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Abstract

The Generator Coordinate approach is used to construct
a collective subspace of the full many-body Hilbert Space. The
construction has a purely kinematical éharacter, given the a
priori (e.g., phenomenological) specification of'a set of
generator many-body states. It is based on the analysis of the
properties of the ovexla?s of the generator states and on the
"use of the standardlspaces of sqguare integrable functions of
quantum mechanics. Some well known misbehaviours of the Generator
Coordinate weight functions are clearly identified as of kinema-
tical origin. A standard representation in the collective
phase space is introduced which eliminates. them. It is also.
indicated how appropriate collective dynamical variables can be

defined a posteriori. Hilbert-Schmidt overlap kernels and the

Gaussian Overlap Approximation are treated as special examples.

I. Introduction

The study of collective phencmena in quantum many -
body systems must.deal, from the very start, with the difficult
question of the choice of the relevant degrees of freedom. The

study of a certain class of collective effects can in fact be

» contemplated in terms of the study of the many-body problem

restricted to some "collective subspace” of the full many-body
phase space. This subspace carries a limited number of
dynamical variables of a collective nature.

In lukyier cases, such as when cne is able to use
self-consistent theories. like the time dependent Hartree-Fock
theory or some of its specializations like the Randonx Phase

Approxlmatlon[ 1 the appropriate collective degrees of freedom

are chosen by the (approximate) dynamical scheme itself. The

dynamical specification of the relevant correlations for large
amplitude, slow, collective nuclear modes characterizes also a
self-consistent 'theory recently developed by Villars[zl.

In most cases one has to rely on phenomenology for
the choice of a collective phase space. The adequacy of same
choice of collective phase space, however, is always basically
a dynamical question, and, as such, it cannot be settled whithout
explicit reference to the many-body Hamiltonian. 1In order that
the restricted collective dynamics may be physically meaningful,
one must have things so that the "collective subspace" is fairly
closed with respect to the full many-body dynamics. The rangé
of applicability of the fully dynamical approximations for the
treatment of collective motion, such as the above mentioned ones,

are of course also ultimately bound by this general criterion.



A general strategy for the phenomenological construction
of a collective phase space was laid long ago by Hill, Wheeler
and Griffin[3]. In thep;g”gilled;seﬁeggtor Coordinate Method
(GCM) there is a clear separation of two stages in the setting
up of a scheme for collective motion.

' The first stage involves the selection of a collective
phase space, with no necessary reference to any particular
collective dynamical variables. This proceeds on purely heuristic
grounds. Consequentely, there is no built in guarantee that it
be physically meaningful, as there are no built in devices to
check its stability with respect to the fuil many-body dynamics.
In order to offset this deficiency, physical critgria can be
strongly emphasised through a consi@erable flexibility that one
has in the selection of the collective phase-space.

The second stage consists of thé establishment of a
dynamical structure within the heuristically generated collective
phase space. This is acomplished through the res£riction of the
many-body dynamics to the collective phase space, in terms of
a physically motivated kinematics , which often leads one to
consider mathematically awkward objects[4'5'7].

The point o£ view that the GCM can be used to set
up a complete quantum mechanical scheme in ‘some suitable
collective phase space was explored explicitely by Brink and
Weiguny in 1968[4] for the special case of the so called
Gaussian Overlap ApprOXimation[3]. It was latter suggested by
CJLMbngEﬂ that the GCM can be, in general, identified with
the restriction of the many-body quantum mechanics to a subspace
of the many-body Hilbert space through the consideration of

biorthogonal representations. These considerations were

elaborated latter by Lathouwers[@, who recently gave also an
approach based on a representation involving eigenfunctions of

the suitably trimmed overlap kernelE7].
The implementation of these points of view involves,

howevgr, the explicit or implicit consideration of highly
singular objects as representatives of rather ordinary many-
body -state vectors, if only to give some substance to the idea
of a subspace selected from the many body Hilbert spacecj}.

' This is due ultimately to undesirable mathematical
properties of the physically motivated representations adopted
in the GCM. In a qualitative way, the singularities appear
as a result of the attempt to expand certain state vectors in
terms of a complete, linearly independent set that includes
vectors having arbitrarily small normtg}. In this sense, these
are purely kinematical singularities, that can bé eliminated
by an appropriate renormalization 6f the basis, without any
recourse to dynamical arguments and working in terms of the
usual square integrable functions of gquantum mechanics.

In this paper we extend and improve the results of
ref. [9], where the above program was carried through under
suitable restrictive assumptions.“ We discuss, within a
kinematical context, how the mathematical awkwardness of the
GCM representations can be systematically avoided by working
in terms of an apprbpriate, collective representation. Thi§
representation will, in particular, contain no kinematically
generated misbehaviors, and leads to the definition of collective
dynamical variables appropriate to the heuristically selected
phase-space.

We begin by reviewing, in section II, the basic ingredients




involved in the construction of the GCM phase space. Special
care is taken in distinguishing between those ingredients
having direct consequences on the na£ure of the resulting phase
space and those having just an instumental character such as
the labeling of the generator states. In section III we discuss
in detail the shortcomings of the GCM phase spaces and
establish a scheme in order to overcome then. The discussion
is based on the properties of the oveflap kernel constructed
from the labeled generator states. We give next, in section
IV, a discussion of the collective dynamics which results when
we apply the ideas of section III to the rémoval of kinematic
pathologies from the Griffin, Hill, Wheeler (GHW) equation, -and
consider some special cases and examples in section V. Finally

some concluding remarks are given in section VI.

II - The many-body phase-space of the GCM

The method of Generator Coordinates is based on the
consideration of many-body states that can be constructed as
general linear superpositions of a pre-selected family of
suitably parametrized many-body state vectors 1¢i:> . This is

done by writing the general Generator Coordinate ansatz as
“?) = JI"‘) «t(d) A“ . (II.1)

We give in this section a systematized version of this cons-
truction with special emphasis on those aspects that are

particularly relevant for the discussion of the following

' sections. With this purpose in mind , it is convenient

to distinguish three main ingredients involved in the setting

up of eq. (II.1l), namely, the selection of many-body states ,
the particular prarametrization adopted for them (i.e; the adopted
correspondence between states and labels o« J and the class

of functions g(*) that can be meaningfully admited.

The selection of many-body states is made essentially

on the basis of physical arguments relating to the particular
problem under consideration. This isAcertainly the most
informal but nevertheless the most critical step in the whole
method[al, as it will determine in a decis;ve way the "working
space“.selected for the purpose of truncating the full many-
body problem. For the purpose of the following. discussion
we will simply assume that a suitable, in genéral non discrete
family 3 of normalized many.body states has been selected tor
its physical relevance. These states are called the generator
states and will be.generally denoted by ket symbols, | > .
It is often convenient to express the generator states in terms
of a specific representation of the many-body Hilbert spaceig‘.
In this case, one speaks of generator functions <§| >' where
g denotes the particular representation which is adopted.

The generator states (or the generator functions) are
handled by means of a parametrization, which puts them in a
one-to-one correspondence with the points a of a label space
denoted as |E . The choice of [E and the establishment of a
specific labeling strategy is clearly a matter of convenience
and is in no way dependent on the specification of any collective

variables for the problem at hand. The "collective" character

itself eventually stems solely from the particular nature of




the selected generator states. Actually we will be able to
define dynamical vartables to suit the chosen family of generator
states on the basis of an "a posteriori " analysis of the charac-
teristics of this family.

For definiteness, we will mostly refer to the standard
case 'of one continuous, real generator coordinate as a proto-
type. The extention to the case of n real continuous generator
coordinates involves nothing but an extention of the notation,
and other situations can also be easily formulated as extentions
of éhis case. Here [E is some suitable (and possibly infinite)
real interval and :'F , accordinggly, is a continuous family
of states. We understand this in the sense that, for each
vector l) of. 3 , one can always find another vector \'> ’

also of 3 , such that
b >-1>)¢ce

for any given positive € . As we shall see it is convenient
that the labeling of the generator states be "adapted"” to the
continuity of 3 in tfhe sense that, if id‘nk , is a seguence
of labels converging to o in E , then

&'l lty> = 14> ] —> 0 (11.2)

for any |od'> in ? (i.e , the sequence {li».)} is
weakly convergent to |d) in 5 )[6--1 . These conditions are in
fact sufficient to interpret eq. (II.l) as a Riemann integral
for the special class of infinitely differentiable weight

functions f(oﬂ) with compact support in ‘E . We can write
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the Riemann sum corresponding to a given partition of the

support of f(d)

" |
[£u> = Z lotg> Pt ) (g = o)
st

and easily show that refinements of the partition such that
max(a(‘:-di_l)_a, [0} as N-—=>o0o generate a Cauchy sequence
of many-body vectors in :ﬂ, { |£N> } (see Appendix 1). The
vector | ) defined by eq. (II.1) is in this case the limit,
in 3(’ of this sequence.

This now gives us enough grounds to tackle the third
ingredient for eq. (II.1l), namely the class of allowable weight
functions -c(a() . We would like to identify this class with the
entire Hilbert space of square intggrable functions on E ,

Lz' (E) . The éreceding argument shows that smooth functions
of compact support in E , which are dense in LZ(E). belong
to it. We can thus describe the GHW ansatz (II.l) as a
linear transform from LL(IE) to the many-body Hilbert space
}‘ , which is defined in a dense_ subset of L-z (E) , and in
order to be able to extend it uniquely to the full space, we
have to require that it be a bounded tr:anfcvrm[,‘a:l . This will
make it also a continuous transform, so that the extention of
eq. (II.1) to an arbitrary function (:(cl) of LZC‘.E.) can be
defined in terms of a sequence of smooth functions of compact

suppoft, {g,“(d)\r , converging to ﬁ(oL) , as

1£> = &fw ‘( g°¢>fM(e¢)da¢ = J|d>£(d) dot (11.3)
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The inner product (in}"l of two such many-body state

vectors is then

S P d'.{dl* £1¥(°“).<°‘I > £, () (x1.3a)

Thls equation shows that metric properties of the many-body
vectors generated by the GHW ansatz are translated to the

~language of weight functions by means of the two-point function

on [

N, o) = o' [a)> . (x1.4)

Also, the right hand side of eq. (II.3a) defines a continouous
linear functional on Lz(ﬂ:-) . It follows therefore from the
Riesz lemma that there is a unique function gz(a) of Lz([E)

such that .
» . >
faa! [ Ty NG 60 = [dod £ g, )

for all fl(a') . This applies of course to any function fz(a),

so that
%(&') B JAoL N(D".d)f(d) = (;\\).f )(d') (I1.5)

A
Z
characterizes a bounded linear operator N in L ([E) It

follows moreover from the properties of the inner product
A
involved in eq. (II.4) that N 1is also a hermitean (and hence

self-adjoint), positive operator.
' A
Conversely, if N , defined by eq. (II.5), is a
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bounded, self-adjoint operator in LI(IE), the GHW ansatz, eq.
(II.1), can be extended via egs. (II.3a) and (I1.3] to the full
space Lz([E ) . However, the boundedness of N is not guaranteed
"a priori" for any set of labeled generator states, and we are
thus left with the question whether it can be achieved. We
note, in this connection, that the kernel (IX.4) depends in an
eéssential way on the particular labeling procedure adopted for
the generator states, A change of labeis that preserves the
continuity condition (II.2) is induced by a continuous mono-
tonic function (5 =), from E to the alternate label space
lE '\M(E) having an inverse o =M (P) with & in [E and f%

in F We may also without loss of generality assume that
o"m.(x) S0 all
o in E .
iol- )

We can then consider the relabeling
~~ nt
> — [m@> = Ip>
where the tilde indicates that the same vectors aré identified

by the new labels, and construct the corresponding overlap

kernel

VY = IRy = N, )

which occurs if we use the general ansatz (II.l) in terms of the

new labels, i.e.

~>‘C(P) (I1.6)

a ¥4
Vv
i
me—

It should be stressed that the passage from eq.(II.1)

to eq. (II1.6) differs from a mere change of dummy variables
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~t
(for ﬁ(p&: g(*ﬁiqﬂ) ) by a change in integration measure, the
new label @ being directly taken as the integration variable

in (II.6). Corresponding to eq.(II.3a) we get now

<TUT = [ fap XN (prce
whiéh, now changing variables to the original labels o, , be-

‘comes

~ o % AW W AwlaW 0 o\ [dwata) dmi)
G >=[ o (P it s 1 ot i)

(11.7)
'y 2
When the gi(ﬁ) are in L-(”W(E)) , the first and
T
last brackets of (II.7) are in L (E). This equation thus shows
™~
that the boundedness of hJQP4§) in LZ(NM(E)) is equivalent
to the boundedness in thg original LP(IE) of the modified

operator

N, (') = d—}"ﬁ') N (o) (dmlal (11.8)

N da

Furthermore, it can be easily seen that some function
m(ol ) can always be. found that makes (II.8) a bounded operator.
In fact, we have
2 1A ™ Al 2
fae (da [N = (o {dp 1020
E €
and, from the assumed normalization of the generator states,
~ YA
[
LN ] ¢l
~
Therefore, choosihg the new label space E to have a finite
~ L]
measure we guarantee that hJ(?.FO is a kernel of the Hilbert-

~
Schmidt type (actually, it is trace class) in Ll((E>.

As a result of this discusion we see that, by means
of proper choice of labels, we can make the ovexrlap kernel of
the GCM a Hilbert-Schmidt kernel in a Hilbert space of square
integ;able weight functions. A complete treatment of this
type of kernel has been given in ref. [9]. We will also show
in section III (see also Appendix 2) that there is no loss of
generality in restricting the labeling strategy, as the collec-
tive subspace to be constructed from a given set of generator
states is stable against acceptable (in the sense discussed
above) changes of labels. This actually makes the discussion
of ref. [9] completely general. 1In pratice, however, it may
be both natural and, above all, éonvenient to consider overlap
kernels which, althougﬁ bounded, are not of Hilbert-Schmidt
type. Some illustrative examples of this can be found in
section V. We will thus make only the weaker assumption of
having bounded overlap kernels in the formal development of
sections III and IV. .

We will show in the following sections that the
mathematical difficulties of the GCM stem from the fact that,
in general, the mapping from L?'(E) to B given by the GHW
ansatz (II.l) does not have a bounded inverse. An immediate
problem is, of course, the null space of ﬁ, which altogether
excludes the existence of the inverse mapping. Functions in
the null space of N are, however, associated with the null
vector of (as can be seen from eg. (II.3a)), and express
relations of linear dependence among the generator states.
There is no loss of generality, therefore, involved in project-
ing out the null space of N when using eq. (II.1l), so that an
inverse mapping can actually be defined. The fact that it

will not in general be a bounded operator means that Cauchy

14.
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sequences of vectors lf) defined through eq. (IX.l) can be

associated with non-convergent sequences of functions ‘(d).

This implies then that the set of many-body state vectors

generated by means the GHW ansatz will not be complete, in

general. We will refer to this set as the GHW phase spacetg].
Our approach to deal with this situation will

consist in trying to define an alternate mapping, from the

GHW space to a L? space, which is isometric. This can then be

extended uniquely to a closed subspace of the many-body Hilbert

space, which can serve as a collective phase space.

IITI - Straightening up the Kinematics

In.tbe preceding section we showed that, by a proper
labeling of the generator states, the basic GHW ansatz, eq.
(I1.1), can be defined for the class of square integrable
functions on the 1abél space~E . We showed, at the same
time, that the overlap kernel hJ(dn&), eq.(1I.4), can be
generally assumed to define a bounded positive (and hence
self-adjoint) operator on this weight function space. Here
we proceed to construct a complete subspace of the many-body
Hilbert space on the basis of these properties. This subspace
is actually the completion of the GHW phase space introduced
above and forms the proper kinematical substrate for the
establishment of a dynamical scheme based on the chosen family
of generator states.

The basic tool for this construction the "diagonali-~-

zation" of the overlap operator N. This can be done, in an

16,

abstract form, using the spectral theorem of functional calculus
(See Appendrix 2)}. The argument can also be cast in the perhaps
more familiaf language of Dirac bra and ket vectors, which we
adopt, for convenience, in this section.

We begin, therefore, by considering a space of ket
vectors, written with rounded brackets, | ) . which are associat-
ed to the elements of the functior; space LZ(E) by means of

a suitable representation & defined by .

{ = jld)dd(dl (Lid') = T(at-d")

as
;4?(d) = (a] f‘).

The overlap function, eq. (II.4), corresponds thus to a bounded,

self-adjoint operator N in this space, for which we consider

the eigenvalue problem
A .
Nlk) = Ate) k) (1Ir.1) .

In case N has a continuous spectrum, the kets [k}

are improper eigenvectors which we assume to be normalized as
CeleY = & (k-k'),

We also assume completeness of the set of eigenvectors of N in

the sense that a resolution of unity exists in the form

jlz)d/u(k)(k] =1.

The measure }4(k) will include in general a discrete part
corresponding to the discrete spectrum of N, in addition to a

continuous part (usually a Lebesgue measure) when there is also

.
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a continuéus spectrum.

The existence of such a resolution of unity amounts
to the fact, supported by the content of the spectral theorem,
that the brackets (kld) carry a unitary transformétion of the
function space LZ(IE) which reduces the operator N to diagonal
(or to multiplication operator) form. Thus, corresponding to

each function cﬂd) we can consider

Lf(k):g(kld),r(d)dd =S.(Kld)(d|£)dd =Celf). a2

which is, from this point of view, just another representation
of the ket \;:) . The overlap of two GHW state vectors, eq.

(IT1.3a), can also be cast in the form

CRIEY = [Apeatnog Awf) = (qifng) @

in which use was made of the relation
CelNle!y = Ale) 8 (e-x')

which follows directly from eq. (FII.l).

.

IITI.1 - Removal of the null space of N

The first point to be made in connection with eq.
(I11.3) is that kets lf;) lying in the null space of N, i.e.,

satisfying

CeIN1L) = A f) =0 (111.4)
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for all k, give rise, by means of the GHW ansatz, eq.(IX.ll},
to many-body vectors of zero norm. They correspond thus to
relations of linear dependence among the generator states which
allow us ta-associate many different weight functions to the
same GHW state vector. This undesirable feature can however be

easily removed by considering the projection operator
= 14 | 3
'X-ﬁ S‘A)u( ) 1e) %A( Y| (II1.5)
where the function ﬁlh(K) is defined as

. \ o ,__F Ate)=0
Ypte)=
1 4 AW)+o0

(I11.6)

and allowing only for kets lf) lying in the subspace associat-
ed with it. 1In other words, this amounts to the exclusion,

from any weight function g(d) , of components £°Cd)in the null

space of the overlap kernel N{dd). 1In fact

S(z g1l f,a)da! =pr(»¢) («1e) L, e)celf,) =0

in view of egs. (III.4) and (II1.6). The subspace of LZ(IE)
associated with the projection operator 1‘6 will be refered to

as the weight function space dl; .

II1.2 - The "collective" many-body subspace

We proceed now to the construction of the complete

subspace of the many-body Hilbert space 3{ which naturally
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extends the GHW phase-space. For this purpose we note first
that, tf |{) is in the GHW phase-space, i.e., tf it is of the

form

- \£)= fdd 2> («1§)

with (4|£) in the weight-function space i‘{l (note that the

null space of N has been projected out), then
A
alf> = (2INLVE)

which is also in £$ . We can then use this fact to define
the ket |1’.) (or the function ‘?Z(K):(klz.)) by

(111.7)

1 -
A"(\c)(u,f )= fau(um«lr) = Ale) Yy

A straightforward calculation shows now that

(FIgY=<¢1£>
i.e. the mapping v which associates to each GHW state vector \.")
the ket |f) (or the function ‘fr(k) )

1) = vif> (111.8)

.

is isometric. It can be written formally as

Ar = ga‘)l(k)gdd nc)(\ci;k) <
N2k)

(111.9)

and depends explicitely on the overlap properties of the
generator states through A(k). Note that this expression is
meant in the sense that V|{) is calculated by writing <« | ‘:)

in the integrand for the integral over &
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The isometric mapping v has been defined, in eq.(I1X.7),
for all vectors I.ﬂ) of the GHW phase-space. We can now show
that the image, in i; , of this phase-space is dense, although
in general not complete. This will allow us to uniquely extend
v to the completion ofl the GHW phase-space, and to use £" as
a convenient representation of the complete phase-space. But
the proof is also instructive in that it reveals in a clear way
the relationship between weight functions and many-body vectors
in terms of the properties of the overlap operator N.

Our aim is therefore to show that we are able to
approximate any function

Py = Ck 1£)
wsuch that
' Lalf)= |£)
N .
by a Cauchy sequence of functions ‘f 'n(k) that are v-images of

GHW state-vectors. For this purpose, let

. vy J
gled of NCed>y o

¢ (k)=
m . {
0 of Ay <L

The explicit removal of the null space of N now guarantees that

& le, -vli=0 (I11.10)

since Alk) is almost everwhere different from zero in the weight

function space. On the other hand, the \f’(l:) allow us to set up
"
the weight functions

= {dutie) (1)
(d‘lpw) g /H m) \Pu(h) ' (I11.11)
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If |c“) denotes the GHW state vector generated from the
weight function Cx\(uj , it is easy to check that
Lﬁ“(t) = (“l1fl{;~>'

which proves the desired result. A

We are therefore allowed to consider the unique
extgntion V of the isometric mapping v from the many-body
Hilbert space H to the entire closed space :34- . V is a
partial isometry, the initial space of which we call the
"collective"” many-body subspace. It is the subspace of Ju

associated with the projection operator

P- NtV (I11.12)

The fact that the final space of V is the entire JQF can, on
the other hand, be expressed by
y_a = \/V+ .

The relationship between vectors in the collective
subspace and weight functions can also be established from
eg. (III.1l). We see there that going from vectors in the
collective subspace (or from the corresponding functions \f(k))
to the appropriate weight functions for the GHW ansatz, eq.
(II.1), involves the use of the operator KJ-‘/Z (or .Atvz(k) ).
This is, in general, an unbounded operator in {1 . Its natural
domain is the V-image of the GHW phase-space. It was shown
to be dense in £¢ and, correspondingly, the GHW phase-space is
dense in the collective subspace. We are thus able to appro-
ximate arbitrary vectors in the collective subspace by sequences
of GHW state vectors, but the corresponding sequences of weight

functions will not, in general, converge.
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An additional point to be made concerns the role
played by the specific labeling adopted for the generator
states in the resulting collective subspace projector . we
are able to show (see Appendix 3) that, provided the general
conditions regarding the bounded character of the overlap
operator are met, the collective subspace is actually inde-
pendent of the particular labelling procedure.

Formaly, we show that, from the fact that

Pley = 1>
it follows also that

Plicy = 1¢5
where P' is the collective subspace projector obtained by
following the construction of P with modified labels. The
generator states themselves are of course contained in the
collective phase space, even if they do not have square in-
tegrable weight functions, in general. Their collective wave-
functions, on the other hand, are given as

CelVia> = A eycrla) .

They are normalized to one for every oL . These facts are
consistent with the intuitive "imtrinsic" description of the
collective subspace as the smallest subspace of the many-body

Hilbert space that contains the generator states as a subset.

IV - Quantum Mechanics in the Collective Subspace

We have shown in the preceding section that a set of

generator states can be associated with a projection operator

P which selects a subspace of the many-body Hilbert space 34.
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This subspace constitutes the completion of the set of many-body
state vectors that can be written in terms of the generator
states by using the GHW ansatz with square integrable weight
functions. The operator P allows us then to project the many-
body dynamics, contained in the many-body, time dependent
Schrodinger equation, onto the collective subspace. This means

that we consider the restricted problem

PHPIWS: & %El% (Iv.1)

with P'P) = “P) . This is now a conventional quantum mecha-
nical problem. The spegtrum of the restricted hamiltonian,
PHP, may include, in general, both a discrete part and a conti-
nuum, which correspond to bound states and to scattering states
respectively. The latter, as is usual, do not properly belong
to the collective subspace as they do not have a finite norm.
Scattering situations can however be treated in terms of vectors
of finite norm e.g. by using wave-packets in a time-dependent
description.

The ?orm eq. (III.12) of the projection P, on
the other hand, allows us to use the isomorphism of £g and
the collective subspace and consider a representation of eq.

(IV.1) in terms of the function space i{. The corresponding
dynamical equation now reads

jaywy(kwHv“lz')cf(t',t): ik %{‘ki‘. (1v.2)

It is also easy to write the formal expression for the restrict-

ed hamiltonian in this representation with the help of eq. (II1.9):

CelVHVT )= Yala Sda' Cela )<t | Bl (' 1i')  (av.3)
N2, A
If eq.{IV.2) is formally reexpressed in terms of GHW weight-
functions, related to the collective wave functions ‘f by
means of eq. (III.1ll), we obtain the familiar form of the
(time-dependent) GHW equation.

The collective hamiltonian written as in eq. (IV.3)
has been frequently used in the literature, chiefly in connec-
tion with the numerical treatment of the GCM. It involves
A"
three possibly unbounded ingredients, namely the two
factors and the GHW energy kernel <olHla'> . The unbounded
character of the former, however, stems from purely kinematical
sources, while that of the energy kernel is related to the
dynamics of the many-body problem. The kinematical divergences
are related to the properties of the generator states, and are
in fact cancelled by the behavior of the energy kernel in actual
evaluations of eq. (IV.3). This is shown expicitely for the
examples treated in the following section. When going from
eq. (IV.2) to the GHW eguation, however, one considers weight
functions which are formal jg& transforms of the collective
wave functions lf . Unlike the energy kernel, the latter are
however not smoothed by dependence on the generator states
and this predisposes weight functions to "violent behavior".

The above discussion wés carried through in the
specific representation of the collective subspace in which the
overlap operator is represented as a multiplication operator.

This is, of course, convenient for sorting out any kinematical
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oddities inherent to the generator coordinate representation,
but other representations may be preferable or more convenient
from a physiéal point of view. We therefore conclude this
section with some comments on this point.

The representation used in eq.(IV.2) can be charac-

terized in terms of the operator'& defined in £¢ as

Celd1d) = eCeia) . (1v.4)

Note that the bracket (k!d) stands for the unitary
transformation of the original weight function space that
diagonalizes the overlap kernel. The point in defining this
operator is that it can be translated to the many-body language
by means of the isometry V:

K=V*%vV = jdkjdajdd' [a>le) k. Celal)<a’],
Alx)
K is thus a "natural” collective variable associated with the
representation x® , given as an operator in the many-body
Hilbert space 34 . It is clear moreover that a transformation

theory can be established in the collective subspace based on

unitary transformations of the collective wavefunction space ££‘

.

We may also give an "a posteriori" formal criterion
for the adequacy of the collective subspace constructed from
a given set of generator states, along the lines discussed in
the Introduction. 1In fact, the condition for the collective

space to be dynamically invariant can be simply expressed as
[PH]=0

It is perhaps worth noting that this condition allows in general

for the breaking of symmetries of H under projection onto the
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collective subspace. In order to guarantee further that a set
of symmetries of H, 55;} . is preserved in the reduced collec-~
tive problem we have to ensure further that

(ps:) =0
i.e., that the projection be well adapted to the cleavage of

the many-body Hilbert space determined by the symmetry operators.

V - Special cases and examples

In this section we show that the scheme developed in
the preceding sections can be actualy implemented in cases of
physical interest. We Begin by reviewing the results already
given in ref. [9] with some appropriate changes in language
and emphasis. We then go on to the treatment of the standard
Gaussian Overlap Approximation[3], which involves an overlap
kernel which is not of Hilbert-Schmidt type and that may be
shown to have a purely continuous spectrum We discuss this
case in terms of improper eigenfunctions and also in terms
of a relabeling of ﬁhe generator states that effectively
reduces the overlap kernel to one of the Hilbert-Schmidt type.
A comparison of the two approaches exhibits the invariance of
the collective phase space explicity. The same comparison
also illustrates the possible gains, in terms of simplicity, of

working directly in terms of the continuous representation.
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V.l - Hilbert-Schmidt overlap kernels

The general tratment of the preceding sections finds
a particularly simple realization whén the overlap kernel
is of the Hilbert-Schmidt type in LZ(E) . Although a
discussion of this case was given earlier [9], we repeat its
éssential points here in a somewhat modified form which is
better suited for the purpose of illustration of the general
procedure. It is also worth stressing that, in view of the
reducibility of any given case to the present one by a suitable
change of labels, and of the independence of the constructed
collective subspace of the adopted labeliné procedure, this
discu;sion is actually of general validity.

The major simplifying factor for the treatment
of overlap kernels of the Hilbert-Schmidt type is the content
of the Hilbert-Schmidt theoremrloj. It can be expressed by
saying that in this case the unitary mapping (kld) can be
implemented in terms of a complete, orthonormal set of eigen-

functions WU.(«), i.e.

SN(&,A')’M; @da' = A;u; () v.1]
with

s'uj‘ ) 'ua'(al)dds = Si.g’

The spectrum is discrete, and the only possible
limit point is at A=0. The label i of U; (4) plays the role
of the new variable k. The complete set of eigenfunctions
1(;(&) can in fact be used to define a unitary mapping of
LZ(E) onto the space of square summable complex number

sequences Qz (]L) . This mapping is given by
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F@& — $F:y; b - gdx U @) P () V.21

t.e., the sequence {£;§ is the set of components of the
function ¥ in the orthonormal set {14;}.
The projector yﬁﬁ that eliminates the null space of

the overlap kernel can be immediarely written as

]
»
La = Db ) U] @) v.3)
N R °

A20

4
The restriction of N to the subspace associated with 716 does
not have a null space, even though it may still have arbitrarily
small eigenvalues.

It is also easy to identify the isometric mapping

defined by eqgs. (III.7) and (III.8) in this case. Eq.(III.7)

can be cast as
f,; = ‘[’\_: (:i | LAY

so that the many-body vector generated by ¥C&) is isometrically
associated with the sequence {Iif}. The removal of the null
space from LF(E) ammounts to the exclusion of all components
F; associated with zero eigenvalues. Whenever infinitely many
elgenvalues are different from zero, however, we see that not
every square-summable sequence { ;2 } can be associated with
square-integrable weight functions, on the account of the limit
point at X::O. They are associated, through the extended
mapping V, to many-body vectors that cannot be generated by

acceptable weight-functions through the GHW ansatz. These

vectors can always be approximated, in the many-body Hilbert
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space, by sequences of "regular" many-body vectors, in the

o]

Since a Hilbert-Schmidt kernel has eigenfunctions

sense that they have acceptable weight—-functions

belonging to LZCE) , we can in this special case explicitely
construct a set of orthonormal many-body vectors via the GHW

ansatz as

1Ly =

K\a>u;(¢)olx . (v.5)

¥l

These are the "natural states" considered by Lathouwers in

Ref. [7].

It is easy to check that
<ilgy= 4

so that the l& are the amplitudes of vectors belonging to
the collective space (which can in this case be defined as the
subspace generated by the orthonormal set (Vv .5)). along the
vectors |41 .

Wé finaly ;onsider the transcription of eq. (IV.3).
We obtain

Rid) = (s (e U @< H > Uy ()

so that ) «7; %7(5

Lu,p: LIFY, (V.6)

i.e., the collective Hamiltonian kernel is just the matrix
representation of the many-body Hamiltonian in the orthonormal
basis (V.5) of the collective subspace. We see thus that the

vanishing of the xi actually compensates for the vanishing

of the norm of the corresponding GHW integrals with the 14;(3)
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V.2 - Translational invariant overlap kernels

A class of overlap kernels for which an explicit
form for equation (IXI.1l) can be immediatly found is the class
of square integrable functions N-&') of label.differences
only. In fact the unitary transformation v} can be taken in
this caseas a Fourier transform

Sdz‘ fddjdd' Ceia) N (d-o'Y (! ) Ple) = At Plid

where
T XY
(i) = —l- e
and ‘z“
Ate) < [da e ¥4 NG
The plane waves («|r) play in this case the role

)
of improper eigenfunctions of N . . The positivity and boundedness

M A
of N, on the other hand, guarantee that A(k) is a positive,

bounded function of k.,

The standard case of the gaussian overlap

. ~(a=a!)?
Nia-o') = e ~pz

" is included in this case. Here we havetll]

- k2
Ne) - b\ e géT‘

vhich shows that the gaussian overlap kernel does not have a
null space but its spectrum approaches zero as a limit point
as |k} —> oo,

The fact that gaussian overlapscan be handled in
terms of Fourier transforms has been extensively exploited by
Giraud, Hocqueghemand Lumbroso [131 who developed a "momentum
space" treatment of the GHW equation for scattering problems.
Here we just illustrate the use of eq. IV.8 in this case by
taking as an example the standard quadratic expansion of the

GHW energy kernelEZJ
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. e 2
Lot [Hld"y = N(N')[E W B (E IR )+ Muw? (d_t")} (v.8)
*TZm\¢ T 2 \z
for which it is readily found, by means of a double Fourier

transform
An 1& .
defda' Celd) < JHId > @' 1e!) = Ade) J&.(u,z') Ac')

that

Qe = [E, - 'i&il.’z.., 'E’_'je"]S(k-k‘) - Hw? S"(r.—z') (v.9)
2 .

1 M

The Schroedinger equation in the collective subspace

1s identical to

kz-kz -_ Hw? 47¢ (k) 2L
m W = (E )RS o

This is just the momentum space version of a standard
harmonic oscillator hamiltonian. Note again the cancellation of
all dependence on the overlap kernel by‘the jyvlfactors. In
particular equation (V.10) is independent of the width of the
ovérlap kernel,b.~exceptfor a trivial additive constant in

the zero point energy.

So the solutions of (v.10) are

P (€)= 41‘ (E k) v.11)

£ X
E, = E - Hwlb® (m+ 3 ) Hw ov.12)
16
vhere 4;_are harmonic oscillator wave functions. The normaliz-
ed ground state amplitude is given by

W -k e
g Le) = (_"_k__)l' e 2Mw (v.13)

MuwTr
for any value of the oscillator parameter.
If, on the other hand,we try to reconstruct the GHW
weight function which is associated with ? (k) we find
(-]

by means of equation (III.7) that

| Y : ik L2y
I/ 4% —ikd -XO(® -20)
(Y= — [ 3R
LPO \ m(H“""z) [: ¢ e s Jl:(v.la)

which exists only as long as %’> %‘Z.

This limitationl?] has the same origin as the "ultra-
violet" catastrophe of ref.ﬁB]namely it is a run off situation
in an attempt to compensate for tHe lack of high components
in the family of generator states. We can also check that the
many-body state vector which is associated with ?o(k) by means
of the operator V (see €q.III1.8) can in any case be arbitrarily
approximated by state vectors possesing acceptable weight

functions. It suffices in fact to consider the sequence of

state vectors constructed as in eq. (IX.1) with the weight func-

tions

. _xl u}
‘ci“()ul) = —-,- ( 4K )V“' eu.k_o( ; (%\,_ 2“)

32.
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where N }s a positive integer.

It can be easily checked that these many-body vectors
converge in the norm of the many~body Hilbert-space to the
vector associated with the amplitude ) (k). At the same
time if '-3_;‘; 4 %’;_L the sequence of functions £0(N) diverges in
the weight function space £ ra

We could also solve the case of the gaussian over-

lap by using an appropriate ralabelling of the generator states.

In the case of the gaussian overlap we use

e
b _t*
P:erf(ﬁ%)=\lz__s o

n (v.1l6a)

(-4

vhere ¥ is a free parameter.

The new generator states are related to the old pnes

by the transformation

l(%'>: ,QY“,(V’F%)> = 14> ‘ (V.16b)

The GHW ansatz now becomes

1
4> [4l§>'f(ﬁ)d(3 ' v.17)

The kernel

~ ~ ~
N(R (') = <BIB'>
is a Hilbert-Schmidt kernel since
{ {
~ 2
de (4" N Gm|* ¢4
f_‘(s ) 4 o)
which is easily obtained if we use the inequality

I<BIESI < L
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o~
which follows from the fact that the states ‘[57 are normalized.

The eigenfunctions of the kernel satisfy the equation
{
1 wa [ ~ )
f“ (e g, e = M P e

which by the change of variables (V.l6a) reduces to

Q0
[ Retyang, ahdal = X g, ) 10
where
NG, = 4&‘*) <1ty |dpla)
. : da! =
- 2 F g A e, o 4)a-ay?
=5 P -3 —Q :_b’-_—)}
and (v.20)
- | AP X (.
9. Z@Ld %k(u;(ﬁ%))_ v.21)

Using a formula given by MehlerDz]
oo
{- K(o(-}d' i~ k(a(-d' Kl
wp - 4[ +k I vk ) g;o['lt(l k) ] K 4’("‘)41(‘"
- v.22)

where K is a positive nuwer smaller than one and <”man

oscillator wave function , it can be shown that
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N Vv, & nel '
N@a): £9) t-n) tha n
b w=o (t+n)™ 4)1( - ) 4’1‘( ib ) (v.23)

where t is given by
tl = "z+ 4r .

Equations (V.19) and (V.23) show that

va\%
wos (@Y ey

and
t

it B 2
)\‘u: L-H . (v.25)
ey ™
~ o K -
The %‘m( fb) is given by equation (V.21).
The diagonalization of the hamiltonian in the collec-

tive subspace reduces to

: )
Z Aot = By

v.26)
where '
T ~y
| ~ ~ ~
&““' - g.:l(&g‘:‘(b e <(}|HI(§'>%’M1(P') . .2
s o
Using the guadratic expansion (V.8) it can be
shown that

36.

= | 1 1
L'wn‘ = €é$~ln. + 3 B[ (W4 (w'42) XM,M‘«-)_ +mg‘“ h,.zk_‘_

+ AM.S'M,
" v.28)
where
E¢> = E - szbz-i— .&.
H A 2
A:t\_‘i_’(g-&-;) 5 B- t.%:(g-—'g)
with N
- bt M
S Ey X

This is just the well known form of an oscillator
hamiltonian expressed in terms of the number representation
appropriate for an oscillator of a different frequency. We
can, in féct, introduce the collective raising and lowering
operators

ctimy = :Jm,«n im+1d ;3 clwy =n lm-1>

based on the discrete, orthonormal set of many-body states

+{
l ~ ~
s | g ey ap.

The hamiltonian can then be written in operator form as
=g, +t_;£ (g+-§'-)c+c +’%~(g-%)(¢*¢f+cc) (v.29)

Collective "position"” and "momentum” variables Q@

and ? can now be introduced as

A S P Y ) LD
P-Btli o 5 Qg e

which allow h to be recast in the form

(v.30)
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P2, 1M Q"

2
_ B o Muwbt | Pf
¥ N

T .31}

This shows again that by means of a suitable cannonical
transformation performed on the "number representation" given
haturélly by the discrete spectrum of the modified Hilbert-
Schmidt overlap kernel we are able to reduce the collective
hamiltonian h to that of an harmonic oscillator of frequency w .
All reference to parameters that characterise the Generator
Coordinate representation has again disappeared (except for
the trivial additive constant in the total energy, which comes
from the explicit form of the energy kernel, eq. (V.8)). 1In
this case, the cannonical transformation is essentially a

change of scale given by

—ilmg” D LIng D
c=e at e (v.32)

where D is the dilatation operafor
D:- L (ar+ra
= ( )

and a.+ is the creation operator for the oscillator hamiltonian

(v.31),
CL+. = .L [ tjﬁg (& - __i___ ‘3 -] .
vz g dtﬁw

The corresponding transformation for the discrete

orthonormal set |w) is

_ibg2D

fw>= e fe.> (v.33)
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where the l\£u> are eigenfunctigns of the hamiltonian (y.31}.

Remembing that § is given by

g’ = b'z HMw

where

el &

b? . b
4 12
and since, by definition, the last factor of b is always larger
than one, it is possible, for %k- >bz, to choose the free
w
parameter U of the relabeling function in such a way that
% =4 . THis gives
4
a4 & Y_
(S) -t

In this case the eigenfunctions of the relabeled overlap kernel

e =

produce states |m) with the right size parameter for the
dynamical problem and h is diagonal in the number representation
constructed from these eigenfunctions.

This interpretation also shows that what is involved
tn our adopted relabeling of the generator states are, from the
point of view of the collective phase space, changes of scale
of the orthonormal Hilbert-Schmidt discrete base. This is
clearly a unitary transformation, in agreement with the general
result of sec. III.2. We may even extend this family of
unitary transformations to the special case r=0, which corres-
ponds to the original gaussian overlap. The transformation is,
in this limiting case,

RO 3

U,M L Y Sd(s (%lp)<(§ld>(°<lk)
-4

o e

which, using the explicit form for the various brackets, can be

reduced to
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Uie = (-3 Ug\-_‘ ";—_Y/Z ‘t’“(g%") T .32

The unitary character of this transformation is expressed by
the usual orthonormality and completeness relations for the

harmonic oscillator wavefunctions 4%;

VI - Conclusions and Discussion

The approach described in the preceding sections has
been aimed at estabiishing a clear and complete connection
between the Generator Coordinate Method and a restriction of
the quantum mechanics of a many-body system to a well defined
subspace of the full many-body Hilbert space. We have shown
that the selected subspace is determined solely by the adopted
set of generator states. It is the smallest closed subspace

of the many-body Hilbert space that contains the generator

states.

This subspace, which we called the collective many-
body subspace, can be unitarily represegted in terms of a
Hilbert space of square integrable wave functions of collecti-
ve variables. The microscopic structure of these variables
can be estéblished, in terms of the generator states, via the
unitary representation of the collective subspace.

The construction of the collective subspace itself
is based on the Griffin-Hill-Wheeler ansatz, which consists in
taking linear combinations of the generator states, with the

consideration of standard square integrable weight functions

i i truc-
only. The two most delicate points involved in this cons
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tion are i) the elimination of weight functions associated with
the null many-body vector (which express therefore relations
of linear dependence among the generator states) and ii) the
completion, in the norm of the many-body Hilbert space, of the
image of the space of square integrable weight functions by
the Griffin-Hill-Wheeler ansatz. What we need, in this con-
nection, is not just an abstract completion, which would be
of little practical use, but an explicit construction of the
collective subspace. This is what is afforded by its unitary
representation in terms of collective wave functions. The
proper treatment of point i) above is essential for this step.

From this point of view, the Generator Coordinate
Method can be seen as a tool allowing us to set up a complete,
reduced quantum scheme corresponding to heuristic restrictions
imposed on the allowed degrees of freedom of the manygbody system.
This is in fact guaranteed by the existence of a standard,
orthonormal representation of the collective subspace. In 7
particular, special procedures are in principle not required
for the treatment of scattering problems as opposed to the
treatment of bound state problems, as scattering states are,
as usual, associated with the continuous spectrum of the
collective (i.e., projected) Hamiltonian. It is of course
possible to try and reexpress any information in the Generator
Coordinate representation, but we will in general obtain very
singular objects, and whose singularities have no physical
significance, as they are generated in the adopted kinematical
scheme.

Closest in content to this work is the recent work

rq3
by Lathouwers“7J, which develops a scheme for Hilbert-Schmidt
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overlap kernels. It is interesting to note that the collec-
tive space is introduced in that work through the formal use
of the Hill-Wheeler-Griffin ansatz with higly singular weight
"objects", in a way that is reminiscent of situations which
have been met in the quantum theory of coherence[141 In the
case of the Generator Coordinate Method, however, as opposed
to that of quantum optics, no gain comes from the use of the
non-orthogonal representation once the possibility of a collec~
tive orthonormal representation is realized. We may also add
another remark of a more technical nature. Tt relates to

the failure to properly dispose of the null space of the
overlap kernel. This not only will give rise to difficulties
in direct applications of the results of ref.[7] to such
simple cases as the Lipkin modell[Q], but also prompts mis-
leading conclusions, such as the unqualified exclusion of
biorthogonal states to the generator states from the many-body
.Hilbert space.

We finaly mention the important problem of the
evaluation of the dynamical invariance of the collective phase
space selected by a given set of generator states. The formal
criterion given in section IV may be very hard to use, since
changes in the commuéator of the projection operator for the
collective space,P, with the full many-body Hamiltonian H are
not easily gauged from changes in the number or structure of
the generator states. We feel that it is possble, however, to
make some definite statements for families of generator states
of particular form in the presence of symmetries (or quasi-
symmetries, such as the "Galilean" quasi-invariance implied
by the validity of adiabatic approximations). This is left

for future work.

42,

One of the authors (AFRTP)} aknowledges long discussions

with J.F.Perez, who also initiated him in the manipulation of the

mathematical tools used in this work.

Appendix 1

Consider the Riemann sum for eq.(II.1l)

N
> = Z 1> fe) (-, )

ey
with maxld‘-d£d|= A“nnx' and the refinement of this partition
of the label space obtained by adding p-1 extra points 0(%5
to each interval such that o(‘:og o, , and d‘:vP =d;. The

4
corresponding sum is

¥
£y > 2 2, 140> i) (g = 4 )
The norm of the difference of these two vectors is

big,>-18, 0% -
L o(r -
) j[ﬁ by + Pl bl < fug > -

(2 jms
= PPl el - JaO g ) gl 4 ]
(e =t ) = A) B

From the weak continuity of the labelling it follows

that, provided A“M‘ is made sufficiently small, we can make

[ (ol oS - <o(2|o(;.)'>\<8

for given ¢ and i, and for all j. This in turn implies that,
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for continuous weight functions '? with compact support (which
will give a finite number of contributions to the Riemann sum
for finite Adm’ ), the norm of (fu,,;) will be arbitrarily

close to that of |f”> for any p, provided N is sufficiently
large. The sequence of refinements of the type considered is
therefore a Cauchy sequence in the many-body Hilbert space e ()
and has thus a limit in this space. It is also easy to check
that this limit is independent of the particular partitioning
procedure which is adopted, as long as the stated 'requirements

concernin of are met.
9 A Wax

- Appendix 2

The spectral theorem for bounded positive operators
such as N asserts [11] that a unitary mapping U from LZ(E) to
a finite measure space LZ(M,/a) can be found such that

(UNU'P) ) = A G Ple)

for any Ly(k) in LZ(H,)a), where A(k) is a bounded, non-
negative function on M. We indicate by k¥ a general point of M.

Before trying to invert the operator N we must dispose
of its null space. This can be done by defining the operator
‘MA in LZ(H,)A) as

(w p)ey= X, e Pk)
where ')LA(k) is the characteristic function defined as in
eq. (11rX.6). The operator
Xy = lem,\ v

is then a projection operator in LzUE) which anihilates the

A
null space of N. We may thus restrict ourselves to the sub-

space
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’ 4
£¥, L L°CE)

or, in an equivalent way, to its unitary transform
2

VEp © LH,u)
where the restriction of N becomes a positive multiplication
operator differing from zero almost everywhere.

An isometry v from the GHW phase space to er{; can
be constructed as in eq. (II1.7):
vif> - \'f‘c (e)

with

1

AN P, ce) = (Vcal£d)ce),

the function <alf) being in £“ . It is in fact straight-

forward to show that N
lhy‘ “2 = j“’}“ \f'c*(K)?‘ (k) = SJ)‘ (U(f)*(z)A(E) (UL)‘“) =
= LIPS,

As in section III.2, we can easily show that the set ;‘f:(h)},,
when |{) spans the GHW phase space, is dense in Uf:. This
allows us finally to uniquely extend v to the complete sub-
space Ui£ . Let V be this extention. It is the partial
isometry from the many-body Hilbert spacegr to Ufc, which

defines the projector P by means of eq.(III.1l2).

Appendix 3

In order to show the stability of the collective
space associated with the Griffin-Hill-Wheeler procedure we
construct a sequence of many-body vectors in terms of relabel-

ed generator states that converges to some pre-assigred

I+‘
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vector in the original collectiye space. To this effect we
note first that, if |C) 1is any such vector, it can always be
characterized as the limit of a sequence of vectors |Ca )
belonging to the (in general not complete) GHW phase space,

i.e.:

ey = b 100>

M a0

lc.u)=gu)£“u)¢l-t , Slf,_(ol)\zdd<°0 NV m.

We consider now a change in labelling given by some
continuous monotonic frunction ('5 =m @) having an inverse

d:h"((&) . We have then that

tc;>= jl-&‘fa)(fkm dd = S\’(\S-)f’m(m-l((ﬂ)»:‘l;?sdP .

= {1g>q, (mdp

2 - m\
flam@laps {16, @l (4n)" du .
We have to distinguish between two different situa-

tions. In the first we have
imf |dm) o d >0
dd

Then the %‘((5) are square integrable functions and the sequence
ICay belongs to the GHW phase space of the relabeled
generator states, thus proving the desired result that |C

is in the corresponding collective space. In the second situa-

tion, on the other hand, we have

O

amg‘%
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since M(A).has an inverse, this can happen only when the

derivative d'm./d,‘ has zero as a limit point. By isolating
this limit point with a set of nested intervals AN such that
for N»oe we recover the full &-space we can construct the

sequence of square-integrable functions in (S-space

0 of wip) » m By

g,i”)((,,): ) §
£ (mt(p) i) otlerwise .
" d

The GHW vectors )
N

1ce>= (ipgEap
will then converge to |C.»> as N—yo0 , and we have replaced
the original sequence by the double sequence %lc,(:)>}of
vectors belonging to the new GHW phase space. From this it
is easy té extract a subsequence that converges to IC). 1In
fact, write

Biey- 1) = fle>- 19> +leu> =1l €

€ ey —1eaoh + e -1e50

By an appropriate choice of m., say ™m(V), the first

term can be made smaller than ‘/Z\) ; we can then choose a
sufficiently large N, say N(V), so that the same is true for

the second term. Thus

(NY)
e - e S hed

(N
and the sequence of GHW vectors ‘C'k( 3) converges to |¢y
Vv

which proves the desired result.
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