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ABSTRACT

An elementary and very efficient method for
computing the effective potential of any theory containinag
scalar hosons is described. Fxamnples include massless

scalar electrodynamics and Yang-Mills theories.




l- Introduction

The effective potential is the generating function
of the one~particle-irreducible (1lrI) zero-momenta Green
functions. It is mainly used to detecf spontaneous symme-

(1)

try breaking, that is, non-invariant vacua . As one should

expect, computing effective potentials is far from trivial., In
principle, one should sum up all zero-momenta 1PI Green func-

tions, an impossible task except for particularly simple 13‘,

grangians and low orders of approximation. A brilliant example
of such a computation is Coleman-~ Weinberg's treatment of

(1)

scalar electrodynamics. An elegant, functional-theoretic
method was devised by Jackiw (2) and is efficient up to one-
loop approximations,

In 1975, Lee and Sciaccaluga (3)

introduced a very
clever way of computing the effective potential of the ,Xp7
theory, including two-loop contributions. Apparently they did
not try their method in gauge theories, where some new problems
arise and the interest is greater, due to the Higgs-l ibble me-
chanism (4).

In this paper we study the extension of the Lee~
Sciaccaluga method to gauge theories., After solving some pro-
blems connected to the gauge~fixing terms, we have in hands
a technique that allows for computation up fo any order in

the loop expansion. We perform, in the case of scalar elec~

trodynamics, the computation up to two-loop contributions in

a one-parameter class of gauges involving ghosts.
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This constitutes already a r8ther general setting. Furthermore,
we discuss the extension to non-abelian theories in detail, and
perform a one-loop calculation.

The justification of the method is given in Section
2. In Section 3 we apply it to the Coleman-Weinberg lagrangian
and compute the one-loop contribution. Section 4 contains a
sample of the two-loop results. Section 5 discusses the nos-

abelian case and some further extensions.

2 - Presenting the method

Consider the lagrangian

(1) L(Pdhp)=-Fupoy -Uw)

where (/(?) is a polynomial in the scalar field Y . The
effective potential is defined in the following way: let
the functional generator of the IPI Green fﬁnctions, Lyl )
be developed in a power expansion in the derivatives of the

fielq,

(2) -Tlo] = ]d“»[v<go)+¢iz (0,;(/))‘4-.--]

where V,2,......are ordinary functions of P. V(P) 1is the
effective potential.

The usual way to write is, of course,

n)
(3) F[‘P] zzn:‘ —n!‘-l- Sd,"z,...dﬁzn I“'““,..z,‘) Pixy) - - P(2n)
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(n)
"‘1

where (e, - Bn) is the n-point IPI Green function.

Fourier transforming and using the translation invariance,

one gets

. n ~ ()
(4) Mte) = 22 7:7 Jd"z [pr] [T ¢o,. 0)

n

the Fourier components being calculated at zero momenta. Com-

paring to (2) one gets, for constant ,
. B n
5) Vip)=-2.570 o009

n

which allows the computation of the effective potential in
terms of an infinite series whose coefficients are the IPI
Green functions of the theory. Although this is hardly a con
venient method of computation, Coleman and Weinbherg used it
to obtain, with great ingenuity, the one-loop approximation
in some cases.

Symanzik (5) has shown that V(P) is the expecta
tion value of the energy per unit volume in a state for which
the field has the constant value ). ~ Clearly, in the tree
approximation, \/(@) coincides with U () of equation (1).
For a theory in which the vacuum expectation value of the
field operator does not vanish, but has the value v, one has,

ingtead of (5),

~ () n
(6) Vi) = - Zn: o0 (p-0)

From this equation it follows that

d Vi) 0
a g

(7

1

=
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which allows the computation of the vacuum expectation value
as the solution of a minimum problen. This is, perhaps, the .
most useful property of the effective potential.

By the introduction of a new field,

ey = P2y -

where v is an arbitrary parameter, the lagrangian
,é(go, ) is transformed into the new lagrangian
da/(so’, Ou’) which contains some new U ~dependent vertices.

We can rewrite eqg.(4) as

- ) ,
(8) P[P'f-o',] = Z Ll jd",, d'2, ["u‘,“ "‘)[‘P"")" 0]_ M’ u.‘),.)-].
n

Defining
P'le) = Mlprol

and re-summing eq. (8), one gets

nl!

= (n) '
(9) P'CQ'] = Zn:“ —-!-Jd"h‘“d,en /—'{r., - Bn) ‘(p'(:.)--{pllnj

In the tree aprosimation, /'"[go'] coincides

with the lagrangian f’lW’,a"/..,w’) . It is then clear that
— (n)
N (2e, - Bn) are proper vertices computed with the

lagrangian f'(Pj 3/.,..(0’) . Fourier transforming eq. (9)

one gets

= (n)

L
(10) WWJ:Z;‘,-JW‘UO“”J [7 (s o)

n H

= (n)

where r’ to,.- 0J is the n-point proper vertex computed,

in momentum space, with the Feynman rules of the lagrangian !

oe ! . For constant (p’ one has .
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(11) VI(p!') = Vg'+rs) = - Z: LT (o000 @

i
n h!

It follows that

[ J

] = (1)
(12 dew)/ P

p'-0

o P’




As
¢v<¢>'w)) AVip) l
(13) T = J
49 P=0 o4 p=v
equation (12) becomes
= (1)
(14) i_\_/_./ s ._d‘_!_ = - , (0) .
ap |, d v

That is, one gets a simple differential equation involving
the tadpole computed according to the rules of f’ ¢ putting
VvV = P at the end, one gets the effective potential V(@)
of the theory defined by the lagrangian of Eq. (1).

3 - slectrodynamics - one loop.

We apply the method now to the Coleman-~ieinberg lagran-
glian
2 2 2 e, ne)?
(15) du L) - LA r b ) - (0B -eAet) - (0740
We are looking for the effective potential as & function
of ¥, and ¢, » that is, for A. =0 .To our avail, the
0(1) global gauge symmetry will be used : it says that V(@e, s )

is a funtion only of (f* + (pj

y restricting the problem to that
of determining the dependence on, say, (0, .

As is well-known, a definite gauge must be chosen. This,
coupled to the method being presented, raises some questions
which we discuss now. It is natural that we, at this stage,fix

the gauge and only then replace W, by P+ v everyvwhere,

The effective potentialobtained as explained in the previous

section is that of the theory described by the lagrangian of

Eq.(15) in the gauge previously chosen. This is quite clear.




But, what if we first shift the field (), and then choose

a gauge? To which gauge of the unshifted theory does this po-
tential correspond ? Let us examine an instructive example. After
replacing, in Eq.(15), ¢, by @, + v , we are led to a diffe-
rent lagrangisn, with several new vertices, one of which is par-

ticularly perverse : it comes from the term
ev'(a,.,@) A/K

and may be called a mixed propagator. It is perverse because it
appears infinitely many times in each order of the loop expun-
sion. In order to avoid this problem, the most efficient way is
the following s we cancel it by a convenient gauge choice. [or

instance, the popular R; gauge-fixing term
<
(16) fq = -2{- g (3,.»/4# - %‘P&)

does precisely that. Suppose we use this gauge. To which gauge
of the unshifted theory does it correspond ? Besides that, in
©q.(16) +the parameter v does not appear in the way it should
( that is, as & consequence of the shifting of (), )! we could
think that, as the shifted lagrangian tends to (15) as v goes

to zero, (16) would correspond to the gauge condition

(17) L .-=.-‘;"-S(r2w4,»)z

of the unshifted theory, (17) being obtained from (16) by
putting v=U . But then, there are many gauge-fi>ing terms that
go, for w=0, into (17) !This would mean that, given a lagraugian
and a gauge-fixing term, many effective potentials could be
found, differing nontrivially from each other. It is, then,clear
that one must fix the gauge before shifting the theory.

It is, however, a pleasant surprise that a gauge-
fixing term exists which, after the shifting is done, precise-

ly cancels the mixed propagator.




It is
£ 3
(18) Ls = -L8Guhu -§94)

with the corresponding Faddeev-~-Popov (6) term

(19) &, =5[3‘-—§i(¢,*-¢,‘)§c :

In fact, by transforming {, into ¢, + v ,one has
for the gauge-fixing term of the shifted theory

(20) {G =-::—§[éu-/!w ";g—((P_"*U-)(P"]

with the Faddeev-Popov term
<
= ¢ _ et v) -@Q [t e -

iWe choose to compute the effective potential of the Coleman-—
Weinberg lagrangian in the class of gauges defined by equations
(18) and (19). This could seem & hard task, as we will have to
deal with ghost loops. In our method, however, this poses no par-
ticular difficulty. The Feynman rules of the shifted lagrangian
corresponding to the diagrams of Fig.l are

Fig.1l




a)

h)

c)

d)

e)

£)

q)

h)

i)

1)

k)

1)

m)

n)

o)

<
TS
e kl_* 5
L —
‘ rvd _G_g_.
i g, !
{
{




The one-loop tadpole diagrams are given in Fig.2, and contribu-

te
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)

The renormalization performed here is the 't Hooft-
Veltman's " pole subtraction " (7). To compare our results to
some existing ones it will be found convenient to introduce
below other renormalization prescriptions. The basic equation‘

that gives the one-loop contribution to the effective potential
is

2 3 <
LTS { et . 1 AU Jag A2,
dV___eb*[ -3(4550 1]4- ¢

= T | 757 by w2 <
(20) dv fen z
N Y 2
L AN ) g o )
32t

which gives

(21)

! .
2 AT
Putting U= ((P. t (P,,) and adding the zero-loop term we have
the effective potential up to one-loop contributions. 1f, follow=

ing Coleman and Weinberg, we use the renormalization prescriptions




12.

(23)

the result will be

<
VIGR) = A& (@4 05)
(24) v

bim®*  1152mt [9an’3 M?

For E-—» oo (Landau gauge) one gets exactly the
result of ref. (l1). Note that the gauge-fixing condition is
compatible with

/‘—

the point at which the efiective potential has been calculated.

<3 2 2 el
sel |, sAt e Jc@%wf){!a?"'*‘”,e‘fj.
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We could, of course, have done our calculations in other
gauges as well. For instance, we can use as gauge-fixing condition

the term
2
: S
(fa = - T (éM-Aw)

for which no Faddeev—Popbv terms are necessary. This expression is
not modified by the shifting of (), , meaning that we will uot

be able to cancel the mixed propagator of the shifted lagrangian.

This involves summing all the insertions of the vertex eU'éu, ’
lezding to modified propagators for the photon and for the

meson (P; « The contribution of a new tadpole must also bLe con-

sidered. The result is
b (pieqr)
V(SO.,({);)-‘-'—{I— Q*J- +
2 ., 0t)? P lel] 28
(._e.f,. ﬁ__a.e_’._-__)_e___)uw%)[bﬂ“ﬁ?ﬂ ‘ ] .

1152 w* et 1927's

ve would like to remark that, despite the difficulties
that appear when we associate this method with the By - gauge,
there is at least one instance where we can take profit of the
simplicity of the diagrammatic recipes of this gauge : it is the
case of £ - o .This correspouds to the Landau gauge, und the
results of the application of our method are reliable due tou the
fact that the teérms containing the prollemutic v (see Iiq.(16))
vanish in the limit. Accordingly, we will make use of an unulogous
gauge condition to compute, in the same limit, the eifective po-
tential of a non-abelian gauge theory.

Finally, one could be surprised by the fact that, wppuren=-
tly, one has in hand a method to compute effective potentiuls
in any gauge whatsoever, in contrast to claims that the efiective
potential does not exist in some gauges. The fect is that for sowme
gauge-fixing terms, the condition A“’=‘9 is not conpatible with
nonvanishing values of ‘P.¢+@f ,28, for iunstance, the

gauge~fixing term

Lo = -31-(4*'4/* “@“Qe)i-
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4- Electrouynamics - two loops.

In our method, the n-loop contribution to the effec—
tive potential is obtained from the totality of tadpoles composed
of n loops. The number of diagrums to compute is, therefore, finite.
The contribution of each diagram is regularized by the dimensionul

(7)

procedure and, afterwards, & simple differential equation
mst be integrated. One of the advantages of the method is that
the renormalization is relatively simple : we just renormulize
Green functions. In fact, the key to the simplicity of the metl.od
is that it leads to the computation not of the etfective potential

itself, but of its derivative, which is directly connected to

Green functions.
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For the two-loop contribhution the tadpole

diagrams are those given in Fiqg.3.

Fig. 3

The whole two-loon contribution is, of course,
too lonqa and)accordinqu, not much transmarent. Ve choose to
exhibit, 1nstead)the contribution of a notentially comnlica-
ted diagram, the one numbered 9, which has bhoth overlamnina
diveragences and ahosts.

The calculation, including renormalization in the sense of ref,

(7) is, however, simple. The result is !
s

IO | 4 Ll o)
Ve = - _e___s__.[ ! 1p1° .
J gt 4

2 2y, 1
(2%) +[I,({—,—:—)-2rJ bog 101° « [,(F:%7) 7 9]
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where

I¢ (0.4, Ris) = 6;(41, a.) - 6;, tay, aq)

and
1 1

Q, (a.,a.) = Sd;jd.’ [un-n)(f-;) {Lo?[(m-a;) o *“‘J ] ‘_,f

3
23 (-2) *"}J

° o
{ 1 . ' .
Gzta‘:a‘-) =Sd' Sd"- f—(:—_‘l)-{—’;;—l}—j“fo?((apm)z; -Hiu)—zl-] +Tj | |
g0 a) 4l i
0 0

1 1
(aq-a2)2 +tae

« = \de il 2y +A,
G; (@, @) S df [‘701)#’_"]4 (a«-Qa) ;. a

0 o

1 1

+ (ar1-az)z +a 1‘3[( &) 2y +a 'i}
4 - 1-QA 3 Qq-KRy } ] T2 4
Gq (@, @2) = |de df l}?“_‘)”_;}«z (a.-ada;+a¢{

0 []

For the complete result at the two-loop level we refer the

. reader to ref. (8).
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5 - Non-abelian gauge theories

The computation of the effective potential of a
non—-ahelian gauge theory 1s‘not much more difficult than that of

an abhelian theory. Consider the followina lagranaian :

(26) o = -7’.5: (9.¢ u0) - PP

where

27 (P ¢)a = é‘ﬂ - @,,: ¢5 A

(28)  P(@P) = -’f;-¢‘ rhp’

“pr

«& [ o

(29) ﬁw:.g'},/l., -hAS - C A A

“py | ‘:

o being the structure constants of the cauaqe aqroup.

Ve use here the notation and conventions of Weinberqg (9).

For a more detailed explanation see the excellent review of
Costa and Tonin (10)

Introducing a new set.of scalar fields

/ 0
(30) ¢a = Q - €a

3

we ohtain a new lagranqgian written-as

(31) oLix) - ,me + Xint
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with

(32) a(,oﬁ,.“ = - L (A" -4l
S AR N RSO AN DR A G NE
t(0ep', @ )"

and

apy ody . p.os 4
LC T QA A A
g e

{"n /i =

“wy r r o I
2 € (GuA - AT )AL A

(33) + (9@, O"P)AL - (079, 0" )AIAL - L(0°0, 60 p)A 4

’ / Vi / / / ’ 4
-‘.— abe ¢¢ @ (b(, /abcd ¢a. ¢6 ¢C ¢d,

T2

The new symbhols introduced are

O@.. ob,

38y (M3, = M/
b=ee

(35) (‘/if)“/’ _ (@«[,/ @/36.)

a6 p, - P
>oe OPs 0P I

(37)

po.bcd = 977)(¢'/ /

9Pl ops IPL oP.
p'-o
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The computations with this laarangian are com-
plicated hy the presence, in Ip,.“ of a mixed propa-
gator, that is, a quadratic term invelvina two different
fields. The best way-out consists in usina the qauge freedom
to eliminate this term. This was accomplished by 't Hooft(ll)

wvith the introduction of the aqauvge-fixina term

-

(38) Cr) = B A,

5 (g Ee)

meaning that the lanaqrangian to be considered is

4
(39) i x) = olrn) -t [C%xs ]

Besides that, quantization of the theory reauires

the addition of the Faddeev-Popov term

| [}

-z °f ) , .
(40) ({ZPHI«{;IS«,,D + 8 (M) -5 ((9‘5/@",0}}#/,().

It is not convenient, though possihble, to nro-

ceed in 8o ahstract a level. Let us examine the case in

(12)

which the qaudge group is SU (2) and the scalar bosons

transform like a 4 - dimensional (reducible) renresentation.

Ve have, for instance,
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]
o o o -4 o 0o gz 0
i
ED 0 0 % 0 é» _ 0 0 2
i - { * -4 (0] 0 0
°© -3 o 0 2
£ 0 o U o &£ o ©
-1 0 O
0 2
L 0
&=z ° ° °
0 o) o z
/
o 0] - 9
and, of course,
Ay &
[0, @)= -0
For our purpose it is enough to take (Eo)a = U’é\ai .
2
In this case the matrix S is diaaqonal, that is
z .
A 0 0
2 Y
41 - ¢
(41) S = 0 ‘77_ 0
e
o
O O g
The bhosonic mass matrix is
2
(42) (H )ab - (M-& +A_9"} Sab + .ghl}z Sar 564
and the bhosonic provagator is
@ 1) ) L 4 (o) (m®
(a3 A (B) =€ 7 il T2 hots 2 ;,Z:‘ze“ e
Fal g DT RITEET
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(m)
with (é )a, = Sma, .

The "photon" pronaadator is

A
— / 5 v (1- §)éu£v Ja
(44) A(&L“IUP = ‘E-—:-—‘E_-T—( /M- + {5

"]
EA% .+ 2
and that of the Faddeev - Popov ahost particles is

(45) &— (&) = &"!‘_ .

The relevant vertices are aiven in Fiag.4 anéd cive

| o o
1) %’—Q—- -&h(&c 5&6 + 6: Jac_ + £o. ‘Sbc)

.' uﬂ’ K (] { o
2) ..Q:ll’l__(e B, ¢ + —— On &
2% ¢ by ~ £ ) N e

Y :
3) (2m) 506 5“/’ 5.,.v :
¢ ’ ,

Fie.4
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The tadnoles contrihuting to the one-loon anpro
ximation to the effective notential are agiven in Fina.5.

Their values are :

1 - -——?Z‘,,‘i)(ﬁ sk log ko) + G b )Mo (et 357)

2) -
Iz?rr 2w niE® L’? Yg

Fia.5
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Taking, as explained at the end of Section 3, the limit & 0o ,

one gets for the tadpoles :

2) 2ero .

3 <
9 v L
3) - 2 X%%} y 7/

- ’_’;:'I;f g (/u-‘ +t3h b") [a? 9w‘f3é 0°) + {u.‘»té »%) [o-; (u‘fét*e)} .
rhe (trivial) integration of this equation gives

the etfective poteqtial as a function of o o vubstituting

everywhere (QQ @) for one has the eifective potential

of the theory characterized by the lagrangian of Eq. (:6) in the

gauge obtained by putting, in (38), ¢&°=0 . The computation

of higher order approximations 1is etraightforward.
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Conclusions

The method described here allows the explicit
computation of the effective votential of anv theorv vhich
contains scalar bosons to any order of the loop expansion.
Migher orders introduce no new complications except the
normal ones of pertubation theorv. The method, because of
its exnliciteness, is particularly convenient for numerical
computation.

Simple extensions exist that permit the calcula
tion of the effective potential when both fermion and scalar
bosons are present. The case of just fermions and vector

mesons is under study.

Acknowledgements

It is a pleasure to thank J.Frenkel and J.J.
Giambiagi for tlluminating discussions. The junior authors

(P.8.5.C. and R.I..G,) acknowledge financial suprort from

FAPESP.




(1),

(2)

(3)

(4)

(5)

(6)

(7)

(8)

25.

RFFERFENCES

G.Jona - Lasinio, Nuovo Cimento 34, 1790 (1964)

S.Coleman, E.Weinberqg, Phys. Rev. D7, 1888 (1973).

R.Jackiw, Phys.Rev. D9, 1886 (1974)

S.Y.Lee, A.M.Sciaccaluga, Mucl.Phys.B96, 435 (1975)

P.W.Hiqgs, Phys. Letters 12, 132 (1964); G.Guralnik,

C.Hagen and T.Kibhhle. Phys.Rev.l.ett. 13,585(1964)

¥.Symansik, Comm.Math.Phys. 16, 48 (1970)

L.D.Faddeev, V.N.Popov, Phys.Lett 25B, 29 (1967)

G. 't Hooft, M.Veltman, Mucl Phys S0B, 318 (1972).

P.S.S.Caldas, Master Dissertation, Sao Paulo Universi

ty (1976).

(9)

S.Weinberg, Phys,Rev. D7, 1068 (1973).

(10) G.Costa, M.Tonin, Riv.Nuovo Cimento 5, 29 (1975)

(11) G.'t Hooft, Nucl.Phys. 33R, 173 (1971) ; 35B, 167 (1971):

(12) c.N.vang, R.L.Mills, Phys.Rev.96, 191 (1954),




— P —————
V4
/
’
7/
*
N\
\
N\
v
Fd
p:
B
M
N
9
\
\
/'
”
P d
Pd
~
“~
~
~
rd
”
//
N
N
~
-
/’
&
~
P
"
~
~

P
C

b)
d)

__<
»—%,
—4
>
w A
2 >

c)




a) b)

PR
/ \‘
{
\ /’
~ __'_’ -
c) d)
-~
7 ~
\
{ )
7
I\ v

fig. 2




P @ 8

8)
,r"‘\\
/ \

12)

7 N\
{

7)
e
%}

16)
\_ 7
|

I5)

S?;

I18)

17)

23)

26)

PN
¢ 'y
\ 7/

o \‘/ .
(o} | .
2./.\

fig. 3




1)

flg. 4

3)

3)

op | B




