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ABSTRACT

The existence of the zero mass limit for the
non-linear C-model in four dimensions is shown te all
orders in renormalized perturbation theory. The main
ingredient in the proof is the imposition of many
current axial vector Ward identities and the tool used
is Lowenstein's momentum-space subtraction procedure.
Instead of introducing anisotropic symmetry breaking
mass terms, which do not vamish in the symmetry limit,
it is necessary to allow for "soft" ‘amisotropic derivative

coupling in order to obtaim the correct Ward identities.

I - INTRODUCTION

(1)

In the nonlinear g-model the chiral symmetry
O0(N) is realized in a nonlinear manner. This nonlinear
realization has been studied in various contexts. Most
recently it has beean shown(z) how to treat it in two-
dimensional space-time, where the model is remormalizable

and can be considered as the limit of a classical

Reisenberg model when the lattice spacing temds to zero.

In this paper we want to study the nonrenormal-
izable four dimensional version, which can be obtained

from the free linear o-model described by the Lagrangian
- 3 (3!‘ A )(5"'“&) , LEheem (1.1

by  imposing a comstraint which eliminates the field
An(x) from (1.1), while preserving the 0(n) symmetry.

(3)

As is well known this can be done in mamny ways. We

choose the following condition
A=l 1 X
S AAL) < [s@) = f (1.2)

i=y

where €®)® Am®) and f is a constant. Inserting

(1.2) into (l.1) we obtain
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a a1t
« 5 (=AY (AW Aw)*
(1.3)
"=t ~t
where A’.’ &A\ Ai . A'z'sA - g'-A‘ DI‘ Ai and
({b‘ A‘)-‘ is understood as a formal power series

expansion. Since the Lagrangian (1.3) is net renormal-
izable and because the symmetry acts nonlinearly on the
Ai, field the problem of defining a finite symmetry-

: . . - -\ .
preserving perturbation expansion in { is a non-

trivial one, whose solution is presented in this paper.

Taking as usual the A; field to be pseudoscalar

i
(1.3) has a conserved vector current '\)'P H

V= A Xne dpAe (1.4)

) €h
where (slral and xht‘ S"ks‘t‘ Bvcsus. r<s.

.
. . .
The conserved axial vector current ‘*F is

‘A—i - L{l‘A‘.)‘/’.S. A
+* e L (1.5)

satisfying

B Al -
° f('. 18] (1.6)

We may also include a symmetry-breaking term £s3 in

(1.3)
isn" M‘%[(f"-A‘)\/‘-H (1.7)

so as to obtain a partially conserved axial current

(PCAC):

DP\A;-:—M,‘# A-" (1.8)

Nonrenormalizable theories have a notoriously
bad high energy behaviour and the nonlinear o¢-model
shares this property. Before tackling this difficult
problem we want to show the existence of the 'le—.o
limit satisfying (1.6). This problem has been dealt with
by several authors. D.Bessis and J.Zinn-Justin(A) are
able to show the existence of the zero mass limit, but
only on the one loop level. Y.M.P. Lam(s) obtains PCAC
to all orders of perturbation theory, but the zero mass

limit does not exist. In fact it has up to nowv been

impossible to construct a renormalized field possessing

a conserved axial current (CAC) in the zero mass limit to




all orders in perturbatton theory. In our view the

difficulty lies in the procedure usually followed:first

one selects rather arbitrarily some subtractiom scheme
. s

for Green functions and then tries to define currents

satisfying the appropriate Ward identities.

What we propose instead is to impose the validity
of axial current Ward identities (ACWIs) for am arbitrary
number of currents. They will determine how the vertices
appearing in the Lagrangian are to be subtracted, once
a suitable subtraction scheme for curremt vertices has
been chosen. A minimal requirement a subtractiomn scheme
should satisfy is the removal of ultraviolet divergencies
without introducing infrared (IR) divergencies when zero
mass praopagators are present.
(6)

In this respect a scheme proposed by J.H.Lowenstein

7

is very convenient. It evolved from an extension

1l

of the BPHZ renormalization : one subtracts not only
pelynomials of momenta, but also polynomials in mass
R . s 2
parameters. Using Lowenstein's prescrlptu)nL ] one may
subtract all, except the highest order term in a poly-

. e O . . A
nomial, at ‘f“_’so, m = ,which is a great aid if one
actually wants to perform explicit calculations. Because the axial
current is non polynomial its conservation law can easily

8)

be spoiled if anis_otropies( are not controlled. (On the

other hand the comservation of the bilinear vector
current never poses much of a problem).

Up to now it has always been the mass terms, which
are anisotropic. This is the reason why they do not
vanish in the zero mass-limit and thus spoil’ the ACWI. In
contrast our mass terms are always minimally subtracted and
consequently vanish when ﬁ‘-’@.

The price we pay is that now the derivative coupling
in (1.3) becomes anisotropic and has to be kept under control.
To this end we introduce in Sec.III a "soft"” way to treat
this coupling, which ensures the validity of the equation of
motion within normal products and the validity of the
correct ACWI. This requires a new definition of what we mean
by overlapping graphs and also our anisotropies are gener-—
alizations of previous definitions, since we need more lines
and more variables for the subtraction operators to act on
than there appear in the unsubtracted integrand.

Only external vertices (i.e. vertices on which ends at least
one line through which only external momentum flows) cam be
treated "softly” and internal derivative vertices are
always "hard" (i.e. subtracted according to Lowenstein).

It is the purpose of Sec.IV to isolate the anisotropies
resulting from "soft" vertices and to show the validity of

many current identities for arbitrary graphs.



II - THE CLASSICAL MODEL AND THE TREE APPROXIMATION

In this section we want to discuss some features
present on the classical level and in the tree approxi-

mation

The conservation of the axial current is easily
obtained using the equation of motion once. From the

definition (l1.5) we get

. -« % a
o LS - e FA AT

= €A, -+ = A o2 (3pA) + 2—'- A;s™' S (AY)

(2.1)
Now using the equation of motion
1 - A\2
Th=-g ° CpA™)A; -
2 2 Y (2.2)
-1 s TT(AA - m S A;
for ¢ a"A;_ we get

}""\5{;‘- m\"{.A; (2.3)

 *

If in (1.5) we expand the square-root before taking the
divergence, the computation is rather complicated; yet
this has to be done on the quantum level. What we learn
from the above calculation is that we should use the
. . > A
equation of motion only to calculate b~} H , but not
.

e . This will be done in the following sectiomns.

.
The tree-approximation Ward identity for ‘*f" to

be preserved in higher order is
LTy XD == ot TAWE D"
2 S x) Sing KT (A “ X D

L £Y]
(2.4)
where Z‘E'Ahoﬁxﬁ) “nd' XQ‘ U" AM(‘Q)O
bpd
Once Eq.(2.4) has been shown to hold, we expand its l.h.s
)"(T[G'S;LAJ&-)X D=3 XTAWX Y+ (™)

(2.5)

The r.h.s. of (2.5) gives (up to a trivial d'Alembertian

on an external line) the subtraction prescription for

<TAWX ).
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II1 - FEYNMANN RULES AND WARD IDENTITIES

P - S 4 X = - ’.— -
We consider the version of the nonlimear g-model a <TN[({t A;) al“ Ah]( ).K> f(m b)<TA-“’Z>

‘ PR . . . N [y N
specified by the effective Lagrangian density - "5 S(‘_ X.g) sht-( <TN[({1_AL)/;](“) "‘l‘B Am(‘p)>
Y =1
L=L,+Zine ) B

-{o‘ iz PAQ;PA;' Jimt Az (3.3)
—_— N

i(nt = {t* ia with L = TT A;“\'ﬂ)

z‘. - (M\z- b) { [( {z‘ Ai)\l;_ f] - limtAz. ‘ B

jz - li({z_ A").' (A.;PA)’. (3.1) holds in every order of the perturbation parameter {-'.

The normal-product Green functions appearing in (3.3) are

where B is a finite counterterm chosen recursively to defined as‘usual(g): it O is any monomial in the basic
enforce a pole of the two point Green function at ?‘-m’: field A'\. and their derivatives then
The N point Green function is defined via the <TN[0’] () z >= ?Lnitgipqrt of
modified Gell~Mann Low formula
D) © N, . f ) d‘{ _] \9)
N - - 4 (x 0 exp (] Loy d
G (K., L X":‘L.’Lt,...,tu) ™ T 5 ) Li‘ A\..‘ “ ?L LAt > (3.4)
[ M. T ) ¢
= Jinite 3art of STITAD (ray expli| 2os a1
‘e int .
dx) and again the finite part respects (3.3).
(3.2) To describe the subtraction procedure consider the
™ Feynman expansions of (3.2) and (3.4). We obtain (formal)
L)
where A is the free field given by fo . Notice the

. i ~
Feynman integrals corresponding to a connected graph 3

absence of Wick ordering in (3.2). The finite part of the type

prescription will be given in this and the following

section such that the ACWI Lim S d*k IG.(?/ R, m, &) (3.5)
L>0



where IQ(?,k,/\m,E.) is of the form
Ia@rme)= TTREBRTT Avyltave, m e) (3.6)
Ye& Lg('
"and where

= - basis for external momenta of G
-'?- ?-)-Pz,‘ "')?s =

h‘{b,hz,..-.., h—n‘\ = basis for internal momenta of G

M= ‘{'M-,M\z,..-. ”“‘L‘ with mass m; assigned to the
internal line L=i
TT = product over vertices V of G
Y G
- product over lines L of G
LaG

t&bc =-dboe momentum flowing throughkline L

—P\I(T’h') = polynomial of degree wW; (W, <2)
in the momenta pand R flowing

into the vertex V.

. -
AL&; (tave, m.,€) =t 3';3 Hin - s le( Ff‘* mi))

v,} = isospin indices

For subtraction pruposes we distinguish masses
corresponding to different lines. At the end they are

all set equal to m2

12

In order to obtain the ACWI (3.3) it is crucial
to redefine the concept of overlaging graphs. Due to
isospin conservation the lines of G can omnly end or
start on external lines or form closed intermal loops.
In drawing a vertex it is convenient to make the isospin
flow explicit: as shown im Fig.(2.1) each vertex is re-
placed by a set of new vertices linked by newv additional
dashed lines through which no isospin flows and whose aim is to
identify their endpoimts. We now define overlapping
1(9)’

graphs as usua but treating all lines, dashed and

continucus, on the same footing: two graphs ¥, and r2
.28, or ¥ O *1- ¢.

An illustration of this concept is given in Fig.(2.2).

are nonoverlapming, if either ¥ D ¥, ,
Thus two graphs whose continuyous lines overlapp in ome
point only are accordimg to our definition not necessarily
overlapping. This property will allow us to derive an
equation of motion within normal products, which is free

of anomalies.

To avoid misunderstandings later on we include here
a definition for dashed lines: a dashed line 14 1is said
to belong to the graph ¥ , if the momentum flowing through
*"1 (obtained by algebraically adding to two momenta of
the continuous lines on which 1, ends, i.e. treating the

dashed line on equal footing and applying energy-momentum
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conservation) contains a non zero component of internal
N

momenta of ¥ . A sum of dashed lines A= z, v is
any

said to belong to ¥ , if the sum of the momenta C‘(ld)

flowing through 44 contains a non zero h‘. component:

N
4=2_ L. e X, i} :Zq\'uh ARy +BPg, A#0

oz
(3.7)

Finally ve say that two lines <y, La are
equivalent, if there does not exist a graph ¥ , proper, such

that L‘et,fq‘t.

A - THE SUBTRACTION SCHEME

The subtracted integrand Rg to be associated
with IG depends on the nature of the vertices of G, which
are of three types:

1) vertices associated with za , the breaking part of &.

2) Internal derivagive vertices, i.e. vertices associated

with ¥£2 and without external lines attached to them.

3) External derivative vertices. These are either the
special current vertex in the case of the normal-

product Greem functiom or vertices associated with 411

having at least one external linme attached.

14

If G contains only vertices of type 1) or 2),then
the subtracted integrand is defined by first factorimg
out the nz and b factors comming from fi and then
applying Zimmermann's forest formula to the remairning

integrand, using generalized "Taylor" operators
£32
i.e.

Ra=5. =TT (- T4 5 T (W) 3.9

UeT veur

wvhere ¥ 1is the set of all forests (non-trivial, non-
4171
overlappingYsubgraphs of G, having non-negative degree

of superficial divergence o (¥) ). The generalized

oliv)

"Taylor" operator T is given by

a8 divy-\ v
T = t?f mr +* (M})"...‘.(.M\;)fn_é:_ }Y‘M e
’ 32\'@*'{‘& =dp) dtw)” 3w Y™

im iy

1
¥ v...r el g
?.,“o)m‘sr -!-g-"u.s‘!

TCADSISNCN S S I
stet )t

(3.9)
dlg)-r
where t.'\t’m\- is the Taylor operator of order
¥ kY
die) -4 in the mass parameters Mr=slm‘_.‘,\.‘ef‘ and
in the external momenta ?‘.3 ‘-P‘*)'Pf) ?:‘ 0# X

Ssr is a substitution operator, shifting




from the variables of }\c w to those of PeW, Ac yand Sq
Y
realizes the additional job of replacing all masses M,

by /Vv}.

i

1f G contains vertices of type 3), the subtraction
procedure will depend on the topology of the graph near
the vertex U , i.e. it depends on the way in which the
lines of U are contracted. It is at this point that
softly subtracted derivative vertices from fz make their

appearence. They are defined in the following way.

Let h.::s)h,;:;’ _____ . R:$ be the soft momentum
factors. (Here and in the following the subscript § will
indicate that the corresponding momentum is soft. Momenta
without subscript are hard, i.e. subtracted with the
operators (3.9)). A soft momentum if internalth,depends
only on the loop momentum through one of the lines,

(51

either dashed or continuous,ending at the given vertex;

for convenience we think this momentum factor to be

associated with this line rather than the vertex. The
‘ ¢ As + '
subtracted integrand (T h,-.,, Ic,.\,v-R where I:—,, is
- (3 2%
kY i’
such that IG,E ﬂ-h«;, IG. is defined recursively by‘al
i

Lo

+
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(0 RS Tada=Sa y 2 TT -2™™) 8, Tt I 4

U¢ T Tew

iy 3= oo
it Al mes,mey

e w (")N\ T """.:1 (I/G\)R
=\

*ZW?(Wh;s 1/)1}- - i/m:'/w\; (ITI‘ h:,-s I-/(,.>R’-t

(3.10)

kS
where M\{ always contributes two powers to ‘*ll‘) , when
written to the right of a "Taylor” operator. If
R? is associated with a dashed line,
2
then the mass M; does not show up in the unsubtracted
. dty) |
integrand and the "Taylor" operator T is now of
the form (3.9), but depending on (N+ M+ ) variables,
. a
where the extra variable is Mg . The momenta R, are
expressed in terms of the variables ?c’) h‘s‘ where €
>
is the smallest graph € e U containing b; . We also

allow for the situation when two indices i are equal,

. T\
representing the momentum factor (h.;_,s) .

A shorthand version of (3.10) is
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TUG) = TTCRt-mi > Tomd TT (k) -

LNy =t
’ [} 24
» ™
- Wy * T
haald mpaES iy
(3.10)"
For v al (3.10)" yields
™ = 2 2 .
Ris = <R =M Dy m (3.11)

Using (3.11) we can rewrite (3.10)' as a pioduct
[ L o
I bR g = by
I (k) = & {( Ri-mi >« nm:‘k (3.12)
=L =y

with the convention {ASD (B> = {ABD> . We have not
written: (3.10) as a product, because it would be very

; aley - . .
cumbersome to: put all the operators T in their
correct positioms. For later purposes it is convenient

to rewrite (3.12) as follows

Tf(h"\;)= —‘T {<h§>~[<'m3[)— m:‘:\} (3.12)'

18

so that all polynomials are hard and all subtractions by

2
which Rys differs from its. hard counterpart are

P
contained in (Mf) - M.

Let us now come back te our type 3) vettiées.
What makes external xz. vertices V" difficult is the
fact that, in order to obtain the correct ACWI, the poly-
romial Py (?.R) associated with- ¥ has to be written as

a sum of two terms

(s>
- Wy
Py (BR) =Py, By + R (RR) €3.13)
\S)
where ‘P‘vt (’f,,h,,)- is subtracted softly, whereas.

'D.,;“)(?)' k) is subtracted using the hard operators (3.9).
Actually it will turn out to be simpler to obtain a

decomposition where all polynamials are hard
-PU‘) W)
P®r) = [Por GO+ PRy} - M (3.13)°

where we have used (3.11).

The details of the decompositionm (3:13), (3.13)*
will Be described . in Sec. IV... Here: we- - assume it to be
known how to effect the decompositions (3.13), (3,13)'.

(Since (3.12),(3.12)' have a product structure, the

decompositions (3.13), (3.13)' can be obtained for each




vertex independently and then inserted into (3.12),

(3.12)'.

The finite part prescription in this section is

3

then well defined up to the decomposition (3.13),(3.13)°'.

B - EQUATION OF MOTION

In order to derive an equation of motion inside
normal products like NL(AL)“' azA'n,](‘) , we add and
sub’tract the mass term N[(AL)“’"".\\, Au,.] (x) thus obtaining
a Klein-Gordon operator acting on the field Ab . Im
momentum space this operator corresponds to a factor
QE'”“h.) where L is the momentum through the line L
associated with Au,which is used to cancel the propagator
of the line L, i.e. one obtains a graph where the line L
is cut. The remaining step is then to identify the result

with the Euler derivative of the interaction vertices.

This procedure produces in general anisotropies, i.e., terms

not present on the classical level, due to two problems:

a) the mass terms introduced to complete the Klein-Gordon
operator tend to be oversubtracted, because the "Taylor"
operator (3.9) does not act on masses and momenta in the

same way.

b) topologicallv different graphs, having therefore different

20

subtraction schemes, can after cutting the line L become

topologically identical as illustrated im Fig.(3.1)

We circumvent difficulty a) by introducing masses
Nn:, attached to lines. Of course, since Nh; is chained
to a line, it cannot be pulled out of the normal product.
The difference between N[(Al)m’m:,Ak.—) and ’“‘z N[(AI)RAI]
will be absorbed by the derivative coupling f; and thus
induce the introduction of soft derivative coupling. The
problem b) is overcome by our definition of overlapping,
i.e. graphs which are not overlapping before cutting line L
will always continue nonoverlapping. This is exemplified
in Pig. (3.2). It is worth noting that we are able tco
avoid both difficulties a) and b), because our model contaians

only fields carrying a conserved quantum number.

Having this in mind it is now straightforward to

derive the equation of motion. Consider the object

<TN[(A7')M' (O + M) A::_M")-X-_ > (3.14)

where the superscript V. on Ah{indicates that Ah. is
contracted with a field belonging to the vertex \ﬁ_ . Vl
may be either i) the special vertex (3.14

ii) an extermal vertex at Xg: V(ﬂ)
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iii) a symmetry breaking vertex from La

iv) a derivative coupling vertex from {2

as’ illustrated in Fig. 3.3. 1In case i) this contribution
will be cancelled by the subtractions. In case ii) one

obtains the usual delta terms

<T N [(AY™ (Fem )AL 0 X D
=-\ ZS“"B) Skip TN LAY TNI' A;‘(K-n)>
B app

(3.15)

In case iii) we obtain, considering all vertices from xg_

S TNIAYM AR WX D -

_ =B SLTNIAY (=AY Al X D

(3.16)

- 2 .
where we used the fact that the m~ and b factors in 4y are

always factored out before applying the subtraction scheme.

If Vﬁ is an internmal vertex of fz , we obtain a

contribution to the object

£2L £“
<TN[(A" Y SSA t“ zA ]}‘) X> (3.17)

where the momentum polynomial attached to V. is hard,

2ta

since by hypotheses all lines ending at V; are internal.

Finally, if V; is an extermal vertex from £, N
it will have attached to it a certain polynomial with
soft and hard components as in (3.13). After cutting the
line L we obtain a contribution to (3.17), where TﬁkahD

has the same decomposition as before cutting the line.

Summing up, we obtain the following equation of

motion

TNAY™ (M AWK D = w CTN B AW S -
C (=) PCT NI (4- Y AN E > »

P ATNIG (““— ‘.éiu NwX > -

-1 zsu-x@)émp <TN LA™ 1w n A (k0D
o=
(3.1.8)

where the hard-soft decomposition (3.13), (3.13)', must
be taken into account in the term containing the Euler
derivative. We remark that the decomposition (3.13) is
dictated by the ACWI, . whereas the equation of motion

(3.18) is valid for any given decomposition.
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C - WARD IDENTITIES

To see how soft momentum factors defimed by (3.10)
and (3.12) enter. in the discussion of the ACWI (3.3) we

consider the divergence of the normal product

N L) S Al o

where the derivative is hard, i.e. subtracted with (3.9).

Since the subtractions are made at zero external momenta

we have

MCTNLAY 5 A0 XD < (TN FAlwX >-
= CTN[™ (@AY D - CTN[AL By 8]0 XD

(3.18)

where, in order to obtain an anisotropy-free equation of
motion inside the normal product, the mass mi in the
second lime of (3.18) is associated with the line

corresponding to A.. . We now use (3.11) to rewrite

(3.19) as

TN AT X > = CTNI(AY (3o )AL X ) -
-CTN[AR 3 (8]0 X D - TN AR]wX D

(3.20)

23

to obtain

MCTNLU=AY S, AdwX ) =
=N A (S AR TWE ) - CTN[AG 35 (42 810X -

- TN A A dW XD

(3.21)

Applying now the equation of motion (3.18) to the first

term on the r.h.s. of (3.21) we obtain

SFCTN[( A S AT D == (=B PLTAWX Y -
- i‘s (x-2p) Sy {TN[(4- RY*e Tr AL ) +

+ TN A‘)V‘(u“ -2, 5'{“ )]v) X>-
-{TN[A, % ({‘-A‘)"‘]u)X >

(3.22)

Thus in order to obtain PCAC the following identity must

be fulfilled
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. —
T 3 jan> SJC:.‘_ Sy
2 CTNL-AY (:A... > Mw)}wg Y -

={TNAR (AT XD
(3.23)

The above identity (3.23) furnishes the basic recipe how
to subtract the Green functionms so that the PCAC Ward
identity (3.3) is satisfied. The decomposition (3.13)
will be effected im precisely such a way that (3.23) is

satisfied as will be shown in the next section.

To illustrate the general procedure we consider
here the case where the external derivative vertex Vi is
quadrilinear. In this case only the lowest order contri-

bution of (3.23) is relevant

#(TN[(sz -5, Si

4o ord!r f 2

=- 57 CTINIARS AW Xy

(3.24)

Evaluating the Euler derivative yields

2
S i) [ Aodead]e- T AR

Thus we obtain the result that the momentum factors

25

associated with external quadrilinear vertices are

. ()]
completely soft, i.e. 1?1 (phR)=0 . More
precisely the momentum factor must be associated with the
line that carries the same isospin index as the external

line at the vertex under consideration.

Finally we comment on the vector current
A .
R X.,g QPAG (3.25)

Since it is omly bilinear, no anisotropies arise and we

obtain

Y UTN[ AR Xpe dp Al X D =

= X:' §<TN[A“($*’M;)AQ]Z7 -CTN[A(Femi)ATE Y =

N i —
=—2l:§("x3) thﬂ<TAl(‘) ” A\"(‘ﬂt)>
el As@

(3.26)

where the derivative in (3.25) is hard.
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IV - SUBTRACTION PRESCRIPTION FOR ARBITRARY GRAPHS is not enough and that the anumber of loops formed at \VJ is

the other important topological aspect on which the sub-

The validity of the equatioan of motion within normal .
traction procedure depends.

products and the ACWI has been shown in Sec. III, when all
the derivative vertices of Jf, are quadrilinear. Here we A - CASE tv,= |3y VERTEX ¥ WITH ONE EXTERNAL LINE

will show that it is possible to decompose the sub-
Before treating the general case consider Y,si,v,= 0
tractions of the derivative vertices into soft amnd hard
in detail. Calling X, the end point of the only external
parts in such a way that the Green functions satisfy the
line of W we want to calculate the following Greem function
correct ACWI.

~ 2 —
For this purpose we classify external derivative A d\‘(TA 6h-4) Nz .§_ [(‘A—.)"“AOQ.‘A)I] 4) _&_)
~ a ’ 2‘{1 ‘." ' M@ ‘
vertices W with interaction (A‘) (A'D-(A) according

to the way in which the lines of W are contracted, since

the subtraction procedure will depend on the topology of (4.1)
the graph around U. Out of the 2Mm+% 1lines ending >
on VW let (n=+2vy) be extermal, Y, flowing into the where A a “ Ah (*h)
Lo 8 -~ -
graph (we call them Y, -lines), AY; are connected L . .
and S/aAt indicates the Euler derivative

among themselves (called Ty -lines) and 26= (2Mm+4)= 2(navy)

o~
are contracted to form internal lines (we call them "spiked). 3 - S a ) (4.2)

Sp— = tm— . q e —— N .
The internal Y, -liges are labeled by overbared integers 5Ae SA" SAC,\?

and we furthermore exhibit a dashed line for each spike . . .
None of the fields in the normal product is contracted

labeled by under-bared integers as shown in Fig. 4.1. The
v & & directly with an external field Ah“(ﬂ”)'/ﬁ\= +,3,....,8B.

purpose of these appearently redundant dashed lines will . P
The question mark on the normal product indicates that

become clear below. X X X X . .
its subtraction prescription is to be determined. This

It will turn out that specifying the contractions process will have to be repeated for all external vertices




28

among Nttg](i;) to fix their subtraction prescription.

Evaluating the Euler derivative in (4.1) yields

\ 2 Ax -t
- _2.— sd‘4<TA‘“¢V:-‘3) st. ':Te‘ 3 [(F)M ]

-1 Ae 3,[(%)“] 3’("%)}“) P
(«3)

The subtraction prescription for the above normal product

£71

is determined by the lowest order current Green function

- L[0T o A een No § R S LA™ -

tAe o, [(& )”‘]a (S5 P)}W) >

(4.4)

whose graph is shown in Fig. 4.2.

We now write an ACWI for (4.4), keeping only terms
whose unsubtracted integrand is the same as the one of
the divergence of (%.4) (The remaining terms will be dealt

with in (4.7) below):

25
(TX{—S{%»‘A.‘.CU.-MN?&% ST -
- 343, LF)"5 D} -
W ch)* e N{[( )‘]cx.)([am AL
c[,‘—hi(%)‘“‘u-a,.m‘)1(5)} .
AT ORIN A T )“*‘]m}}
(6.5)

The first two terms in (4.5) correspond to the l.h.s.
of Eq. (3.23) and the 3rd one to the r.h.s. of Eq.(3.23).

The graphical structure of (4.5) is shown in Fig. 4.3.

At this point we have to know whether the vertex
1)3: at y is internal or extermal. This second case
can only happen if through the. line joining 1}: and 1);
flows only external momentum, i.e. the graph is not one-
particle-irreducible and the number of loops formed at VY
in the graph of Fig. 4.2 is less than the maximum 2% . If
this happens one has to apply the considerations of this
section A to the vertex 1); first. In order to simplify

matters we will here and in the following give explicit

formulas only for the case when at the vertex under consider-
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ation,the maximum number of loops is formed. At the end of

this section we will present two recursion formulas (Eq.(4.26)

agd (4.27)) which do not depend on the number of loops

formed at V",

If now the vertex 17,_' at y in the 2nd term of (4.5) is
completely internal, the equation of motion yields two

hard terms:

A S LA™ 1) and  Ag 3u[(A)T]37IR] )

where we have evaluated the Euler derivative. Thus for
the Eq.(4.5) to hold and the necessary cancellations to

take place we have to subtract (4.3) in the following way

kN

N6 (SRS IRNT [ () AL

-3 Ae 59[(%?] r(%)} ()

5 N AL PR T- LAl (4 Do e

(4.6)

The Eq.(4.6) above realizes the decomposition (3.13)

for the case at hand.
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The reasoning leading to (4.6) will be repeated

all over again to analyze more complicated situationms.

The two terms not written down in the ACWI (4.5)

are

30" ( ,,,,,){TNQ[ L™ (3o m ) A dwaX >-

i 2(-')* (TN 1) A, e o
.[&((%)“"‘(A-W)]w}X>

(4.7)

whose graphical structure is shown in Fig. 4.4. Their
unsubtracted integrands are different from the divergence
of (4.5) and consequently they will be cancelled by other

[81.

graphs in the following fashion

The first term in Fig.4.4 will participate in another
Ward identity like (4.5), but with Mm and mom.
There it plays the role of one of the terms in the second

line of (4.5) with M —» m/ .

Each of the M terms in the second line of (4.7)

will again participate in another Ward idenmtity like (4.5),

f 9].

but now with M —» Mm” and M < m There it plays the
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role of the term im the last line of (4.5).

B .- CASE r, = Q, T, ARBITRARY

In order to analyze more complex situatioms it is
convenient to go to momentum space. The polynomial
associated with ‘A‘)MQA' D.; A)x will depend on the
number of independent loops formed by the internal lines
of W . For this reason we will at the end of this
subsection eliminate the polynomial from our comsider-
ations in favour of the decomposition (3.12)'. To start
with consider the case ¥ = 0 and the maximum number
of loops, namely {(¥,+23 ~1) . Adopting the routing

shown in Fig. 4.1 we get for the polynomial at v

fi-9503r, S
~n \ > 1,4 2 a
-2"m! i . .
> Z R, « > Qz‘) (4.8)
Lz iz
Skt 35 Q
: s+ .

where Q-“g qz;-- ~ q‘f\ and 2 R, T = 0.

The subtraction preScription for {4.8) is discovered
applying the ACW>I to the line with say external momentum
?‘ . As should be clear from our ¥, =a| - example,the

Y
only place we get a soft h| is from a term analogous to

)[ 10]:

the 3rd ome in (4.5

33

(-‘)Mfl ( ::_‘) Ah‘ 37; [ ( .L‘ )"\'\'\]

where Ah,‘ forms an internal line through which =P« h‘
flows. An identical remark is valid when applying the
ACWI to the other external lines and we obtain the

following prescription (3.13) for the polynomial (4.8)‘11}:

- 2"'ml No | %’“"h;u i it =
=

[2 N

G-3s0by, . - A
—Qmedn S Tk g - [LQmm-Gaon] T -
[ & 3

[ 2N '

$
-2™"'m 3= Q:;;

= (4.9)

The prescription (4.9) can be explicitly verified applying

the ACWI successivly to all the Y, external lines of V.

In order to avoid writing down long polynomials,
we will use Eq.(3.12)' to transform all momenta into hard
ones, isolate the "mass" terms and keep track only of
them. We hasten to stress that they belong to the sub-
tractions of the derivative vertices and we put them in

quotation marks to avoid confusion with minimally sub-

tracted mass vertices from zg . Using now (3.12)' in
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(4.9) we get
N Os!‘.x s
Gy =-g@mn {3 Tl v el -
LN it'
=350
s @modll S (T
[ 9] (4.10)
where
dh‘)
m(TY= S Z T— - ) m: I
us}' uu( [ v G'/-P . h)}
d(
- S 3 TT (-299) [ Le /B, p 0]
ue ¥ uu,
(4.11)
As in (3.12)° M‘f contributes two powers to d ().

Eq.(4.10) realizes the decomposition (3.13)°'.

To streamline our formulas let us introduce the
following notation for the "mass" terms in the decom-

position (3.13)' of the vertex of Fig.(4.1)

Sm(pl,r-,_"S\T,i)... >Fl';l,3:,...,i) (4.12)

where the first index counts the number of (; -lines,
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the second the number of extermal pairs and the third

the number of spikes. After the vertical bar we have
listed the labels of the internal lines: overbared indices
for continucus lines and underbared indices for dashed
lines. The purpose of these last ones will become evident
when r.‘J O . The index m indicates that we consider here
the case where the maximum of loops is formed at Y. In

the notation (4.12) to "mass" terms in (4.10) become

€-380

(2mn- )Y z: o (Ty= Sm(“,";s\'\',i,..,?.;.. (4.13)

The hard polynomials will be supressed from now on and

we only give the decomposition (3.13)°'.

C - ANISOTROPIC DERIVATIVE COUPLING

Eq./4.13) is a very simple formula telling us how
to subtract a derivative vertex with an arbitrary number
of ¥y -lines. If ¥, -lines are present a new complication
arises. If we apply the ACWI to an ¥y ~line, the terms
analogous to the second line of (4.5) will now involve
soft (R*) monomials associated with the same line
carrying the Klein-Gordon operator, as can be seen from
Pig. 4.5. The reason is that the ¥, -line becomes

external at 1Ji and this vertex will contribute with soft

(h*) terms. But now the continuous line carrying the soft
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monomial does not appear in the graph of Fig. 4.1; 1its
unsubtracted integrand does not depend on the mass associated with . NV\.L (C\)Cz)-... \ (‘4\) =
the line carrying the soft monomial in Fig.4.7. Yet in S Z Tr. Na(Y) 2
ordér to obtain the correct ACWI "mass" terms of the type G UeF pell (‘ (‘.-‘.,M"(g)y SV[M Q) IG./P,,(E,})Z“ M'u; .
-m

(4.13) have to be present and will be introduced using

the seemingly redundart dashed lines labelled by under-

ol
-mSe S TT -25™) Sella/Bonm]

Us €
bared indices. ¥ YeU
(4.15)
It is clear from (4.11) that m‘(z) vanishes for
a subgraph having T as an external line. This property aly)

will be important also for "mass" terms associated with
dashed lines and this was the reason for introducing the

definition (3.7).

We now define anisotropic multiindexed "mass" terms
Nﬁz(chiz,n..,CM) associated with the lines deg,n.ig)
which may or not be dashed. We will need "Taylor" operators

of the form (3.9) depending on an extra variable M3},

where 1‘2 “a . The "Taylor" operators T

ol

aé¢t of course only ou variables belonging to Y and we

say that

M Dex, ff e (4.14)

Define now

where the dots in t“.,nac” indicate the variables listed

in (3.9) ,d(f) is the superficial degree of divergence
of IG&/?»(“,?) to which Mz(") does not contribute
and
~ dl¢) + 2 o Tey
d(¥) = ' {
d(l’) ) \‘{ i ¢ 'y

(4.16)

we notice that M*() contributes no W\"" dependence, but
only a '&1 dependence, to the vertex v (12} and (4.15)
vanishes if 3¢ ¥ . Actually (4.15) depeands only on J
and its l.h.s. should be written M‘(-:) ; but we find
the more explicit notation convenient, although it is not

unique, since J can in general be written as a sum of
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lines in several ways. In farticular one of the lines

may itself be a sum ‘.-d = 2. L&.
Q=

1f 3= &, , where L, is a continuous line,
the factorial in the definition (3.9) ensures that, inspite
of our introducing a new variable, which already occurs in

ki)
t... ) (4.15) reduces to (4.11) in this case.

As an example of the use of (4.15) consider a vertex
with Y"tz,f-._tl,.'ﬁ'l 2 as shown in Fig. 4.6. Applying
the ACWI to the Y5 -line we obtain graphs with ¥y = 0,
which we know how to subtract. The resulting subtraction

prescription is

R (205217, 350,2) = 13wy +m(Ty ]
2 oM em ()]« 20 (L2) « m (3, T)

-~ M\"(E,_l)]

* (4.17)

HBad we applied the ACWI to one of the Y, -lines, the same
result obtains, but now the knowledge of '\)’(ﬁ‘l, i, S*l)
and 1)'(‘\*0, v,2), S2 7—: is needed. Applying again

the ACWI to one of the external lines we get
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SM(\)U‘\TSL) =Z’W\1(T)-lm"(_|.) (4.18)
Sm(”:‘sz\'\l,}_)=-2M§"(\_)=2M\(l) (4.19)

D - TWO RECURSION RELATIONS

Instead of writing long formulas for the general
case, we present two recursion relations, which allow one
to obtain the subtraction prescription for arbitrary
vertices. Consider first the case, when the maximum number

of loops is formed at .

The first one is an Yy -type, i.e. obtained by

applying the ACWI to an ¥, -line, say 1:
.SM\ (ﬁ)\‘",s‘ ha,.. e 3._)__, )i} =

Yo I
(T {[z(mms- 3 -3 oS 03T S et [T, 5L 8)
t=) ’

Va G sy g Yy /

s’ P [a(nanes-r)-3]lL «

B2 i."n)...i.._ﬁi 3.)'\;,...‘3*‘ 2

I) 1+ s"‘x,bt (h-:.-|> - ‘]‘ ( :l:.) *

SM« ("") % B \31,31, )-Sd.') b ;(-") ~---\"_(\-t,$p)
(%.20)

+

®
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where aly, aqo and P take all values compatible with
drodlny-@ » R , but subjected to the following
restrictions:

dvsf.“) d, ¢ ) 0<‘3$$f\
Exclude the term d.tO)Vo’\, ¥al,
(4.21)
W ? W
The sum 2: means
““u._'\,“-“ Vel wo, Vv A,
VW<V & & Van
all variables ranging from & up to W . We always use j_‘

to indicate T, -lines and e to label dashed lines

ending on spikes. Finally i@, stands for

) G-t ) oy
h‘sa Z. U~ : 5.( (4.22)

dmi oz

Let us briefly comment about the origin of the various terms
ie (4.20), where we refer to Fig. 4.3, except that now the
vertex 1’1 has an arbitrary number of lines. The factors
multiplying /WI‘ (I) arise from the analogon of the

third term in Fig.4.3. and the term involving g.(h,fc(;gl-..-)
from the second term of that figure, where at '\’1.’ we

have only ¥, ~lines and no internal lines. The index h,
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in the sum over h stands for the number of lines at vertex
’ ’ h.). 2
'u.z i.e. the interaction at ‘U’; is (,A") (A‘D-(A).

The restrictions (4.21) express the fact that the sum over

h terminates, once all liames of vertex 1’5,, have been
shifted to v;' , leaving a vertex with three lines at ",;_.
Furthermore (L is always different from zero, since the 1‘
line becomes internal at 1’;’ . Finally it can easily be
seen that the term o230, (CR 4-,-(,_ arbitrary does not
contribute and that _&\% is not summed over inm (4.20),
since it is a dependent variable according to (4.22), i.e.
&_Q and the r.h.s. of (4.22) are equivalent. It may

be verified that (4.20) is symmetric in the ¢« ~lines.

A second recursion relation may be obtained applying

the ACWI to an ¥a. -line:

gm(\"\)ﬁ;s\T,i)..‘,a'éllg),_)i)‘ -

Ca
é [.2.2-3]‘-‘- (2‘) glws (‘\*‘,";'135\T)i,-.,?'.);;-;l-‘ l)!)._) _g')’
Ax) s .
v 3 lalreres-2) 370 (D) # 2 [almemas-) - mi(E)
3= (2]
TV 4S=¢ A ) s /
+ >, 2

Red miuoda =l L, LGl

[2(enes-0)-22 (5)

" SM (dl)d;}‘l \-S“ )\)..)s.(.s E‘)(-'-I)"') i(‘)

(4.23)
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Again we sum over all values of o\, #, ‘5 compatible
with oly+oky & (B = k. but subjected to the following

restrictions:

0<d¥ SY""") 0‘;5"’;*‘, (Sss
Excluode the term oo, (320, ¥ o),

(4.24)

and. ™ b L S s AL
;\&‘- Zc_,_.o.*Zl_\ , T -.-ZL*-ZJ
(S 1

an P et (4.25)

Notice that the term R*2 and (4= ".-\'\,(5,*5)

has been written explicitly in (4.23).

1f the number of loops at V is not maximum, the
formulas (4.20) and (4.23) have to be written more
explicitly, since in (4.20) the T -line does not
necessarily become internal at 'U:.’ . We get applying the

ACWI to A.:

g (V\)V‘;}S \T'i) ">;‘ 3 l)E)") 5-) =

= m (7)) [a(nenes-) =370 +

Tt iy

r2 T2 S lalheras-k)-31n (0) .

LS ‘:‘)“')’:" ' ‘l)---‘“‘l )

- S(&I) ‘1,')(5\ J-\psl)..)r‘l.)k')t—")"lt$) ( q’z‘)
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where, again c(\)d-,_ and P’ take all values compatible
with d\* d;#(s = Rk and instead of the restrictions

(4.21) we impose:

1) in the terms obeying (4.21), C‘s is not an
independent variable, but given by (4.22)

2) in the terms not obeying (4.21) l;‘; is to be
summed over as an independent variable and b;)*

takes only the value ;\&t A.

Formula (4.26) is simpler in appearance than (4.20), but
contains more terms. Some of them may not exist for a
particular graph and the corresponding term is to be dropped

from the sum in (4.26).

Applying the ACWI to an €, -line, we obtainm

£ (“)f\.is \T\i,--;$v3 1,3,..., §.) -

CAtes -,

S ® .
a5 S O3 [a(nenes-R)-30 (%)W

e c.,..,cﬁt\ h,.-,;“-\

x g (d',d;;@\-s‘,xt,-.)\d.} L\,Sz)..,\‘_ﬁ) 4.27)

where, again, we lift restrictions (4.24) and impose that JJ‘
is an independent variable for the terms not satisfying

(4.24) and is given by (4.25) for the terms obeying (4.24).
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Using (4.20), (4.23), (4.26) and (4.27) it is now
straightforward to obtain the subtraction prescription for

any vertex.

To obtain the subtraction prescription for the whole
graph one proceeds as follows:
i) obtain S‘ﬁ("w: "r’ish,‘T)’w;\‘“‘ l;“)&‘(w)
for each extermal derivative vertex Von
ii) calculate the polynomial _P»" (e, R) according to

standard rules

iii) obtain the decomposition (3.13)' by the substitution

| -¥2““(-h hﬁ) 4

() ™ 4 o
_P'“u (‘?)h)- S (‘.\(..))"‘(.)Ss(ﬂ l e '.l( )3 -‘-)": ita))
(4.28)

iv) to each vertex 1ln we have now associated a
new numerator given by the r.h.s. of (4.26).
The resulting subtracted integrand ‘%G is then obtained
from a product like (3.12)', where (/m;")-/m;.‘ is

replaced by S Cyryeleg - ).
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V - CONCLUSION

After having established the existemce of the zero
mass limit several questions remain. First ome can show(lo)
that our currents satisfy a current algebra. Then one would

like to study the properties of the theory in more detail,

in particular the structure of counterterms. This is

difficult since our Green functions have no simple v?—

dependence, due to the need of introddcing the decomposition

(3.13). In particular we do not expect the vertex functions

of the theory to satisfy any simple ndtmﬁiizaéion conditions.

Since at this point we do not know the structure of counter-

terms, we also ignore how much the imposition of vectos and ’ : f
axial vector Ward identities has cut down the infinite

number of renormalization constants of our nonrenormalizable -

[14].

model

In the 2-dimensional renormalizable case one re-
\
. . T ] * : -
normalizes the expression (¥ - A ) without expanding
. A‘ . .
in powers of and treating each resulting term separately.
Also here one might wonder whether cancellations occur once

the square root is reassembled and whether this may improve

the high energy behaviour.
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FOOTROTES

[11 A review of BPHZ renormalization camn be found in Ref.9.

Lz‘! One may easily verify that the criteria for convergence
stated in Ref. 6 are satisfied.

[ 3] Unless stated otherwise d{¥) is the smallest number
compatible with ultraviolet divergence, i.e. (3.8)
is minimally subtracted.

[ 4} In subsection B and C we work im x-space and use the
notation a: for a soft d'Alembertian, although it
may happen that the corresponding momentum is externél.
In this case there is no distinction between hard
and soft.

L 5] The necessity of associating soft momenta also to
dashed lines will become clear in Sec.IV.

[6] The highest derivative of the operator (3.9) will for
hard momenta produce terms like h‘/(h"‘ \*‘ )M.
If ht belongs to only one divergent graph, the
difference between hard and soft subtraction schemes
is the replacement hl-‘/(h‘;l})m—ib Qh‘-r})-v‘“)
This is the reason for the name soft.

E?] By "lowest order current Green function”" we mean the

term indicated in the r.h.s. of (2.5).

[8] If the reader is confused by the following two

[9)

[10]

[11)
[12}

[13]

[261
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paragraphs we remind him that we are only describing

the cancellation mechanism of the umnsubtracted

integrand.

It is assumed that the subtraction prescription of
vertices with M sm , which are of lower order

in {-‘ , has already been worked out.

This remark is of course not true, if the number of
loops is less than (",*25-\).

As in (3.13) we have only written the polynomial at 'ut~
The M&"—dependence from M‘{‘) cancels out in (4.5)
when W is the empty forest.

In this case the d'Alembertian in the r.h.s. of (3.23)
is associated with the square of an external momentum
and the subscript § may be dropped.

One arbitraryness lies in the fact that we have made -
all, but the last subtraction at P=9, m a0,

which certainly is not necessary.
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FIGURE CAPTIONS
FIGURE 2.1
Graphical representation of a general vertex. The

sum in the l.h.s. is over all permutations of the indices.

FIGURE 2.2
Graphs ¥, and ¥, are overlapping.

Graphs ¥, and t‘ are non-overllaping

FIGURE 3.1

Graphs (b) and (d) have the same udéﬁbtracted
integrand, but come from graphs with different subtraction
schemes.
FIGURE 3.2

Although graphs (b) and (d) have the same unsubtracfed
integrand, the dashed lines indicate that they are to be
subtracted differently: subgraphs (A) and (B) are overlapping
jin (d) whereas they don't overlap in (b).
FIGURE 3.3

Graphs contributing to the equation of motion inside

a normal product.

FIGURE 4.1

Classification of lines of an external derivative
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one for each spike.
FIGURE 4.2.

Graph corresponding to expression (4.4) with the v Y v v
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cross at Xg indf4cating the lowest order curremnt vertex H T
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FIGURE 4.3. 1 Va2

G ical st t f identit 4.5). A t 1i

raphical structure of idenmtity ( ) cu ine Y VSJ. v V4‘-L

means multiplication by the Klein-Gordon operator ) Vsz ] V42

correspon‘din;; to the momentum flowing through the line. 3. Q
X Ly

No cut after the current vertex stands for Ah, as (A) 3

the momentum of (A")“ being written in parentheses.

The three Hack boxes of the figure are identical. F‘% a. 2.

FIGURE 4.4
Graphical structure of the two terms in expression
. —
(4.7). The two black boxes are equal to the ones of Fig.4.3.

FIGURE 4.5

(a) (b)

Graphs contributing to the ACWI of an fy-line.

%
The cut line will carry R terms, which may be soft.
FIGURE 4.6 : —

Graph with a vertex 1)'('.-2»."‘:0,537-) where at Y~

five loops are formed. (c) (d)

Fig 3.4.
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