lid)= 2“¢*g//€¢,(2_2+ éz) c))*#) . éz“bﬂ (Cb*‘ﬁ)am)d)*d’, (2.1)

where ¢>is a charged scalar field and A ,‘e and a are dimensional
parameters of the theory. n stands for the number of spatial
dimensions that will remain unspecified.

The Euler-Lagrange equation corresponding to the model

defined by (2.1) is

‘ O+ A= ¥ (@) =0,

(2.2)
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In the soliton rest frame, the soliton-like solution of ,

interest for us is(7'8)

?‘é(’-‘:f)‘:/’”?(‘ 7-(262 __Zwt>) C (2.3)

where A is such that

(A= 0+ (5) = 20, (2.9

In what follows we consider A as a real number, without loss
of generality.

(6)

The study of stability a la Liapanov can be implemented

-3
if we add to ¢(x-f) a small fluctuation
W

¢(5(':f)= géu(»?‘, t) + e"wtw)?f)- (2.5)

Inserting 96(§.tw) into Eq. (2.2), and retaining only terms of *
-—h
first order in 176¥.fj » we obtain the linearized stability
v
equation(l'2'3):

2 2 22 s
2 _glwl 25 _ )2 + X ) =1>

<2t’~ L0 5T B Jet + X /) VERE

(2.6)

Now, we say that the soliton described by 9%J(§(t> is

stable if 'ZVCQ-fJ' is bounded for all t, i.e., for a given

X there exists a ’7% /;S?) , positive and finite, such that
“u

the inequality

nRt) < 17&5) (2.7)

holds for any value of t.

A typical solution of Eq. (2.6) is of the form




n ,

. Ft) = X5/0 )| .
N ] %m%( /e)

. : | /331

. U
.[a'mq...’m:/pr v\m,y.-.mm{)‘*' bm'“m:’xPH ’"‘4-""%) )
(2. 8)
where A . is the mﬂ' eigensblution of the unidimen-
'ma Y,

sional harmonic oscilator.
Here we point out that in order to have stability in the
sense of (2.7), all 24 must be real.
’ M Ly mﬂ
Substituting (2.8) into Eqg. (2.6) we obtain an homogeneous
linear system for amq'“ 1, and 6”7, 71 . Such
homogeneity leads to the vanishing of the determinant of that

system, and we get

t 2 4 0(»& | )
(z: m) :<°2/{2> dm,...'m,,," < Mgy oy mm ) |2
T | (2.9)

where 2 '
1 _5_ ™2
= (wt) - / + £ 0. a
dm,’..' mn ( ) 02 /)' /b LQ . 4 ’ )
and
= (Zm)(Z- ™) -
(5’"‘4-~-'mn (’3 ’b ,S D . (2. 10. ‘o)
Since /67”4,” ma is positive semidefinite we shall
separate the set {7770‘} into two kinds of sets
m, . .
. a) 21 }4 is such that ﬁm,... 7 >0 In this
case the T‘rnq... ,;'” are non zero real, and it does not emerge

» any suspicion of instability.

b) {’)776‘ }‘Z is such that ﬁ’"ﬁ" mf)= Fo) . This case




is realizide in two situations (see (2.10.b)): ’

b.1) M,=4 , and 77. = for all j # k. Here we have

% <
(7;;...4.,,0) =0, (2.11.0)

Note that this zero of (7;:'“ 1., O).z has a degeneracy of
degree n. This is a consequence of translational invariance
in any one of the n spatial dimensions. 1In the language of
refs. (2) and (3) we should say that these are zero frequency
modes associated to invariance under translation.

+
The value of (7'0 0. o) will be
, LY IR

<7:),+o...4...0>‘z B (02/62)[("0(2)2+ 1/'2':] ' (.14 b)

Here again we do not have any reason for having instability

o+
because the 7n@cx..1“.o are all nonzero real numbers.

b.2) ms = O for all j. Now we have

2
(T“ )"Zzo . (2.11. ¢)

o, oroh 0 2
This zero of - has a degeneracy of order 1 that is
: (ira,a“.c>> g Y

associated to the gauge invariance of first kind or to the the
invariance under time translation-which for solutions of type
(2.3) is equivalent to gauge invariance.

The trouble with instability becomes evident when we look

+ L2
toﬂwxmheof(rgou,o>

od ; 2 |
(T;o...o> =(°2/€2)Kwe> “Zg] ‘ (o?‘.M.OL)
From (2.11.4d) we noteée that there exists complex values of ?4.+ X

0,0...0
whenever

gz L]
w"z< {/\)C = yoztz (2,12)
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where byl we mean a critical value of &) . Thus, all solitons,
for which (2.12) holds, are unstable. Otherwise they are stable.
In the next section we shall study the consequences of
the conditional stability (2.12).
An interesting question emerges when W = %ez . In this
case 2};0".0 is also zero and the solution associated to
that value of ) 1is expected to have an additional symmetry.

This problem will be clarified in the next section.

3. The spectrum:Bound states and resonances

Here we will obtain the classical spectrum of the model
whose Lagrangian density is given by (2.1). Based upon the
results of this section we shall see that the unstable clas-
sical solutions-instead of being discarded- can be interpreted
as resonances.

The energy is computed by integrating the classical

(7, 4) = 2 %ﬁ”)(g-g?)— Lxt).

A classical soliton of the model considered here is

(3.1)

characterized by its energy and another conserved quantity:
the charge. This is due to the invariance under gauge trans-
formation of first kind. The charge of a given state can be

obtained from the classical charge density -
X Xx /-
L) = 4 (a _ (_(zé) |
pe v 5%)46 7 2t/ (3.2)

After plugging (2.3) into (3.1) and integrating we shall

get the energy of the solution of frequency ) (sﬁ )
w




C =aft (M) oxp[n+¥) | (5.4

The charge associated to st is computed by integrating
‘ (23]

9w) = C (L w) exp|- (&")ZJ (3 5)

In fig. (l.a) and (l1l.b) we plot respectively the energy
and the charge as a function of WZ (recall that Ciﬁ— W) = - 7(“’))-
From these figures we see that the energy, as well as the
modulus of the charge, attains its maximum value just for
that value of ¢ that we have named critical: wcz = % 2.

We can also see that for a given value of the charge ¢7
(not greater than qmax) there exist two soliton-like solutions
of Eq. (2.2) having different energies - as shown in fig. (2).
This fact becomes more interesting when we observe that the
state of lower energy is stable, whereas thevother is unstable.
In this context we are tempted to interpret the heaviest

varticle (the unstable one) as a resonances instead of discarding

it.

o
In fig. (2) é: 67} is the energy of the bound state of
charge g, whereas E;ﬁ?i) is the energy of the resonance. An

17)
elementary analysis shows that é;-(7) is a concave function,

i.e

.50(741*92)' < 50(7,) + E£°04,)

"B.¢6) .

Then the decay 6f a bound state of charge ?¢ o+ 72 into two




others of charges ?1 and ?& respectively is forbidden, be-
cause the final system should have a negative kinetic energy(g).

The preceding discussion justifies the stability of the
bound states already at the classical level.

Inequality (3.6) does not holds if on its left hand side
we put E’\"(7¢+ 72) - instead of E 0(7,,472). Then, we
cannot forbid the decay of a resonance of charge 7gv¢-?§
into two bound states of charges 74 and 5%2 . From this
fact we have an understanding of the instability of the reso-
nance at the classical level.

In conclusion, we expect that in a given charge sector
of the quantized version of this theory there exist a resonan-
ce and a bound state. The resonance (that is unstable) can
decay, whereas the bound state cannot. The stable and unstable
solitons that we have studied are supposed to be classical
manifestations of those quantum objects.

Now, we will answer the question rised in the final part
of section 2. The question is: what is the additional symmetry
associated to the zero frequency mode gained when /ZU) = <U)¢ ?
As mentioned above, the point éLZ; is a point of maximum
for the energy and for the modulus of the charge. This means
that both these quantities are stationary under small variations
of frequency , 1.e.: |

E (We+ 2w ) = Epax - O[&wﬂ (3.7.a)

and

R N AT

Then, for )= poc' » all gquantities of physical interest (the
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energy and the charge) will not change under small fluctuations
of W, and we can say that the additional symmetry gained is

the invariance under infinitesimal "frequency translations". .

4. On the possibility of quantizing the theory

In this section we report some difficulties one confronts
and some hopes one sees when trying to quantize the model,
whose Lagrangian is given by (2.1), by means of the WKB method.

At first we mention that a quantization a la Bohr-Sommer-
feld can easily be done, since for theories invariant under
gauge transformation of first kind this quantization is equivalent
to charge quantization - as shown in ref. (5). Then, in order
to perform the BSQR it is sufficient to impose that /7/ = ,
O, ’/, ] "\<}777MXI~Of course, this procedure leads to a discrete
spectrum of bound states and resonances that can be seen in
fig. (2), taking only integer values of/?/ .

Things are not so simple in the case of WKB. First of
all, one observes that the interaction Lagrangian is not
analytical atﬁ##i:() (the vacuum). Then, the introduction
of fluctuations about this value of the field cannot eventually
be a legitimate procedure. As a consequence of this we have
troubles in subtracting the vacuum energy from the soliton
energy in the process of renormalization.

Our hopé is that there exists a special type of counter-

terms - different from the usual ones (2,3) _ that are appro-
priate for the present problem.
We point out that the process of renormalization can lead .

to the appearance of resonance widths, because the sum of the
resonance stability angles(2'3) has a finite imaginary part.
Another delicate point deserving caution is that the

potential is not bounded from below
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. \/(/951. /(;;im — D] /95[2 (4.1)

The quantum mechanics (field theory with zero spatial dimension)
of this potential does not addmits states confined near the
origin of the potential, since the particle can tunnel through
the barrier.

We expect that in field theory (1 or more spatial diménsion)
the tunnelling will be forbidden by topollogical reasons, as
is the case for the soliton in the sine-Gordon Theory.
Although the quantum mechanics of the potential cosX has a
continuous tunnelling - manifested by its band structure, with
no bound states -~ a soliton sector on its field theoretical
version cannot tunnel to another one.

Finally we mention that the stability of the nonrelativis-
tic solitons of ref. (7) can be studied by a similar procedure.

The conclusion is that the nonrelativistic solutions are all

stable.
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FIGURE CAPTIONS

1l : Energy and charge as functions of the frequency of
the classical soliton

2 : Energy of the soliton as function of its charge. The
continuous curve refers to the bound states, whereas
the dashed one refers to the resonances.
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