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ABSTRACT

Starting from a covariant equation, we have shown how a
consistent equation of motion and an equation for the energy
balance are achieved in the nonrelativistic limit. 1In that
limit we can integrate such an equation for any charge distri-
bution by finding its Gréén's function. Conclusions concerning
to the existence of unphysical solutions (and explicit solutions
for a large class of models) can be drawn from an analysis of
the location of the poles of the Green's function. A new
condition for the nonexistence of pathological solutions is

discussed.
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I. INTRODUCTION

The theory of the classical motion of point-like particles
(taking into account the effect of the radiation reaction) is
beset by troubles which can be circunvented at the price of a
Violation of causality. The time scale in which such a violation
occurs suggests that a consistent description would be achieved
only within the quantum theory(l). If we are aiming at a
consistent theory at the classical level the alternative is to
assume that the particle is an extended object.

The equation of motion for charged particles, taking into
account the reaction due to the radiation was originally
developed by Abraham, Lorenté and Dirac. For spherically
symmetric charges of finite extension such an equation, as

derived in Jackson's book(Z), can be written as:

(1.1)
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where ™\¢ is the mechanical mass, E&%) is the external
force, EZGQ is the center of charge position and the 12~

are given, in terms of the charge density PK\.\’) , by

B = \a&x\&x P PR - ™7 | (1.2

One defect which plagues the classical theory of charged

particles is the manifestation of runaway solutions and
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preaccelerations. Based upon the study of simple charge distri-

(1,3)

butions it has been stated that the theory is free of such

unphysical solutions as long as

(1.3)
ey O

One striking feature of condition (I.3) is that it has
nothing to do with electromagnetic interactions (M, is of non
electromagnetic nature).

Another undesirable feature of (I.1) is the 4/3 factor in
the contribution of the electromagnetic self energy to the
mass of the particle(4). It is known that an equation obtained
as the non relativistic limit of a Lorentz covariant equation
of motion should circunvent such a problem. A Lorentz covariant
formulation of classical electrodynamics has been tackled by

some authors(5'7).

Based upon these results we show in section
II that in the nonrelativistic domain ( N C<\) the equation of
motion presents some new nonlinear terms besides a modification
of the linear ones.

For spherically symmetric charge distributions the
linearized equation differs from (I.1l) only by the fact that
the mechanical mass M\, 1is replaced by N-V%O (here ™M, ts the
electromagnetic mass).

Another way of studying the motion of extended particles,
which has been used by several authors(s’s), is a method
based upon an integral equation. We will show that this
method and the one based upon equation (I.l) are equivalent.

We shall show in section III, that by using the integral

equation most results which has been got for very specific

charge distributions can actually be extended to any charge
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distributions. The equation of motion can be integrated, for
any (time dependent) applied external force, by finding its
Green's function.

It is shown here that in order to get explicit solutions
for a very large class of charge distributions, all we need
to do is to solve an eigenvalue equation. An analysis of this
‘equation shows that the theory does not violates the principle

of causality as long as:

M .
g — __5&_ > O (1.4)

As has been pointed out first by Kaup(6), the change of

condition (I.3) to (1I.4) is a consequence of the requirement
of formulating the theory in a Lorentz covariant way from
the very beginning. In this context it is worth noting that
the wWg/3 term in (I.3) is the one that fixes the 4/3
puzzle. More than that, however, we will show that this
term actually leads us to a very interesting, unsuspected up
to now, picture on the question of why unphysical solutions
appear. We have no unphysical solutions as long as the
charge does not exceeds a critical value which depends on
the radius of the particle (assumed fixed, within this frame-
work) .

By taking the nonrelativistic limit of the fourth
component of the relativistic equation of motion we obtain,
in section 1V, an equation for the energy balance. The for-
mulae will be worked out in such a way that all éerms in
this equation can be easily interpreted. As a result we get

explicit expressions for the radiated power and Schott's

energy for extended particles.
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Section V is reserved to the discussion of simple examples.
They are aimed at a better understanding of some points
discussed in the paper.

The conclusions that can be drawn are presented in section

VI.

IT. NONRELATIVISTIC LIMIT OF THE CLASSICAL EQUATION OF MOTION

If one denotes by th./&s the rate of change of the
mechanical 4-momentum of a particle with respect to its proper
time, the relativistically covariant equation of motion of
an extended particle under the influence of electromagnetic

fields is given by(6)

J
%EY’ "‘%F\M\»M :BQ‘)K\' b(-‘z\.O\.-x . D\Gf' (11.1)
Where F;éx) stands for the electromagnetic tensor and
<}6§ the electromagnetic current. The integration hyperplane
G} is taken orthogonal to the 4-velocity of the particle,
)LV' stands for an arbitrary point in such a hyperplane and
’Ev,(the charge center) is the point where the world line
(whose lenght is 8) intersects it, )A,\,s D\ZU/D\Q is the 4¥
velocity and O, = Cl.uo/ds is the 4-acceleration of the
particle. ‘

Equation (II.1) was obtained from the energy-momentum
conservation and does not involve the hypothesis that the
particle is rigid (a similar equation has been obtained by

Nodvik(7) under the rigidity assumption).
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- The usefulness of (II.1) is limited due to our lack of
knowledge of the nonelectromagnetic structure of the particle .
A way of gaining some insight on the motion of extended charges
is a phenomenological approach(*)in which one imposes simple
properties on the particle. Assuming that the particle has
a fixed shape in its rest frame one can construct the electro-
magnetic currenéf) Under this hypothesis, and assuming that
the particle is non rotating, the mechanical momentum can be
written aés)?v - w\QQLJ .

Upon separating the electromagnetic field tensor into a

self and external contributions

- wk b

o= Row v R (11.2)

expanding the external fields in (II.1) around the world line
and neglecting dipole moments and higher order terms (the
particle is assumed to be spherically symmetric in its rest
frame) we get
w\06‘”‘) =-3‘F€:’§ W\”-\ Eﬁ SYX)‘}-()(-E\-O'}W? &'C\\F
s g v (1I.3)

Where C* is the electric charge carried out by the particle

namely

Qx =%3JQ(\ A ‘ (I1.4)

(*) We are presently investigating a nonphenamenological approach in
which extended particles are associated to classical solutions of
nonlinear field theoretical equations (solitons ).
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Throughout this paper we shall be mainly concerned with
the nonrelativistic limit of the classical motion. Under the
assumptions made previously, the nonrelativistic limit of the

J) current is
Vu

Sy = \ i%ﬁ\\ P(\?\‘Zt\)\) =(), i\*ﬂ PQ&H (I1.5)

Where Zd:) is the classical charge center position and Z.‘d:)
is its first time derivative.

The nonrelativistic equation is obtained by considering
the v<{{ 1 1limit of (II.3). One difficulty which one faces
with in this limit is that small velocities do not lead right
away to a linear nonrelativistic equation. In fact, the
derivation presented in Jackson's book suggests that this
equation is a nonlinear one. We shall cast the equation
(I1.3) into a form which permits us to see that the neglect
of these nonlinearities is, in fact, justified.

The spatial component of (II.3), in the v¢e 1 limit

assumes the form:

WMo Z}) = ka*R (II1.6)

Where the term in (II.6) which takes into account the effect
of the self electromagnetic interaction is WK . After dropp-
ing the magnetic force term (which is negligible in the v¢< 1

limit) and denoting the 4-vector electromagnetic potential by

[\gﬂ= QAQ)ﬂ\\ , the explicit expression for \R is

\\?\-.--\cfx&% x\VAqW‘\')E\-\X-Mﬂ- ch)—} (I1.7)




We shall separate “{ into two terms:

R R, » R (1I1.8)

where \9\\ and \Rl are defined as:

\?\\" ‘\dg)‘ PW\'\K}‘\' \* -Z\\;)\. i&‘-)}\VAo (I1.9)

®,= -\&x ?\7&\“_\ +&%-2Qn\- %‘-&A ‘_o%,l‘_t (I1.10)

In order to present a clear discussion on the negligibility
of the nonlinear contributions it is prefereable to work in
the Coulomb gauge(Z).

In this gauge we have:

A(}%k\ :Q&;x' _\-ﬁ%‘;%)\—— (IT.11)

and

AN ‘%&x‘ i) =

% - %M

mw\ 3x (£ Brsnd-v) \M LIS IR

where PM is defined by:

W“‘ Rt \& ?Q‘\\V)‘\\}V\ -Z\\’)l (11.13)




It is straightforward to check that, if one plugs (I1.11)
into (II.9), we shall get, for spherically symmetric charge

distributions
R,= %‘- éé‘) | (II.14)

where W, is the electromagnetic mass:

\ \\' '\k)
W = A}..\c)%x\dgx @;‘ .)E\Q( (I1.15)

whereas the S{L term can be written as:

x
Ry ““\"W &9‘“ g“bx\\«\ Whkie-v)] kazei ikl
-0 k?

&))O\)‘_)LW\-(Z&\ - Z\’o))} (\ -1 i&\-w\‘\ 'ﬁt}\'\) (II.16)

If one change variables, calling ’C:')c—-\\ ) (IT1.16) assumes

the form

m .
Rz -uﬂ\o\t Py, ?Qﬂ Whkt \Kx‘?&-'t.)x\\ﬂ X
o LY

v ¥
W‘f\\ﬂl\h-h\%)ﬁ(\— x Z&).VK\ ﬁ&“‘) (11.17)

Expression (II1.16) confirms our previous assertion that
it is not clear, a priori, that the resulting nonrelativistic
equation of motion is a linear one. In this context we would

like to say that a fully covariant treatment introduces non-
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linear contributions to the equation of motion. That all non-
linear terms in (II.17) can be neglected, can be justified as
follows(s).

Let us consider ther term Z(4)-Z({-%) which appears in
(II.17). Such a term is essentially the distance covered by
the particle during the time interval & . The relevant region
of integration in the & variable is the one such that T ~u. 2C.

where Q. is the radius of the particle, since this is the

time needed for the electromagnetic disturbance to cross the

particle. Consequently we can say that

Z&) -#FE-T) = ZQ:\ 200 ¥ Dw‘ (11.18)

If one looks back at (I1.17), then in the v<< 1l 1limit

and in view of (II.18), one can safely replaces

é@-‘(_) W‘)E\\Q.Qz\h -Yé‘z)ﬁ —— é@t Q) (II.19)

Under the approximation (II.19) we shall get for (II.17)

(I1.20)

o
R= -4 dr\w "@@q Wk \\&@k*"\x“‘\k\-lieﬂ.\vk\ (“jtm
\\l

Q

Integrating by parts with respect to T we obtain

O
(\)\-m\dt QN%\%M\\ xl&\“’ﬁ’\“) (11.21)

It is worth noting that the approximation (II.19) #s not
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sufficient for getting rid of all nonlinear terms. However,
it can be checked that the surviving non linearity (the term
proportional to 2‘(()&2({-8) in (II.21)) gives no contribu-

tion at all for spherical charges. Thus, after angular

integration, we have

(11.22)

w
- _;.\_é 12&~1\\K&\<\P\\<\ M KT

From (II.22), (II.14) and (I1.8), equation (II.6) becomes, in

configuration space,

o2 =Fl - .z&& c\"@\ﬁ‘*—’ﬁ{’ﬂ* BR) o)

We would like to mention at this point that we can cast
(I1.23) into two different forms. The first one consists in

expanding i&—\%-\)&‘n by using the formal expression

. W0 N
Ufe"},@ - T et Gy,

ned ™ b\ (I1.24)

Doing so, (II.23) can be written as:

™, 0%%@) \-\'—Jc) Zg‘ d Zg) N Z& \)"\ D\ML 2&

.y \ o\)(hu (I11.25)

where m is the physical mass (m=mo+me) and the .‘\F coefficients
are defined in (I.2). Except by the fact that the term which
appears multiplying the acceleration in (II.25) is the physical

mass (in contradistinction with (IT.1) which leads to an
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incorrect mass coefficient), the equation (II.25) is equivalent
to (I.1).

An alternative way of writing (II.23) is to keep it under
the form of an integral equation. That can be done if we

recall the expression (II.22) and define

O
W) = J’—Zg‘ll \ké\«\’@'m\z SAMKZ m
0

= stjt é}x\ P(\x\\\ PK\‘)&-\'\‘(\‘\) ) (I1.26)

where T = \%\ .

In terms of \*Q;) the equation of motion assumes the

form

e & [
(mo-"2) 2y +\am\w.) Zdt)= by (11.27)
0

By using the fact that

Qo&‘t.\\{q:-' 4 g y  (11.28)
R 3

we can write (II.27) as
\N\‘z@) = \Eg) ¥ FMé\fﬂ ) (I1.29)

where

O N “ .
.\FM&Q,Q =&&’C“@XZ$) - #8 '1)} (II.30)
o

represents the radiation reaction force.

Equatioﬁ (11.27) was first obtained by Markov, D.Bohn
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(8) (6)

and M.Weinstein (with the wrong mass) and by D.J.Kaup
Many features of the classical motion for arbitrary charge-

distributions (spherically symmetric) can be abstracted more
easily if one uses (II1.27) instead of (1I.25). That will be

shown next.

IITI. THE GREEN'S FUNCTION APPROACH

The general solution of (II.27) can be written as
[1} \D
&) = 23&) +&&'\f G\%"\.')\F\*‘) (II1.1)
-~ v

*n
where thk)is the solution of the homogeneous equation, and

@t\-&‘) is its Green's function

O . Y
| %_ﬂ‘\gm W EAN ]

. (I11.2)
_ml‘W “"‘? v M)

W\ is given by

©
M) = | 2w W) ap au) 51,3
O

which, for XM\Q(O , admits the representation

(111.4)

2 © 1 [A

. m= Wlldy kY
MQ,) -S- % \« \l\"‘..ub-l V\\‘)
w

(a V)
where P\\'{\) is defined in (II.13).
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L B
The explicit integration of (III.l) might be a very hard
task for arbitrary charge distributions and/or external forces. )
However for a very large class of charge distributions, many
features of the motion can be understood by just studying the
analytic structure of the Fourier transform of the Green's
function.
The first question that we adress ourselves is causality.
This is a very relevant question since it is intimately
associated +to the problem of preacceleration and, in a less
direct way, to the existence of runaway solutions.
The causality condition:
66-&\ ) -0 for ‘E < ‘\:\ (I11.5)
L

is satisfied whenever the eigenvalue equation:

mo_yi\,;g N M\m\ — O (I11.6)

does not have solutions for L'\N O . We shall analyse’
this case a little further.

Suppose that we have a solution of (III1.6) in the lower
half O -plane (W=Wg +i0),%;<0 ), By using the representation
(II1.4), and separating the real and imaginary parts of

(IT1.6) we get:

\o -

1 kX 3

o " . \MWI\AK @ “ik\ (Wl Wy rwy ) (IT1.7a)
> (K-w0d v \tadw twl

-0
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[
K 5\\0

- = O (III.7b)
2
\K".u): alg 4‘\&13;&:‘

18
-

The implication of (III.7b) is obvious. The poles (if
any) of the Green's function in the lower half u) -plane

lie on the imaginary axis. Thus one can write for (III.7a)

_ D
Mo-Me = - w&&.\( w? i‘s’&\“l (I1I.8)
3 3 A K2y Wp

This expression, allows us to state that the Green's

function is causal whenever:

(II1.9a)
Wy - !%g 77 O
or
WO 2
MQ-N%S (_. ng &Q,\t\ '?lk\‘\ ,.-._M(o) = -‘:}3. Me (III1.9b)
-

(condition (III.9b) implies that the physical mass w =z wg4™g
is negative and will be discarded).

By the same token we can say that if V’\Q-"_’;_" ¢ 0O
there is a violation of causality. Such a violation is ex-
ponentially damped forvt ¢ t', and leads to a preacceleration.

Condition (III.9%a) also prevents the appearence of runa-

way solutions.

In fact, by trying a runaway type solution

100}
Z&) = Qe < , Wm0 (III.10)
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to the homogeneous part of (I1.27) we shall get the same con-
dition (III.9a).

For a fairly wide class of charge distributions - those
for which M(#) is defined in the whole o) -plane (this is the
case of finite - extended particles, or‘sufficiently rapidly
vanishing distributions at infinity) - the general structure
of the Green's function can be pictured by just analysing
the eigenvalue equation (III.6).

Without specifying M(W) we cannot say anythinc more than that the
poles are anywhere in the upper half o) -plane, or on the real
axis, and that the reality of v'\o-"_%e implies that each pole
with g % O has a counterpart on the opposite side of the
imaginary axis (see (III.3) and (III.6)). So, the solutions
will be of the form of damped exponentials, cossines x»damped
exponentials or just cossines. Cossine type solutions would
imply a steady state of motion excited by the external force.
They are possible only for extended particles, and its exis-
tence depends a great deal on the nature of the charge distri-
bution. A detailed study of these solutions was carried out
by Bohm—Weinstein(e).

Something should be said about initial conditions.

Since we haven't runaways we can restrict ourselves to the case
io*\ = O (One should observe that the character of the
homogeneous part of (I1.27), which involves a retardation
requires that i‘ok’c)= O over a finite interval of time).

This is equivalent to saying that the motion of the particle
was uniform before the application of the external force.

Let us now analyse the implication of the Mq- "}\_{,_7 O
condition,

Suppose that the size of the charge distribution is
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characterized by a length parameter a. Then, from dimensional

. analysis arguments one can say that condition Mg — ﬂ%f'y Q

can be written as
- % 9% S50
Mo = 3 % 7 (IT1.11)
where {, 1s a constant which depends only upon the form of
the charge distribution and C*»is the total charge. Then the

condition for not having unphysical solution can also be

written under the form:

i A

9\ 4 J%g._;:'_ﬁg (111.12)

which means that for a fixed value of Mo , a and for a specific
way of patching the constituents (determined by o« ), one
cannot place more charges than it is "classically allowed".

The bound, which we call the critical charge is

\

- \x 40, Mo (111.13)
q(o\‘& 8

IV. ENERGY BALANCE

In the nonrelativistic limit, the fourth component of

(I1.3) becomes

2 .
%:\C("—*QZ&)\: Z&\-Egc\ +

B R A e 1
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The last term in this expression can be eastly recognized
as zécﬁ>-ﬂ2(€) where "2(()is defined in (II.8). 1In this way we

can write

%*l K-{-)Mo :Ezk’c)) - 2&\.‘_\‘1{?) + \Rd‘-)] (IV.2)

By using (II.14), (II.22) and (II.26) we can write (IV.2)

under the form

@®
(% X * * " .
d(ym) = 28. T - 2h\dx Weldso - 2
du ot (1Iv.3)
o -*
(s}
(here we have used \OLT- W) = %MQ )
°
The last term in (IV.3), the rate of work done by the
radiétion reaction, will be shown to be separable into the
sum of two terms: one representing the radiated outgoing
power, and the other the time derivative of an energy stored
in the surrounding electromagnetic fields (an extension of
that named Schott's energy(® 11)).

In order to achieve this goal let us introduce the

quantities

W) A&A\m/z\\’u \?%A;ﬂ —_

and

1y = %é}x (\\_\: 'b.%%. (1V.5)
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representing, respectively,a part of the energy stored in the
. electromagnetic fields, and a part of the work done by unit

.time, by the self force.
By using the expression (II.12) for the vector potential
A in Coulomb's gauge, and an approximation similar to (11.19)
it is straightforward to check that W(t) in (IV.4) can be

written as

w) WO
W < J,-_\o\tx&@ 24-7). £4-6) %—_C Wiz -6 (1V.6)
o

In a similar way we get:

. oY 4
Ty = Z\h-\o\t Z¢-) %__\‘\@—3 (1v.7)
o

If one integrate (IV.7) by parts, remembering that

\-\\p\:\\(w\:O » we shall get:
L} & [ 1)
& - 26)‘&&" \*CC) Zk‘k") (Iv.8)
9

The radiated power due to the motion of the particle
( here represented by P d) is obtained by integrating the

Poynting's vector $g &.“\Ex@ over a closed surface at infinity

\Mﬁ, &6'0“ \\Ex\%\ nN (IV.9)

By using the Gauss theorem to transform (IV-9) into a

volume integral and after some manipulations with Maxwell

equations, we get
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?m&'.é Iy - C%‘ét\) (IV.10)
Let us define Cé@ﬂ as

. 2
QQC\ - -W &) + % ™Mo Z&’c) (IV.11)

This can be written in terms of the velocity of the

particle, If one uses (IV.6) we shall get

Q&\=7§-w2t‘) -lgb\&%é@' 249, 2 @) “tc-& (1v.12)
By using (IV.8), (IV.10) and (IV.1ll) we can write (IV.3)

o\’(,K‘-\.MzM Qﬁ;x= Z¢) E@ - ?sm&&) - (1v.13)

This equation is the promised result. The only term
which deserves some comment is the Q term.

Turning back to expressions (IV.11l) and (IV.4) we can see
that an accelerated charge acquires an energy of electromagnetic
nature, besides the rest mass and the kinetic term (Schott's
energy). This form of energy is associated to the acceleration
(9) and higher order time derivatives of the velocity.

In the point-like limit our expression for &L&) reduces

to

Q& = %‘3‘; 'tlég). it\;) (IV.14)

Whereas Prad reduces to Larmor's expression for the radiated

power




o L
T (Iv.14)
Y = & pt # &)
Aﬂ&w 3

V. SIMPLE EXAMPLES

In the first part of this section we shall present a
simple example of how explicit solutions for (II.27) can be
obtained once we know the solutions of the eigenvalue equation
(I11.2). The extension to more general type of forces in
straight forward .

In the second part a position dependent force is studied.
Explicit results are presented for the sphericall shell charge
distribution and some aspects of the motion are discussed.

The question of energy balance is analysed within both

subsections.

A) The step function force
Let us draw the general character of solution (III.1) for

the simple external force
Fo = | [Ow - Be-m) w.1)
Dyt

where (Eatk) is the Heaviside step-function.
By substituting (V.1l) into the solution (III.l1) and using
the representation (I1I.2) for the Green's function, we get

after integration in t':

©
Zd)< .EL.\&L SPpUWE) — wdpli ot -T)) (v.2)

Assuming that the charge distribution does not allow for

real zeros of (III1.6), then, from our previous discussion,
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and after separating out the W=0O pole contribution to both
integrals in (Vv.2), we shall obtatn for 0 t<T.

%&h % T«C /A\:’»\ W)‘? Qwi*" ‘Ui{) (V.3)

"

while for t'7 T

S LR -0t - oAdi o R ot
EZ&Q‘;ER:ANSS*X¥PA?KKQN U%\¥\ sﬁqﬁéuddﬁfV\ U%$k1{§\

(v.4)

where U)n-a wp‘:\* }-N-f,\' \U.)t‘,ab\ are the solutions of (III.6)
and the coefficients Am can be infered from (V.2).

The extension of the results (V.3) and (V.4) for any
external force can be easily done.

In the limit T-3®) , equation (V.3) reduces, for large

enough times, to

\‘"\:2.6) - \;_; (V.5)

As had been realized by many authors before, within different

contexts(lo)

, solution (V.5) is an apparently puzzling one.
The charged particle accelerates like a neutral one. All the
power supplied by the external force is being used in increas-
ing its kinetic energy. On the other hand, since the particle
is accelerated, Maxwell's equations predicts that it is
radiating and consequently loosing energy. .

The solution of this problem, first suggested by &jmmt(g)

and then studied by many researchers can be traced to the 0

contribution to the internal energy of the particle. As
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we can check, by using (IV.8), (Iv.10) and (IV.11), what happens

in this case is that

%\% - ?Mé\, =0 (V.6)

In other words, all the radiated power is being supplied

by Schott's energy.

B) The harmonic force

Up to now we have restricted ourselves to time dependent
external forces. It is still possible to get explicit solutions
for the case in which the particle is under the action of an

harmonic type force
T = -Xzg (V.7)
Wyt
In this case the equation of motion (II.27) becomes
o0 ‘0 "
(™o -V,g.c)lec) s&&r_\-\tc)lt‘c-t) +R 24 =0 (v.8)
)

We shall be mainly interested in a solution describing
a steady state of motion which, under certain circunstances,
can take place when the particle is excited by the harmonic
force (Vv.7).

In this way if one looks for a solution of the form

::Zd-'\ _@WQN ‘\:\ » the allowed values of () can be

obtained from the equation

wt

\"\0-"35% y M) - X =0 (V.9)
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A necessary condition for having a real W as a solution ’
of (V.9) is that the charge distribution should have at least
(8)

one Fourijer component vanishing This restricts the class
of distributions to those which, roughly speaking ,are charac-
terized as sharply varying. ' Examples of such distributions
are the uniformly charged sphere and the spherical shell. The

latest 1s defined by the charge distribution:

?W\“ = %—&} %(\X“ 24\ - 0,) (V.10)

For such a charge density the electromagnetic mass,H@D
and WM(w) as defined in (II.15), (II.26) and (III.3) are

given ,respectively by

I3
My = %E. (V.11)

A
%&_ 0T ¢ 20

\'\@\ = (v.12)

0] T S 2o

N\@)‘: % %E LUF\‘)&ZNM - ] (v.13)

21200

We would like to mention that for time dependent external
forces, we can get explicit solutions, as illustrated in part
(A), by just studying the poles of (III.2) with W) given .

by (v.13) (something which can be done at least numerically).

By substituting (V.13) in (V.9) we shall get
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ez . e X
mo-ty o K X sinfwa) - 190 [ossewe) a0 (.14
3w 3w 3ula?
The imaginary part of (V.14) implies that the allowed

real NW are those such that

W), = t% s V2,3 (V.15)

Whereas the real part implies (taking into account (V.15))
N
K = (™o - ‘:\'_a\ W (V.16)
3

This result shows that a stationary solution is possible
only if V& is given by (V.16),which is a very restrictive
condition. Assuming that the particle is oscilating with
one of the frequencies given by (V.15) and that (V.16) is
satisfied, then the motion of the particle is a periodic one.

The explicit solution is

f'f’&\ = \\/OQ,BSUJ\..;\ (V.17)

Let us see how the energy balance equation (IV.13) works
when the motion is a stationary one.
If one uses ¥HG:\ as given by (V.12) we obtain for W, as

defined in (IV.6)
LO. 2 ’
(2 : 2
\l\} = &_ \O\.'C. 1@:-1) = ™ \Vo (V.18)
bod & 3

and for I, defined by (IV.8),
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(o W

2
l . [T
Ief—\‘.-. .3_ 75@6) o\ < ZQ‘.‘I) = O (v.19)
3ot J
| Therefore the radiated power (IV.10) will be
DM= O (V.20)

This result associated with the energy balance equation

(IV.13) implies that the conserved quantity is
' 2 2
k= _)\:w\h\; x %‘K 2&) - QQ;) (V.21)

The two first terms in the right hand side can be easily
recognized as the kinetic and potential energy of the particle.
By taking into account the radiation reaction, however, the
sum of these two terms are not constant. What remains constant
is the total energy (V.21), which besides these terms includes
the Schott's energy (in this case Q\\;)= “_'%EV:(MI%‘\: ).

The self-oscilation as studied by Bohm and Weinstein(s)
can be easily realized from our expressions (v.8) and (V.21)
by making K=0.

As a final remark we would like to point out that for
the sphericall shell, we can write the equation of motion
under the form of a differential-difference equation. That
can be done by substituting (V.6) into (II.27). 1In this way

we get, after the integration in the T variable

\Mo-"‘%‘\i@)» - %—;_EZ@‘\ - Z\*"—&))-.-. \Y-;(t{) (V.22)
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This equation, aside from the term MQ zé) ,
3
was got in a different (but equivalent) way by H.Levine, E.J.

Moniz and D.H.Sharp(lZ)

. Many aspects of the solution has been
analysed in detail by them. The only relevant point, in
which our conclusions will differ from theirs, is the condition

for non-existence of unphysical solutions, equation (III.9%a).

VI. CONCLUSIONS

Throughout this paper we have analysed new aspects of the
classical motion of extended particles or aspects which have
not received the attention they deserve.

If one starts from a covariant equation of motion then,
in the nonrelativistic limit, such an equation gives rise to
new (non linear) terms. By casting such an equation in a
convenient form we have shown how the dropping of all non-
linear terms can be justified.

We have called the attention to the fact that it is more
fruitfull in getting solutions of the equation of motion, as
well as in analysing many features of the motion of extended
charges, if one uses an integral equation, rather than the
higher orders differential equation. We have shown that these
procedures are equivalent.

It is pointed out that the best way of tackling many
aspects of the nonrelativistic motion is by using the method
‘'of Green's function. As shown here all one needs to do, in
order to get explicit solutions for a very general class of

models is to solve an eigenvalue equation (the eigenvalues

correspond to the location of the poles of the Fourter
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tranform of the Green's function}. | *

As a byroduct of our work the extension of many results,
obtained up to now only for specific charge distributions (3,12)
is easily achieved.

One of the virtues of starting with a relativistically
covariant treatment from the very begining is that one fixes
the 4/3 puzzle at the equation of motion level. We have pointed
out that a consequence of taking the nonrelativistic limit of a covariant
equation, is that it leads us to a new picture on the question
of under which conditions the equation of motion will exhibit
unphysical solutions. The new condition (III.9a) implies that
even for positive mechanical mass (which is still a necessary
condition) the classical motion of extended charges is stable
and causal as long as the total charge does not exceeds a
critical value. 1In this way, the existence of unphysical
solutions is intimately related to the electromagnetic
interaction of that particle.

A consistent equation for the energy balance is obtained
as the limit of the fourth component of the covariant equation.
The Schott's energy and the power radiated by extended particles
have been identified.

As a final remark we would like to say that these results
have been obtained within a phenomenological approach (as far
as the structure of the particle is concerned). A more
consistent way of handling the question of the motion of ex-
tended charges, would be one in which one associ;tes extended
particles to solutions of nonlinear classical field theoretical
equation (solitons). This approach, which has a field

theoretical method underlying it, is presently being pursued

by us.
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