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Abstract

We interpret the exact and quasi-exact solutions of General Relativity previously ob-
tained for spherically symmetric shells of fluid matter, both liquid and gaseous, in terms
of the energies involved. In order to do this we introduce certain integral expressions
that are related to various parts of the energy. We then use these integral expressions
in order to show that a certain parameter with dimensions of length, that in both cases
was necessarily introduced into the solutions by the interface boundary conditions, is
related to the binding energies of the gravitational systems.

In sequence, we use this representation of the gravitational binding energy in order
to discuss the energetic stability of the new solutions found in the liquid case. We
include in the stability discussion the well-known interior Schwarzschild solution for
a liquid sphere, which can be obtained as a specific limit of the solutions that were
previously obtained for the liquid shells. We show that this particular solution turns
out to have zero binding energy and therefore to be a maximally unstable one, from
the energetic point of view discussed here.

We also perform a numerical exploration of the energetic stability criterion of the
liquid shell solutions, all of which have strictly positive binding energies, and show that
indeed there is a particular subset of the solutions which are energetically stable. All
these solutions have the form of shells with non-vanishing internal radii. This reduces
the original three-parameter family of liquid shell solutions to a two-parameter family
of energetically stable solutions.

The conclusion that inevitably follows from this exploration is that the requirement,
which seems to be universally assumed in the literature, of the absence of any singu-
larity whatsoever of any and all solutions at their centers, a requirement which is this
case leads to the interior Schwarzschild solution, actually has the effect of selecting an
energetically unstable solution, rather than the most stable one.
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1 Introduction

The issue of the energy in General Relativity is a difficult one, and its discussion even in
specific examples quite often becomes involved and obscure. The difficulties start at the
very foundations of the theory, with the impossibility of defining an energy-momentum
tensor density for the gravitational field itself, a problem which apparently is related to the
impossibility of localizing the energy of the gravitational field in the general case [1].

However, a recently discovered new class of static and time-independent exact and
quasi-exact solutions [2,3] provides us with an opportunity to discuss the subject in a clear,
precise and complete manner. It leads to a simple and clear characterization of all the
energies involved in this class of solutions, as well as a characterization of the relations
among them, which establishes an important connection with the fundamental concept of
the conservation of energy. This is made possible by the fact that these solutions hold over
the entire three-dimensional manifold, and not over just some part of it.

It is noteworthy that results similar to the ones we presented in [2] and [3] were also
obtained for the case of neutron stars, with a Chandrasekhar-type equation of state [4], by
Ni [5] and Neslušan [6]. Just as in [2,3], the analysis of that case also led to an inner vacuum
region containing a singularity at the origin and a gravitational field which is repulsive with
respect to that origin. This tends to indicate that these results are general at least to some
considerable extent. It is to be expected that the ideas regarding the energy that we present
here will be useful in that case as well.

This paper is organized as follows: in Section 2 we quickly review the new class of static
and time-independent exact solutions for both gaseous and liquid shells, as well as the
interior Schwarzschild solution, which can be obtained from the new liquid shell solutions
in a certain limit; in Section 3 we establish certain general integral formulas for all the
energies involved; in Section 4 we establish the general physical interpretation of the energies
involved, including for both types of shell solutions, as well as for the interior Schwarzschild
solution; in Section 5 we perform a small numerical exploration of the energetic stability of
the liquid shell solutions, and in Section 6 we state our conclusions.

2 Review of the Shell Solutions

In two previous papers [2, 3] we established the solution of the Einstein field equations for
the case of spherically symmetric shells of liquid and gaseous fluids located between radial
positions r1 and r2 of the Schwarzschild system of coordinates. We will now quickly review
these two solutions, emphasizing the similarities between them. In this work we will use
the time-like signature (+,−,−,−), following [1]. In terms of the coefficients of the metric,
for an invariant interval given in terms of the Schwarzschild coordinates (t, r, θ, φ) by

ds2 = e2ν(r)c2dt2 − e2λ(r)dr2 − r2
[
dθ2 + sin2(θ)dφ2

]
, (1)

where exp[ν(r)] and exp[λ(r)] are two positive functions of only r, as was explained in [2]
the Einstein field equations reduce to the set of three first-order differential equations{

1− 2
[
rλ′(r)

]}
e−2λ(r) = 1− κr2ρ(r), (2){

1 + 2
[
rν ′(r)

]}
e−2λ(r) = 1 + κr2P (r), (3)

[ρ(r) + P (r)] ν ′(r) = −P ′(r), (4)

where ρ(r) is the energy density of the matter, P (r) is its isotropic pressure, the constant κ
is given by κ = 8πG/c4, G is the universal gravitational constant and c is the speed of light.
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In these equations the primes indicate differentiation with respect to r. It is convenient for
the analysis of the solutions to change variables in the field equations from the function
λ(r) to a function β(r), which is defined to be such that

e2λ(r) =
r

r − rMβ(r)
, (5)

where rM = 2GM/c2 is the Schwarzschild radius associated to the total asymptotic gravi-
tational mass M , which then implies that we have for the corresponding derivatives

2rλ′(r) = −rM
β(r)− rβ′(r)
r − rMβ(r)

. (6)

Note that β(r) = 0 corresponds to λ(r) = 0 and therefore to exp[2λ(r)] = 1 for the radial
coefficient of the metric. In such cases the variations of the radial coordinate are equal to
the variations of the corresponding proper radial lengths. Substituting the expressions in
Equations (5) and (6) in the component field equation shown in Equation (2) a very simple
relation giving the derivative of β(r) in terms of ρ(r) results,

β′(r) =
κr2ρ(r)

rM
. (7)

Therefore, wherever ρ(r) = 0 we have that β(r) is a constant. Since we must have that
ρ(r) ≥ 0, it therefore follows that β(r) is a monotonically increasing function, which is a
constant if and only if we are within a vacuum region. In addition to this, since according to
the asymptotic boundary condition we must have that β(∞) = 1, it also follows that β(r)
is limited from above by 1. Note that these facts are completely general for the spherically
symmetric static case, irrespective of the type of fluid matter which is present within the
matter region.

2.1 The Gaseous Shell Solutions

In a previous paper [3] we established the solution of the Einstein field equations for the
case of a spherically symmetric shell of gaseous fluid located between the radial positions
r1 and r2 of the Schwarzschild system of coordinates. These positions are not arbitrary,
but rather are obtained as part of the solution of the problem. For this problem we assume
the hypothesis that the gas satisfies the polytropic equation of state

P (r) = K [ρ(r)]1+1/n , (8)

where K is a positive constant and n ≥ 1 is a real number that may be taken to be an
integer or half-integer. For convenience we define the auxiliary quantity

F (r) = K [ρ(r)]1/n , (9)

in terms of which the equation of state becomes simply

P (r) = F (r)ρ(r). (10)

As was shown in [3], given the field Equations (2) through (4) and the equation of state
shown in Equation (8), the solution for λ(r) is given by
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λ(r) =



− 1

2
ln

(
r + rµ
r

)
for 0 ≤ r ≤ r1,

− 1

2
ln

[
r − rMβ(r)

r

]
for r1 ≤ r ≤ r2,

− 1

2
ln

(
r − rM
r

)
for r2 ≤ r <∞,

(11)

where once more rM = 2GM/c2, while for ν(r) we have

ν(r) =



1

2
ln

(
1− rM/r2
1 + rµ/r1

)
+

1

2
ln

(
r + rµ
r

)
for 0 ≤ r ≤ r1,

ν(r2)− (n+ 1) ln[1 + F (r)] for r1 ≤ r ≤ r2,

1

2
ln

(
r − rM
r

)
for r2 ≤ r <∞.

(12)

The solution introduces into the system, through the interface boundary conditions, the
new physical parameter rµ with dimensions of length, which can be associated to a mass
parameter µ in the same way that rM is associated to M , namely by rµ = 2Gµ/c2. As was
also shown in [3], the determination of the function β(r) in the matter region leads with
no further difficulty to the determination of all the functions that describe both the matter
and the geometry of the system, by means of the exact analytical relations

ρ(r) =
rMβ

′(r)
κr2

, (13)

P (r) = K

[
rMβ

′(r)
κr2

]1+1/n

, (14)

F (r) = K

[
rMβ

′(r)
κr2

]1/n
, (15)

λ(r) =
1

2
ln

[
r

r − rMβ(r)

]
, (16)

ν(r) = ν(r2)− (n+ 1) ln[1 + F (r)]. (17)

The free parameters of the system are K, n and M , all of which describe the nature and
state of the matter, and the value of β′(r) at its point of maximum, which can also be
seen to be related to the matter, since it determines the general scale of the matter energy
density, as can be seen from Equation (7). Note that the radial positions r1 and r2 are
not chosen by hand, and are defined as the positions where the energy matter density ρ(r)
becomes zero. As was shown in [3], the differential system has the property that once ρ(r)
hits the value zero during the integration, in either direction, it stays at zero from that
point on, thus generating a vacuum region.

For all sets of parameters for which there is a solution of the differential problem the
function β′(r) has a single point of maximum within the matter region, which is the point
where β(r) has its single inflection point. As was also shown in [3], for all existing solutions it
holds that rµ > 0. This strictly positive value of rµ implies that the solution has a singularity
at the origin. However, that singularity is not associated to an infinite concentration of
matter, but rather, as explained in [2], to zero energy density at that point.
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Both for the subsequent analysis and for the numerical approach, it is convenient to
transform variables at this point, in order to write everything in terms of dimensionless
variables and functions. In order to do this we must now introduce an arbitrary radial
reference position r0 > 0. For now the value of this parameter remains completely arbitrary,
other than that it must be strictly positive, and has no particular physical meaning. It is
only a mathematical device that allows us to define a dimensionless radial variable and a
dimensionless parameter associated to the mass M by

ξ =
r

r0
, (18)

ξM =
rM
r0
, (19)

as well as to define the dimensionless function of ξ, to assume the role of β(r),

γ(ξ) = ξMβ(r). (20)

Note that the asymptotic condition that β(r)→ 1 for sufficiently large r translates here as
the condition that γ(ξ)→ ξM for sufficiently large ξ. Note also that, since β(r) is a limited
monotonic function, it follows from Equation (20) that similar conclusions can be drawn for
γ(ξ), which is therefore a monotonically increasing function which is limited from above,
the upper limit in this case being the parameter ξM . We also have that γ(ξ) is constant
within vacuum regions. As was shown in [3] the function γ(ξ), and thus the function β(r)
as well, is determined by the second-order ordinary differential equation

π′(ξ) = π(ξ)

{
2

ξ
− n

n+ 1

1

ξ − γ(ξ)

1 + F (ξ, π)

2F (ξ, π)

[
γ(ξ)

ξ
+ F (ξ, π)π(ξ)

]}
, (21)

where π(ξ) = γ′(ξ) is the derivative of γ(ξ), the primes indicate derivatives with respect to
ξ, and F (ξ, π) is given by

F (ξ, π) = C

[
π(ξ)

ξ2

]1/n
, (22)

where C = K/
(
κr20
)1/n

is a dimensionless constant. This differential system can be inter-
preted either as a second-order ordinary differential equation for γ(ξ), or as one of a pair
of first-order coupled ordinary differential equations determining γ(ξ) and π(ξ), the other
equation being simply

γ′(ξ) = π(ξ). (23)

This second interpretation is the one we adopted in [3]. This pair of first-order ordinary
differential equations can be used for the numerical integration of this differential system,
in order to obtain γ(ξ) and β(r), as we in fact did in that paper.

Note that in this formulation of the problem all dimensionfull physical quantities have
vanished from view, and the problem is reduced to purely mathematical terms. All that is
involved is a dimensionless function γ(ξ) of a dimensionless variable ξ, its derivative π(ξ),
and two dimensionless positive real constants, n and C. A careful and complete study of
this differential system, followed by a complete tabulation of all the properties of γ(ξ), is
all that stands between our current semi-analytical solution of the problem and what one
could describe as a completely analytical solution of that problem. Some of the relevant
properties of γ(ξ) were in fact derived in [3].
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2.2 The Liquid Shell Solutions

In another previous paper [2] we established the solution of the Einstein field equations
for the case of a spherically symmetric shell of liquid fluid located between the arbitrarily
chosen radial positions r1 and r2 of the Schwarzschild system of coordinates, with an energy
density ρ(r) = ρ0 which is constant with the radial coordinate r. In this case a completely
analytical solution can be written down. This is a three-parameter family of solutions,
which can be taken as any three of the four parameters r1, r2, M and ρ0. The matter
distribution is characterized by the radii r1 and r2, by its total asymptotic gravitational
massM , associated to the Schwarzschild radius rM , and by a matter energy density ρ0 which
is constant with the radial Schwarzschild coordinate r within (r1, r2), and zero outside that
interval.

It is interesting to note that this set of solutions can be interpreted as constituting
the set of solutions of the case n = 0 of the polytropic problem discussed in the previous
subsection, for in this case we have for the polytropic equation of state, written in an
appropriate way,

ρ(r) = K [P (r)]n/(n+1) , (24)

for some constant K, which in the case n = 0 implies an energy density ρ(r) which is
constant with r. Given the field Equations (2) through (4), as presented in [2] the complete
solution for λ(r) is given by

λ(r) =



− 1

2
ln

(
r + rµ
r

)
for 0 ≤ r ≤ r1,

− 1

2
ln

[
κρ0

(
r32 − r3

)
+ 3 (r − rM )

3r

]
for r1 ≤ r ≤ r2,

− 1

2
ln

(
r − rM
r

)
for r2 ≤ r <∞,

(25)

where once again rM = 2GM/c2, while for ν(r) we have

ν(r) =



1

2
ln

(
1− rM/r2
1 + rµ/r1

)
+

1

2
ln

(
r + rµ
r

)
for 0 ≤ r ≤ r1,

1

2
ln

(
r2 − rM
r2

)
+ ln[z(r)] for r1 ≤ r ≤ r2,

1

2
ln

(
r − rM
r

)
for r2 ≤ r <∞,

(26)

in terms of a function z(r) to be given shortly, and finally the pressure within the shell,
that is, for r1 ≤ r ≤ r2, is given by

P (r) = ρ0
1− z(r)
z(r)

, (27)

while it is zero outside the shell. Note that the value of λ(r) within the matter region
corresponds to the value of β(r) given by

β(r) = 1− κρ0
3rM

(
r32 − r3

)
, (28)
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while in the outer vacuum region we have the constant value β(r) = 1, and in the inner
vacuum region we have the constant value

β(r) = 1− κρ0
3rM

(
r32 − r31

)
= − rµ

rM
. (29)

This solution is valid under the condition that r2 > rM . Just as in the previous case, the
solution introduces into the system, through the interface boundary conditions, the new
physical parameter rµ with dimensions of length, which once again can be associated to a
mass parameter µ by rµ = 2Gµ/c2. In all these expressions we have that rµ is given in
terms of the parameters characterizing the system by

rµ =
κρ0
3

(
r32 − r31

)
− rM . (30)

We also have that ρ0 is determined algebraically in terms of r1, r2 and rM as the solution
of the transcendental algebraic equation√

r2
3 (r2 − rM )

=

√
r1

κρ0
(
r32 − r31

)
+ 3 (r1 − rM )

+

+
3

2

∫ r2

r1

dr
κρ0 r

5/2[
κρ0

(
r32 − r3

)
+ 3 (r − rM )

]3/2 , (31)

and that the real function z(r) is determined in terms of a non-trivial but straightforward
elliptic real integral by the relation

z(r) =

√
κρ0

(
r32 − r3

)
+ 3 (r − rM )

r
×

×

{√
r2

3 (r2 − rM )
+

3

2

∫ r

r2

ds
κρ0 s

5/2[
κρ0

(
r32 − s3

)
+ 3 (s− rM )

]3/2
}
. (32)

The relation shown in Equation (30) is a direct consequence of the field equations and of
the interface boundary conditions associated with them. In [2] we proved that, so long as
the pressure of the liquid is positive, we must have rµ > 0. In fact, the hypotheses of that
proof can be weakened to require only that the pressure be strictly positive at a single point.
Once again this strictly positive value of rµ implies that the solution has a singularity at
the origin. However, just as before that singularity is repulsive rather than attractive, and
not associated to an infinite concentration of matter, but rather, as explained in [2], to zero
energy density at that point.

2.3 The Interior Schwarzschild Solution

It is an interesting and somewhat remarkable fact that the well-known interior Schwarzschild
solution [7,8] can be obtained from our solution for a liquid shell, even though the interior
Schwarzschild solution has no singularity at the origin, while our solution always has such
a singularity. Curiously enough, we must start by assuming that rµ = 0, even though we
proved in [2] that one must have rµ > 0 in the shell solutions. The subtle point here is that
the proof given in [2] relies on the existence of a shell with r1 > 0, while in the case of the
interior Schwarzschild solution we will have to use r1 = 0, so that the shell becomes a filled
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sphere. If we start by first putting rµ = 0 and then make r1 = 0 in Equation (30), we are
led to the relation

κρ0 =
3rM
r32

, (33)

so that we may substitute κρ0 in terms of rM and the radius r2 of the resulting sphere. Fol-
lowing the usual notation for the interior Schwarzschild solution, we now define a parameter
R, with dimensions of length, such that R2 = r32/rM , in terms of which we have

κρ0 =
3

R2
. (34)

Note that the required condition that r2 > rM is translated here as the condition that
R > r2. Making this substitution we have for λ(r) inside the resulting sphere, directly from
the line in Equation (25) for the matter region, in the case in which rµ = 0 and r1 = 0,

λ(r) = − 1

2
ln

[
1−

( r
R

)2]
, (35)

for r ≤ r2, which implies that for the radial metric coefficient we have

e−λ(r) =

√
1−

( r
R

)2
. (36)

In order to obtain ν(r) inside the sphere we must first work out the function z(r). Making
the substitution of κρ0 in terms of R in the result for z(r) given in Equation (32) we get

z(r) =

√
1−

( r
R

)2 [√ r2
r2 − rM

+
3

2

∫ r

r2

ds
s/R2

(1− s2/R2)3/2

]
. (37)

Is is now easy to see that in this case the remaining integral can be done, and we get

z(r) =
3

2
− 1

2

√
r2

r2 − rM

√
1−

( r
R

)2
. (38)

Using again the definition of R, which implies that we have rM/r2 = (r2/R)2, we may write
this as

z(r) =
3

2
− 1

2

√
1− (r/R)2

1− (r2/R)2
. (39)

Note that we have z(r2) = 1, which corresponds to P (r2) = 0, so that the interface boundary
conditions for z(r) and P (r) at r2 are still satisfied. From this we may now obtain all the
remaining results for the interior Schwarzschild solution. From the line in Equation (26)
for the matter region, in the case in which rµ = 0 and r1 = 0, we get for ν(r) in the interior
of the sphere

ν(r) =
1

2
ln

[
1−

(r2
R

)2]
+ ln

[
3

2
− 1

2

√
1− (r/R)2

1− (r2/R)2

]
, (40)

for r ≤ r2, which implies that for the temporal metric coefficient we have

eν(r) =
3

2

√
1−

(r2
R

)2
− 1

2

√
1−

( r
R

)2
. (41)
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Finally, from Equation (27), in the case in which rµ = 0 and r1 = 0, we get for the pressure
P (r) within the sphere

P (r) = ρ0

√
1− (r/R)2 −

√
1− (r2/R)2

3
√

1− (r2/R)2 −
√

1− (r/R)2
. (42)

These are indeed the correct results for the case of the interior Schwarzschild solution,
including the well-known restriction that r2 > 9rM/8, which is required by the positivity of
the left-hand side of Equation (41). Note that all the arguments of the logarithms and of
the square roots are positive due to the conditions that R > r2 ≥ r. Note also that in the
r1 → 0 limit the lines in Equations (25) and (26) for the case of the inner vacuum region
become irrelevant, since this region reduces to a single point. On the other hand, the lines
in Equations (25) and (26) for the case of the outer vacuum region do not change at all.

It is therefore apparent that the r1 → 0 limit of our liquid shell solutions does repro-
duce the interior Schwarzschild solution, so long as we adopt the value zero for rµ. Our
interpretation of these facts is that the r1 → 0 limit to the interior Schwarzschild solution
is a non-uniform one, in which we have to leave out one point, the origin. In the r1 → 0
limit the singularity of the shell solutions becomes a strictly point-like one, and therefore
a removable one, by a simple continuity criterion. This is certainly the case for the energy
density ρ(r) = ρ0, which in the limit is non-zero everywhere around the origin but at a
single point, the origin itself. The same is true for the pressure P (r), which in the limit is
also non-zero around the origin but at the origin itself. Similar situations hold for λ(r) and
ν(r), as is not difficult to see numerically. It seems that all these functions converge in the
r1 → 0 limit to functions with a point-like removable discontinuity at the origin.

We end this section by noting that a similar type of limit, in which we make r1 → 0
and rµ → 0, can be applied to the solutions for gaseous shells [3] that we discussed before,
and results in the filled-sphere solutions found by Tooper [9]. Therefore, all the Tooper
solutions also correspond to the choice rµ = 0 which avoids the singularity at the origin,
this being in fact the very criterion used by Tooper to define these solutions.

3 Integral Expressions for the Energies

It is possible to express the masses M and µ, which are associated to the parameters
with dimensions of length rM = 2MG/c2 and rµ = 2µG/c2 that appear in the exact
solutions for gaseous and liquid shells described in Section 2, and hence to express the
corresponding energies Mc2 and µc2, as integrals of the matter energy density ρ(r) over
coordinate volumes, in a way similar to what is usually done for M in the literature [4,10],
but leading to very different results in the case of the shell solutions. In order to do this in
a simple and organized way, we must first change variables in the field equations from λ(r)
to β(r), as was done at the first part of Section 2.

From the solutions it follows in either case, from Equations (11) and (25), that we have
that β(r) = 1 > 0 in the outer vacuum region, and hence at r2 in particular, and that we
have that β(r) = −rµ/rM < 0 in the inner vacuum region, and hence at r1 in particular.
Since β(r) is a continuous function that goes from negative values at r1 to positive values
at r2, it follows that there is a radial position rz within the matter region where β(rz) = 0,
regardless of whether or not ρ(r) is constant within the shell. At this particular radial
position we also have that λ(rz) = 0.

Let us now consider the integral of the matter energy density over a spherical coordinate
volume within the matter region, where ρ(r) 6= 0, say from an arbitrary radial position ra
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such that ra ≥ r1 to another radial position rb such that ra < rb ≤ r2,∫ rb

ra

dr

∫ π

0
dθ

∫ 2π

0
dφ r2 sin(θ)ρ(r) = 4π

∫ rb

ra

dr r2ρ(r), (43)

where we integrated over the angles. Note that this is not an integral over the proper
volume, but just an integral over the coordinate volume, since we are missing here the
remaining factor exp[λ(r) + ν(r)] of the Jacobian

√
−g. Since we have the three special

radial positions r1, rz and r2 where the values of β(r) are known, let us consider now the
integral of the energy density over the coordinate volume from rz to r2. Using Equation (7)
we get

4π

∫ r2

rz

dr r2ρ(r) = 4π
rM
κ

∫ r2

rz

dr β′(r). (44)

One can now see that the integral on the right-hand side is trivial, and since we have that
β(rz) = 0 and that β(r2) = 1, we get

Mc2 = 4π

∫ r2

rz

dr r2ρ(r), (45)

where we have replaced κ and rM by their values in terms of M , G and c. We have therefore
an expression for the energy Mc2 in terms of a coordinate volume integral of the energy
density. Note however that the integral does not run over the whole matter region, since it
starts at rz > r1 rather than at r1. Therefore, if we consider the integral from r1 to rz, in
a similar way we get

4π

∫ rz

r1

dr r2ρ(r) = 4π
rM
κ

∫ rz

r1

dr β′(r). (46)

Once again one can see that the integral on the right-hand side is trivial, and since we have
that β(rz) = 0 and that β(r1) = −rµ/rM , we now get

µc2 = 4π

∫ rz

r1

dr r2ρ(r), (47)

where we have now replaced κ and rµ by their values in terms of µ, G and c. We have
therefore an expression for the energy µc2 in terms of another coordinate volume integral
of the energy density, this time over the remaining part of the matter region.

If we now consider the integral over the whole matter region, due to the additive property
of the integrals over the union of disjoint domains, using Equations (45) and (47) we obtain
the result that

4π

∫ r2

r1

dr r2ρ(r) = µc2 +Mc2. (48)

This is a sum of energies, and is therefore also an energy, to which we will associate a mass
parameter MD, so that this energy is given by MDc

2, and we have the relation

MDc
2 = µc2 +Mc2, (49)

where

MDc
2 = 4π

∫ r2

r1

dr r2ρ(r). (50)
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We see therefore that the radial position rz where β(rz) = 0, and therefore λ(rz) = 0, plays
a particularly important role when it comes to the determination of the energies involved.

Note that this whole argument holds for any function ρ(r) within the matter region,
that is, for both the gaseous and liquid cases. For the specific case of liquid shells, with a
constant ρ(r) = ρ0, we find from Equation (28), which holds within the matter region, that
in this case we have for the zero rz of β(r)

rz =

(
r32 −

3rM
κρ0

)1/3

. (51)

Note that, although all these integrals are written in terms of the energy density ρ(r) of the
matter, none of them represents just the energy of only the matter itself. In fact we must
still interpret the meaning of each one of these expressions, which is what we will discuss
in detail in the next section. However, one interpretation can be established at once. In
either case ρ(r) is the density of the total energy content of the matter, which includes the
rest energy of the mass that constitutes the matter, a part which in all cases of interest
comprises almost all the matter energy present, and some amount of thermal energy. In
the case of gases we have within ρ(r) a part which is the thermal energy associated to
the thermal agitation of the gas particles. In the liquid case this extra amount of energy
includes both some thermal energy and some relatively small amount of energy associated
to the bindings between particles of fluid, which is associated to a certain amount of latent
heat. We may therefore write that

ρ(r) = ρT (r) + ρU (r), (52)

where ρU (r) is the density of rest energy, and ρT (r) is the remainder, which we will just call
the density of thermal energy. In the language of Relativity, ρT (r) is associated, essentially,
to the small average increase in the masses of particles due to the average speed associated
to the thermal agitation. We should keep in mind that in all cases of interest we always
have that ρT (r)� ρU (r). We therefore have for the expression for the mass parameter MD

in Equation (50)

MDc
2 = 4π

∫ r2

r1

dr r2ρT (r) + 4π

∫ r2

r1

dr r2ρU (r)

= ET + 4π

∫ r2

r1

dr r2ρU (r), (53)

where ET is an energy associated to the thermal state of the matter, of the same order of
magnitude of the total thermal energy, although not necessarily exactly equal to it. We will
therefore associate a mass MU to the integral of the density of rest energy, and write that

MUc
2 = 4π

∫ r2

r1

dr r2ρU (r), (54)

so that

MDc
2 = ET +MUc

2, (55)

implying that our identity in Equation (49) giving the relation among all the forms of
energy becomes

ET +MUc
2 = µc2 +Mc2, (56)

11



where in all cases of interest we have that ET �MUc
2. We are now ready to work out the

physical interpretation of all the terms in this relation among energies.

4 Physical Interpretation of the Energies

Of the four energies at play here, namely ET , MUc
2, µc2 and Mc2, only the first and last

ones have well-established meanings at this point. Since M is the asymptotic gravitational
mass of the system, that is, the gravitational mass seen as the source of the gravitational
field at large radial distances, the standard interpretation in General Relativity is that the
energy Mc2 is the total energy of this gravitational system, bound into the shell by the
gravitational interactions, and which from now on we will simply call the bound system.
It includes both the energy of the matter in the bound state and the (possibly negative)
energy stored in the gravitational field itself, also in this bound state. The interpretation
of the energy density ρ(r) is that it is the amount of energy of the matter, per unit proper
volume, as seen by a stationary local observer at the radial position r.

Our first task here is to establish the physical interpretation of the energy MUc
2. In

order to do this, the first thing to be done is to define an unbound system related to our
bound system as defined above. This unbound system is what we get when we disperse
all the infinitesimal matter elements of the shell to very large distances from each other, in
order to eliminate all the gravitational interactions, thus producing a static set of particles
at infinity. We will show here that the energy MUc

2 is the total energy of this cold unbound
system. We will do this by performing a mathematical transformation on the integral in
Equation (54), which can be written as the following expression in terms of a volume
integral,

MUc
2 =

∫ r2

r1

dr

∫ π

0
dθ

∫ 2π

0
dφ r2 sin(θ)ρU (r). (57)

The transformation, applied to the right-hand side of this equation, will allow us to interpret
the meaning of the left-hand side. This will be done in a general way, for any function ρU (r)
within the matter region. This transformation will consist in fact of the construction of a
second integral, based on the concept of the Riemann sums of the volume integral shown
in Equation (57).

Let us consider therefore an arbitrary Riemann partition of the integral in Equation (57),
consisting of a large but finite number N of small cells δVn with coordinate volume and
linear coordinate dimensions below certain maximum values, where n ∈ {1, . . . , N}. By
definition of a Riemann partition the sum of all these volume elements is equal to the
coordinate volume V of the shell,

V =

N∑
n=1

δVn, (58)

where we will assume that each volume element is at the spatial position ~rn relative to the
center of the shell, as illustrated in Figure 1. The energy MUc

2 can therefore be written as
the integration limit of the Riemann sum over this partition,

MUc
2 = lim

N→∞

N∑
n=1

ρU (rn)δVn, (59)

where rn = |~rn|. We now consider the mathematical transformation in which we map each
coordinate volume element δVn at ~rn onto an identical volume element δV ′n at the coordinate
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n
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m

Figure 1: Illustration of the geometrical transformation of the integral over the shell.

position ~r ′n = α~rn, for some large positive real number α, without changing the coordinate
volume of the volume elements. The result is a new set of volume elements, all at large
distances from each other, whose sum is still equal to the coordinate volume of the shell,

V =
N∑
n=1

δV ′n. (60)

The geometrical transformation leading to the construction of the new integral is illustrated
in Figure 1. Note that no actual physical transportation of the matter or of the rest energy
within the volume elements δVn of the shell is meant here, so that there are no actual
physical transformations involved.

After defining the volume elements δV ′n at large distances in this fashion, we now put
within each one of these new volume elements exactly the same amount of mass and hence
of rest energy that we have in the corresponding coordinate volume elements δVn of the
shell. This means putting into each volume element δV ′n at infinity the same numbers of
the same types of particles, as seen by a stationary local observer at the position ~r ′n, that
a stationary local observer at ~rn sees within δVn. However, unlike what happens within
δVn, the particles within δV ′n are all at rest. In other words, we associate to each volume
element at infinity the same value of the rest energy density ρU (r′n) = ρU (rn) that we had
for the corresponding volume element of the shell, where r′n = |~r ′n| and rn = |~rn|.

For large values of α these elements of mass and hence of rest energy within δV ′n are all at
large distances from each other, so as to render the gravitational interactions among them
negligible. In the α→∞ limit all the gravitational interactions among the volume elements
δV ′n go to zero. Besides, in the integration limit each element of mass and hence of rest
energy so constructed tends to zero, so that the gravitational self-interactions within each
volume element also go to zero. However, independently of either limit, by construction
the total coordinate volume of the elements of volume at infinity remains equal to the
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coordinate volume of the shell. Therefore, by construction the corresponding sum of all
the elements of rest energy at infinity is the same as the Riemann sum that appears in
Equation (59),

N∑
n=1

ρU (r′n)δV ′n =
N∑
n=1

ρU (rn)δVn. (61)

Now, at radial infinity spacetime is flat, so that the coordinate volume of each volume
element δV ′n coincides with its proper volume, and hence the energy element ρU (r′n)δV ′n is
the total rest energy of that element of matter, so that the sum of all these rest energy
elements is the total rest energy of the dispersed matter at infinity. In other words, once we
take the integration limit the integral given in Equation (57) gives us the total rest energy of
the system at infinity, which is free from all gravitational bindings, and which is also at zero
temperature. Therefore we will name the quantity MUc

2 the total rest energy of the cold
unbound system. This is the total energy of the system when all gravitational interactions
have been eliminated by increasing without limit the distances among its elements. This is
in both analogy and contrast with the quantity Mc2, which is the total energy of the bound
system, after all its parts have been brought together to form the shell.

Note that this whole argument is general, in the sense that it is not limited to the case
in which ρ(r) = ρ0 is a constant. However, in the case of the liquid shells, since in that case
ρ(r) = ρ0 is indeed a constant, the total energy of the unbound system is just the product
of ρ0 by the coordinate volume V of the shell,

MUc
2 = ρ0V. (62)

Our next task here is to establish the physical interpretation of the energy µc2. From Equa-
tion (56) we have that, up to the small thermal-related energy ET , the energy parameter
µc2 is the difference between the total energy of the unbound system and the total energy
of the bound system,

µc2 − ET = MUc
2 −Mc2, (63)

and therefore we conclude that the difference on the left-hand side is equal to the gravita-
tional binding energy of the system, which is given by the difference on the right-hand side.
It is the amount of energy that must be given to the bound system in order to disperse its
elements to infinity, thus eliminating all the gravitational bindings between those elements.
It is also the amount of energy that must be dissipated by the unbound system during the
process of its assembly into the bound system, when starting from the cold unbound system
at infinity.

The theorem we proved in [2, 3], namely that we must have rµ > 0, which implies that
µc2 > 0, is actually necessary in order for the left-hand side of Equation (63) to be positive,
as it must be if the right-hand side is to be finite, positive and non-zero, meaning that the
bound system has a finite, positive and non-zero binding energy. This is, of course, closely
related to the attractive nature of the gravitational interaction between particles. Here
we see why we cannot completely eliminate ET from the discussion, even if we have that
ET � MUc

2. This is so because although both MUc
2 and Mc2 are typically much larger

than the other terms in this equation, it is still possible that their difference is relatively
small, and commensurate with the other terms.

We may therefore construct a direct interpretation of the energy µc2 as a binding energy,
by two different but related arguments. Considering first the process of dispersion of the
bound system to infinity, we rewrite Equation (63) in the form
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MUc
2 = Mc2 +

(
µc2 − ET

)
, (64)

which describes the energy of the cold unbound system at infinity as composed of the parts
shown on the right-hand side. Therefore, µc2 is the energy than must be given to the
bound system of energy Mc2 in order to disperse it to infinity, with the exception of the
thermal-related energy ET which is already present in the system, assuming here that this
thermal-related energy can be used for this purpose without losses. Equivalently, if we
think in terms of the assembly of the bound system, and rewrite Equation (63) in the form

Mc2 = MUc
2 −

(
µc2 − ET

)
, (65)

with gives the energy of the bound system as composed of the parts shown on the right-
hand side. We may therefore conclude that µc2 is the energy that the unbound system
must dissipate, and therefore lose, during the assembly process, with the exception of the
thermal-related energy ET , which remains in the bound system after it is assembled. It is
therefore fair to assert that µc2 is essentially the binding energy of the system, if we include
in the discussion the fact that the bound system must contain thermal energy if it is to be
stable. In the all-important case of gaseous shells the presence of this thermal energy in
the bound system is of course essential to maintain the pressure of the gas, which in turn
is what keeps the gaseous shell stable against the attractive gravitational forces.

It is interesting to note that, although all these integrals are written in terms of the
energy density ρ(r) of the matter, the energy Mc2 is not the energy Mmc

2 of just the matter
within the bound system. That would be given by the integral with the full Jacobian factor√
−g, where g is the determinant of gµν , which in our case here results in

Mmc
2 = 4π

∫ r2

r1

dr r2 eλ(r)+ν(r)ρ(r). (66)

It is not difficult to verify that this energy is always smaller than MDc
2, due to the fact that

the exponent λ(r) + ν(r) is always negative within the matter region. In order to show this
we just take the difference between the component field equations shown in Equations (3)
and (2), thus obtaining

[λ(r) + ν(r)]′ =
κ

2
e2λ(r)r [ρ(r) + P (r)] . (67)

Since all quantities appearing on the right-hand side are positive or zero, we may conclude
that the derivative of the exponent is non-negative. However, we have that λ(r2)+ν(r2) = 0,
since this exponent is identically zero within the outer vacuum region, as can be seen from
Equations (11) and (12), as well as from Equations (25) and (26). It follows that

λ(r) + ν(r) < 0, (68)

and therefore that

eλ(r)+ν(r) < 1, (69)

throughout the whole matter region, with the exception of the single radial position r2
where the exponential is equal to one. Therefore, it follows for the two integrals that

4π

∫ r2

r1

dr r2 eλ(r)+ν(r)ρ(r) < 4π

∫ r2

r1

dr r2ρ(r), (70)
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and therefore that Mmc
2 < MDc

2. In general, in order to determine the difference between
these two energies Mmc

2 has to be calculated numerically. Note that relations such as
Equation (70) are also valid separately for ρT (r) and for ρU (r), and therefore for both
the thermal-related energy and the rest energy separately. Here we get a glimpse of the
reason why the thermal-related energy ET is not exactly the thermal energy of the matter
in the bound system, but in fact somewhat larger than it. Simply put, thermal energy also
gravitates. If any amount of energy is to be delivered to the particles of the bound system
in order to disperse that bound system to infinity, it must also do the work of dispersing
itself to infinity as well, and hence gets there with its value somewhat decreased, since
some more of it has to be surrendered to the gravitational field. This is fundamentally a
consequence of the non-linearity of the theory.

4.1 Energetic Stability

This interpretation of the energy parameters involved leads right away to the idea that we
may define a notion of energetic stability of the solutions obtained, in the general spirit of
the principle of virtual work. Given certain constraints regarding some of the parameters
of the solutions, we may obtain the parameter rµ as a function of the remaining parameters
of the system. Within this class of solutions, if there are two with different values of rµ,
which is monotonically increasing with the binding energy µc2 − ET , then in principle the
constrained system will tend to go from the one with the smaller value of rµ to the one with
the larger value, given the existence of a permissible path between the two solutions. This
type of analysis allows us to acquire some information about the dynamical behavior of the
system, without having to find explicitly the corresponding time-dependent solutions.

Let us exemplify this with the liquid shell solutions, in a way that is physically illus-
trative. Since liquids can only exist at very low temperatures, in this case we may assume
that ET ≈ 0, so that the temperature has no role to play, and thus we have that MD = MU

and that

µc2 = MUc
2 −Mc2. (71)

In this case the system contains four parameters, namely r1, r2, rM and ρ0, of which only
three are independent. As was explained in [2], these four parameters are related by the
condition in Equation (31). Given any three of the parameters, that equation can be used to
determine the fourth in terms of those three. Let us assume that we are given fixed values of
both M and ρ0, thus determining the local properties of the matter and the total amount of
energy of the bound system. This is equivalent to fixing rM and ρ0, and therefore the result
of solving Equation (31) is to establish r1 as a function of r2. We therefore are left with a
collection of solutions parametrized by a single real parameter, the external radius r2. We
may then determine rµ(r2) and verify whether this function has a single local maximum at
a certain value of r2. This then identifies that particular solution which is stable, or that
has the largest binding energy, among all others, given the constraints described.

Another approach, slightly more indirect, but perhaps ultimately simpler and more
physically compelling, would be to keep constant the local parameter ρ0 and the energy
MUc

2 of the unbound system. This fixes the local properties of the matter and the total
energy of the unbound system that we start with, and we may then ask which is the
solution that corresponds to the most tightly bound system that can be assembled from
that unbound system. Since the energy of the unbound system is the product of ρ0 by the
coordinate volume V of the shell, as can be seen in Equation (62), keeping fixed both ρ0
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and MU corresponds to keeping fixed at a value V0 that coordinate volume, which is given
by

V0 =
4π

3

(
r32 − r31

)
. (72)

This immediately determines r2 as a simple function r2(r1) of r1. Then solving Equa-
tion (31) results in rM being given as a function rM (r1) of r1 for the fixed value of ρ0 and
the fixed coordinate volume V0. This corresponds to the energy of the bound system with
internal radius r1, for the given fixed values of ρ0 and V0. The minimum of the function
rM (r1) gives us the value of r1 that corresponds to the most tightly bound system that can
be assembled from a given unbound system. Other solutions in the same family, with other
values of r1, will tend to decay into this one, given a permissible decay path between the
two solutions involved. We will execute this program numerically in Section 5.

We saw that in the case of the interior Schwarzschild solution we have the value zero
for rµ. This implies that the resulting solution, in the low-temperature case, has zero grav-
itational binding energy, and that its energy is the same as the energy of the corresponding
cold unbound system, which is a very strange and even bizarre situation indeed. This means
that the resulting solution is not only energetically unstable, but that it is in fact maximally
energetically unstable, since the bound system cannot possibly have more energy than the
unbound system. Given a permissible path, in principle one would be able to disperse the
matter distribution of the interior Schwarzschild solution, taking every element of matter do
infinity, without giving any energy at all to the system. This makes this particular solution
quite unrealistic, and may be one reason why it has never proved to be a very useful one.

In the context of the second numerical approach described above, in which ρ0 and MU

are kept constant, and limiting ourselves to only the spherically symmetric dynamics, the
instability of the interior Schwarzschild solution means that, if some small perturbation
created even an infinitesimal vacuum bubble at the origin, then this bubble would spon-
taneously grow until its radius r1 assumed the value that minimizes the function rM (r1).
This is the physical meaning of the fact that the singularity at the origin is a repulsive one.

5 Numerical Exploration of the Binding Energy

Here we will explore numerically the issues of the binding energy and of the energetic
stability of the low-temperature liquid shell solutions. In this exploration we will keep fixed
the local energy density parameter ρ0, as well as the total energy MUc

2 of the unbound
system. Our objective will be then to determine the existence and the parameters of the
maximally bound liquid shell solution. We will do this by calculating the energy Mc2 of
the bound system and showing that it has a point of minimum as a function of r1. Since
we keep fixed the parameter ρ0, and since the energy of the unbound system is given by
MUc

2 = ρ0V0, this implies that we also keep fixed the coordinate volume V0 of the shell,
given in Equation (72), which immediately establishes r2 as a given function of r1,

r2(r1) =

(
r31 +

3V0
4π

)1/3

. (73)

Therefore, of the three free parameters of our solutions, which can be taken to be r1, r2 and
ρ0, one is being kept fixed and another is a given function, so that we are left with only one
free parameters, which we will take to be r1. Under these circumstances we have that rM ,
and therefore both the mass M and the energy Mc2 of the bound system, are functions of
r1, with values that are left to be determined numerically.
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Figure 2: Graph of the energy of the bound system as a function of ξ1, for a fixed energy
of the unbound system, given by ϑ0 = 2, and with ξ1 in [1, 5].

In order to perform the numerical work it is convenient to first rescale the variables,
creating a set of equivalent dimensionless variables, as was already mentioned in Section 2.
Since under these conditions κρ0 is a constant which has dimensions of inverse square
length, we will define a constant r0 with dimensions of length by

r0 =
1
√
κρ0

. (74)

Having now the known constant r0, we use it in order to define the set of dimensionless
parameters given by

ξ1 =
r1
r0
,

ξ2 =
r2
r0
,

ξM =
rM
r0
,

ϑ0 =
3V0
4πr30

, (75)

where ϑ0 is the ratio between the coordinate volume V0 of the shell and the volume of an
Euclidean sphere of radius r0. The expression in Equation (73) giving r2 as a function of
r1 is now translated as

ξ2(ξ1) =
(
ϑ0 + ξ31

)1/3
. (76)
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Figure 3: Graph of the energy of the bound system as a function of ξ1, for a fixed energy
of the unbound system, given by ϑ0 = 5, and with ξ1 in [1, 5].

Note, for subsequent use, that this can also be written as ξ32 − ξ31 = ϑ0. The relation which
we must now use in order to determine ξM is that given in Equation (31), which upon
rescalings by r0 can be written as

√
ξ2

3 (ξ2 − ξM )
=

√
ξ1

ξ32 − ξ31 + 3 (ξ1 − ξM )
+

3

2

∫ ξ2

ξ1

dξ
ξ5/2[

ξ32 − ξ3 + 3 (ξ − ξM )
]3/2 , (77)

where we changed variables in the integral from r to ξ = r/r0. Substituting for ϑ0 where
possible we have the following non-trivial algebraic equation that determines ξM , and there-
fore rM , in terms of ξ1,

√
ξ1

ϑ0 + 3 (ξ1 − ξM )
−

√
ξ2

3 (ξ2 − ξM )
+

3

2

∫ ξ2

ξ1

dξ
ξ5/2[

ξ32 − ξ3 + 3 (ξ − ξM )
]3/2 = 0. (78)

Our objective here is to solve this equation in order to get ξM (ξ1), given a fixed value of ϑ0
and with ξ2 given by Equation (76). Note that, due to the homogeneous scalings leading
from the dimensionfull quantities to the dimensionless ones, shown in Equation (75), each
solution of this equation is valid for any strictly positive value of ρ0, which no longer appears
explicitly. The same is true of the graphs to be generated using this equation. Given a value
of ϑ0, the corresponding graph represents the results for all the possible strictly positive
values of the energy density ρ0.
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Figure 4: Graph of the energy of the bound system as a function of ξ1, for a fixed energy
of the unbound system, given by ϑ0 = 10, and with ξ1 in [1, 5].

There are two main numerical tasks here, the calculation of the integral and the resolu-
tion of this algebraic equation for ξM . The integral can be readily and efficiently calculated
by a cubic interpolation method, using the values of the integrand and of its derivative at
the two ends of each integration interval. So long as we can return the value of the integral
without too much trouble, Equation (78) can be readily and efficiently solved by an ex-
ponential sandwich (or bisection) method [11]. There are two readily available and robust
initial upper and lower bounds for the value of ξM , the minimum possible lower bound be-
ing zero, and the maximum possible upper bound being the energy of the unbound system,
since we must have that Mc2 < MUc

2, which in terms of the dimensionless parameters
translates as ξM < ϑ0/3. We may therefore start the process with a lower bound ξM	 = 0
and an upper bound ξM⊕ = ϑ0/3 for ξM . In practice, the efficiency of this algorithm may
be highly dependent on the use of a tighter pair of initial bounds.

A few examples of the functions obtained in this way can be seen in Figures 2 through 5,
which show ξM as a function of ξ1, for fixed values of the energy of the unbound system,
that is, for various fixed values of ϑ0. Each graph consists of 81 data points. In order to
ensure good numerical precision we used 106 integration intervals in the domain [ξ1, ξ2].
The exponential sandwich was iterated until a relative precision of the order of 10−12

was reached. The four graphs shown were generated on a high-end PC in approximately
25 hours, 15 hours, 62 hours and 154 hours, respectively, without too much preoccupation
with efficiency. As one can see, the graphs clearly display minima of ξM , which are located
at certain values of ξ1. At these minima the pairs of values (ξ1, ξ2) are given approximately,
in each case, by (2.79, 2.87), (2.72, 2.93), (2.60, 3.02) and (2.35, 3.21), respectively.

The minima of these functions give us the value of ξ1 that corresponds to the most
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Figure 5: Graph of the energy of the bound system as a function of ξ1, for a fixed energy
of the unbound system, given by ϑ0 = 20, and with ξ1 in [1, 5].

tightly bound system that can be assembled from the given unbound system in each case.
With the given values of ρ0 and MUc

2, in each case this establishes the value of r1 for the
most tightly bound and therefore energetically stable solution, and hence determines the
values of r2, rM and of all the functions describing both the spacetime geometry and the
state of the matter for that stable solution. The limiting value of ξM when ξ1 → 0, not
shown in these graphs, corresponds to the interior Schwarzschild solution and thus to the
energy of the unbound system in each case, which in terms of the variables shown in the
graphs is given by ϑ0/3. The ξ1 →∞ limit to the other side rises fairly slowly and does not
seem to approach this same value asymptotically, a situation that is probably due to the
fact that an infinitesimally thin shell at infinity still has some binding energy, as compared
to the corresponding set of isolated infinitesimal masses of point particles.

6 Conclusions

In this paper we have established the energetic interpretation of the exact and quasi-exact
solutions obtained in previous papers for spherically symmetric shells of liquid and gaseous
fluids [2, 3]. All the energies involved were precisely characterized, including the total
energies of the unbound systems, the total energies of the bound systems, the gravitational
binding energies, and the thermal and rest energies associated to the matter. This led to
a characterization of the stability of the bound systems in terms of their binding energies.
In the case of liquid fluids we have identified a two-parameter family of energetically stable
solutions, within the original three-parameter family of solutions. In a few cases these
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stable solutions were identified numerically. It is to be expected that the interpretations of
the energies that were introduced here will be useful in other cases, such as those involving
polytropes, white dwarfs and neutron stars.

In order to accomplish this analysis, integral expressions for all the energies involved
were presented, as integrals of the matter energy density over various coordinate volumes.
All these expressions hold in general, for both liquid and gaseous fluids. A particular
radial position rz within the matter region, at which we have λ(rz) = 0 and therefore
exp[λ(rz)] = 1 for the radial coefficient of the metric, was identified as playing a special
role in relation to the integral expressions for the various energies. This is the single finite
radial position where the three-dimensional space is neither stretched nor contracted, as
compared to the behavior of the radial coordinate r. The existence of an inner region
where the three-dimensional space is contracted rather than stretched is a new feature,
characteristic of the shell solutions, and absent from the other known solutions.

The energetic interpretation was extended to the case of the two-parameter family of
interior Schwarzschild solutions for filled spheres [7,8], which can be obtained as a particular
limit of the liquid shell solutions, and which turn out to be maximally unstable ones.
This means that there is a strong tendency of the solution for a filled liquid sphere to
spontaneously generate an internal vacuum region and thus become a liquid shell solution.
This is clearly connected to the repulsive character of the gravitational field around the
origin, in the case of the shell solutions, pushing matter and energy away from that origin,
as was discussed and characterized in the previous paper [2]. Any small perturbation of
the interior Schwarzschild solution will trigger this mechanism into action, thus leading to
an energetic decay from that filled sphere solution to a stable shell solution.

The crucial development leading to all this was the introduction of the parameter rµ in
the previous papers, which was shown there to be necessarily strictly positive in all cases, for
the correct resolution of the differential equations and the satisfaction of the corresponding
interface boundary conditions, as implied by the Einstein field equations. The apparently
traditional routine of choosing rµ = 0 in order to eliminate the singularity at the origin not
only is often incompatible with the correct resolution of the differential system but, when
it is not thus incompatible, it is tantamount to selecting a solution which has no binding
energy at all and is therefore maximally unstable from the energetic point of view. Both
from the purely mathematical point of view and from the physical point of view, this is
more often than not the incorrect choice, which we are simply not at liberty to make in the
general case.
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