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ABSTRACT

The precision attainable in the numerical treatment
of the Griffin-Hill-Wheeler equation is studied in a solvable
model. Trucation errors related to the generator coordinate

kinematics are exhibited and briefly discussed.




The generator coordinate methodl’2 has been extensively
applied to the calculation of nuclear collective properties3-5
although the limitations inherent to the numerical methods
appear not to have been c¢learly exposed. In this note we
discuss this problem in the context of a solvable model and
using results of a previous works.

We will focus mostly on the procedure followed in ref.3.

The problem is to obtain solutions for an equation of the type
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are the energy and overlap kernels respectively. To this end

and

one evaluates the overlap kernel N for a set of (often equally
spaced) mesh points on a given interQaI of the generator
coordinate a. The resulting overlap matrix is diagonalized

and one truncates the space of its eigenvectors by neglecting
those associated with eigenvalues smaller than some small

number e. In the resulting subspace one defines

which can be used to rewrite (1) as

.
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The diagonalization of the modified energy matrix N2 KN 2




gives themr E and g. Usual checks on the numerical results are
based on their stability with respect to a) changes in the
number of mesh points for a given interval and truncation
level ¢ ; b) change of the basic interval in a) for fixed €;
and c¢) change of €.

In calculations performed along theserlines, such as
those of Flocard and Vautherin 3, these checks are considered
in connection with the collective amplitudes g and with the
eigenvalues E. It is in fact well known that the weights f
associated with stable amplitudes g are themselves often
unstable on the account of the non-orthogonal character of the

representation is terms of the generator statess’7

. As shown

in refs.6 and 7, however t.:his happeﬁs when the eigenvalues of

the overlap kernel decrease faster than the p:obabilities of
the corresponding eigenvectors for the state described by g.

In such cases, the adoption of some definite truncation level

£ for the eigenvalues of the overlap kernel may result in

a dangerous truncation of the available phase-space. The actual
quantitative importance of this truncation depends, however, on
dynamical ingredients related to the nature of the energy
kernel K. To some extent, it is revealc.d by lack of stability
under the conditions given above, ‘especially under condition
c). Stability is however not a sufficient condition for
convergence of the collective amplitude g, as. the effect of
some relevant states may be beclouded by the unavoidable
numerical noise. Whether or not thi§ ﬁappens will in each case
depend on the adopted generator coordinate scheme in relation
to the dynamical ingredients of the calculation.

The existence of truncation errors of this type can be

demonstrated by comparing numerical results with the exact




solution of the collective hamiltonian derived from a Griffin-
Hill-Wheeler equation. A soluble problem which is suited for
this purpose is the standard Gaussian Overlap Approximation
in which the ratio K/N is expanded up to second order terms
in (e¢ -a') and (a + o') about a saddle point which represents
a stable equilibrium situation for the collective degrees of
freedom 2. In fact, by varying the expansion coefficients at
this saddle point we ma§ sweep a range of different situations,
including some for which the weight function f(o) becomes an
exceedingly singular object,and check on the numerical
accuracy attainable in each case. Since the singular behavior
of f(a) is concomitant to the importance of eigenfunctions of
the overlap kernel with very small eigenvalues, we are to
expect larger numerical errors when £(a) becomes singular.
Gaussian overlap functions, being invariant under
translations in the generator coordinate space, can be
diagonalized by Fourier transforms 7'8:
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The collective hamiltonian associated with the gquadratic

approximation to the energy kernel reads
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This gives- just the momentum space version of a harmonic
Oscillator hamiltonian. The exact normalized solutions for the
collective amplitudes g are thus standard harmonic oscillator

wavefunctions:
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The corresponding weight functions are given formally as

i
A a0
fh («) = g(zrt)%‘ Lj\_z(x\ %“ ) (5)

They are well-behaved functions only for 2b2 > a2, i.e., for
overlaps which are nariow in terms of the oscillator parameter
b.

We study therefore the behavior of the numerical
treatment of this problem via eq.(2) and compare results with

the exact solution (4) for various values of the parameter
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which determines the existence of fn(a), eq.(5). The results
of this comparison are sumarized in figs.l and 2. One notices
that the stable numerical solution for the gréund-state and
for the first excited state energies coincide with the exact
values when ¥ < 1. In this region the weight functions are
well behaved, and degrees of freedom associated with small
eigenvalues of the overlap kernel are of little importance.
When ¥ > 1, however, the solutions étabilize at values that
become more and more deviant from the exact ones as y

increaseé, thereby also increasing the dynamical involvement




of degrees of freedom associated with small eigenvalues of the
overlap kernel.

The parameter y, which characterizes the behavior of
the weight function fn(a), thus characterizes also the
precision that can be obtained in the numerical solution of the
dicretized version of the GHW problem, for a given numerical
noise. The discussion suggests moreover the general
qualitative conclusion that the residual error of the
numerical method for a given precision will be larger when
the overlap kernel is "wide”, in the sense that typical
distances for the collective problem, in terms of the
collective coordinate, are -small compared with the
characteristicvwidth of the overlap kernel.

An aité:nate description of this situation can be

y
given as follows 6,7

. The collective subspace associated
with the given cbntinuous family of generator states |a> is
in general infinite dimensional.. Furthermore, in many cases
zero is a limit point for the eigenvalues of the overlap
kernels. Thisyis tr&é, in particular, for Gaussian overlaps7.
Under these circunstances, the eigenvectors of the overlap
kernel with eigenvalue smaller than ¢ span a subspace of the
collective space which is also infinite dimensional. The
numerical solution actually ignores this subspace, ¢ being

of the order of the unavoidable numerical noise, the numerical
solution being essentially the exact solution in the
remaining finite dimensional subspace. A pafameter such as

Y . above characterizes the dynamical relevance of the ignored

dimensions of the collective space, the error associated with

the finite value of & being the corresponding truncation error.

This type of error can be controlled by a) treating the overlap




- \
kernel analitically whenever feasible\or b) modifying the
adopted generator coordinate scheme so as to make the
relevant degreeé of freedom more readily accessible to
numerical treatment. The latter option includes, in the
present case, the use of complex generator coordinater 9,10

We thank E.J.V. de Passos for a critical reading of

the manuscript.
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Figure 1

Figure 2

FIGURE CAPTIONS

Numerical errors for some truncation levels in
(a) the ground state energy, and (b) transition
energy. Each cﬁrve is labeled by the parameter
Y associated with it. Solid lines serve only

to guide the eyes.

Y) is defined as 9: - S{N\@)/Yu(io)

Rate of change of the numerical errors in the
ground state energy for the same set of Y's.

Solid lines serve only to guide the eyes.
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