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1. Introduction

Early one morning in 1735, a small group of people were
gathered on top of a mountain in the Peruvian Andes. They
belonged to a French scientific expedition, led by Bouguer and
La Condamine, that had been sent out to measure a degree of
longitude; a Spanish captain named Antonio de Ulloa accompani-
ed them. What they saw on this occasion was, according to
Bouguerl, "a phenomenon which must be as old as the world, but
which no one seems to have observed so far... A cloud that
covered us dissolved itself and let through the rays of the
rising sun... Then each of us saw his shadow projected upon
the cloud... The closeness of the shadow allowed all its
parts to be distinguished: arms, legs, the head. What seemed
most remarkable to us was the appearance of a halo or glory
around the head, consisting of three or four small concentric
circles, very brightly colored, each of them with the same
colors as the primary rainbow, with red outefﬁost...". Ulloa,
who gave a similar description and also drew a picture of
- what he observed, added: "... The most surprising thing was
that, of the six or seven people that were present, each
one saw the phenomenon only around the shadow of his own head,




and saw nothing around other people's heads...".

During the nineteenth century, many observations of the
effect were made from the top of the Brocken mountain in
Germany, and it became known as the "spectre of the Brocken".
It also became a favorite image among Romantic writersz; it
was celebrated by Coleridge in "Constancy to an Ideal Object"”.
Cellini was deeply affected by his own mystical experience3
with the "Heiligenschein", a superficially similar optical
effect with an entirely different origin4. One may well wonder
about iconographic and hagiographic implications.

Other sightings of the glory were made from balloons
(around the shadow of the balloon on the clouds), and nowadays
it is most commonly seen from airplanes. Recently, some
beautiful color photographs of the effect have been reproduceds.

C.T.R. Wilson invented the cloud chamber after observing
the glory from the top of the Ben Nevis mountain in Scotland
because, in his own words®, these "...marvelous optical pheno-
mena... greatly arose my interest, and led me to desire to
imitate them in the laboratory." However, he did not achieve
his original aim.

The glory is generally observed over thin clouds or mist,
formed out of very tiny water droplets. In terms of the
dimensionless size parameter B = ka (k = wave number; a =
droplet radius), the most favorable range for the observation
of natural glories seems to be from 8 ~ 102 to ~103, with an
average value7 of about 160, corresponding to a "~ 1l4yu.

The appearance of the glory rings varies considerably
from one observation to another, and sometimes even during a
single observation. As many as five sets of rings have been
seen. That "each one is his own saint" is most easily explain-
ed: the effect is contained within a narrow solid angle, of
the order of at most a few degrees around the backscattering
direction ; the only function of the shadow is to identify
this direction. There are indications that the glory rings
"are strongly polarized. | ‘ )

More than two centuries after the first recorded observa-
tion, an adequate physical explanation of this beautiful effect
was still lacking, in spite of the availability of Mie's exact
mathematical solution8 since the beginning of this centufy.
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This is not so surprising, since the glory is indeed a very
complicated effect.

In the present work, after a brief review of the vartous
theories that have been proposed, we discuss the recent
explanation of the glory9 based on the theory of complex
angular momentum. It is a pleasure to dedicate this paper to
Elliott W. Montroll, whose broad range of interests has also
included Mie scattering theory, on the occasion of his sixtteth
birthday.

2. Early Theories

The first attempts to give a theoretical explanation of
the glory were based on an apparent analogy with another
meteorological effect, the diffraction coronas often observed
around the moon or the sun. These are due to diffraction by
water droplets in the clouds, and their angular distribution
is given by the Airy pattern characteristic of an obstacle
with a circular rim: Jf(se)/e2, where J1 is Bessel's function
of order one and 6 is the scattering angle. However, since
this gives rise to a forward diffraction peak rather than a
backward one, the reversal of the direction of propagation
of the scattered light must still be explained. The earliest
theories, due to Fraunhofer and to Pernterl, proposed that the
reversal took place by reflection from the clouds. Such
theories are untenable, not only because of the implausibility
of a regular reflection from a cloud, but also because they
would not account either for the angular distribution (quite
different from the Airy pattern) or for the polarization of the
glory rings.

In 1923, B.Ray concluded! , on the basis of experiments
with artificial clouds, that the glory is produced individually
by each water droplet in its own backscattering. This was

0

confirmed by later results. .

Ray also proposed to explain the glory in terms of inter~
ference between axial rays directly reflected from the outer
surface of the droplet and those which penetrate into it and
are reflected internally from the back surface. However, even
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if one takes into account the whole series of multiple in-
ternal reflections of such axtal or parakial rays, the result-
ing intensity is far too small to explain the observed
effectll’lz. Similar remarks apply to Bricard's treatment13.
Bucerius14 proposed an explanatton in terms of "back-
wards diffraction", an effect similar to the forward diffrac-
tion peak but giving rise to a backward dip (dark central
disc) rather than a peak. This would again disagree with the

observed intensity, angular distribution and polarization.

3. Van de Hulst's Theory

One can try to save geometrical optics by looking for
non-paraxial rays that are backscattered after one internal
reflection. A ray of this type, such as ABCDE in fig. 1,
would be called a "glory ray". It was shown by Van de Hulst15
that two peculiar effects associated with such rays would
lead to scattering anomalies.

As is illustrated in fig. 1 by tracing the paths of
neighboring rays, a portion of a plane incident wavefront 1!
is transformed (for a generic scattering angle 6) into a
portion of spherical transmitted wave front tt' that seems to
emanate from the virtual focus F. For 6=n , however, due
to the axial symmetry, the whole picture must be rotated
around the axis, so that, instead of a single focus (virtual
point source), we get a whole focal circle (virtual ring
source), giving rise to toroidal wave fronts. This leads to
axial focusing, the first of Van de Hulst's two effects: along
the axis, the rays emanating from the focal circle interfere
constructively, producing an intensity enhancement (in geome-
trical optics, the axis would be a focal line, along which the
intensity would be infinite, a kind of backwards Poisson spot) .

The second peculiar effect has to do with polarization.
Parallel and perpendicular polarizations with respect to the
scattering plane (the plane containing the directions of in-
cidence and of observation) are independently scattered for a
generic direction 6. Howe&}r, for e=r (as well as 6=0), the
scattering plane is not defined. Thus, a parallel component
with respect to the plane of fig. 1 appears as perpendicular
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component after a 90° rotation around the axis, and the
resultant backscattered wayes wvibrate in the same direction;
their interference thus simulates an interference between
parallel and perpendicular polarizations. %Van de Hulst calls
this the cross-polarization effect.

In the neighborhood of ¢=n, two scattered rays would
emerge in each direction, arising from incident rays close to
but on different sides of the glory ray: their interference
would give rise to the glory rings.

Unfortunately, as Van de Hulst pointed out, there is a
basic flaw in the above explanation: for the refractive index
N=1.33 of water, glory rays of the type drawn in fig. 1 do
7,11 for /2 <N <2 (e.g.,
for glass spheres). For water, the largest deviation attained
for rays of the class shown in fig. 1 corresponds to tangentially

not exist; they would only be present

incident rays, which reemerge about l4°yaway from the backward
direction. How can this 14° gap be bridged?

Van de Hulst suggested that this might be a diffraction
effect that would take place within the favorable range of 8.
Specifically, he proposed as a likely mechanism the generation
of surface waves ("creeping waves") both at points of tangential
incidence, as at T, (fig.2), and at points of total internal
reflectionls, such as B and D (fig. 2); such waves reenter the
sphere at the critical angle, as at A and C, giving rise to
‘the "shortcuts" AB and CD. The surface wave portions such as
T,A, BC and DT, would add up to the required 14°,

At the time this theory was proposed, it could not be
placed on a quantitative basis leading to definite predictions
for the scattered intensities, so that its validity could not
be tested.

4. Exact Mie Results

The exact solution of the problem of the scattering of a
monochromatic plane electromagnetic wave by a homogeneous
sphere in the form of a partial-wave expansion was giyen by
Mie8 in 1908. Let the electric field of the incident wave

be given by
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The corresponding scattered electric field is

]
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where the scattering amplitudes Sl and S, are associated with
perpendicular and parallel polarization, respectively.
The scattering 1s completely characterized by three real
quantities: the two polarized intensities

i;(p.0)= 150" (j=1,2),

which determine the differential cross-sections, and the phase
difference

§(p,6) = ang Sy - ong Sy,

which determines the state of polarization of the scattered
wave.

The Mie solution is of the form
0
Sitpoor= £ 3 L4-5" ] Ty (05 0)
2=1 ' :
P L= SEE] paes)} > @

where t£ and pg are angular functions of the associated Legendre
E :

type and gf, SQ are S-matrix elements for magnetic and electric
multipole waves of order {, respectively; S,(p,8) is obtained
by interchanging E and M;’gg’E are camplicated ratios of
combinations of spherical Bessel and Hankel functions. Expect
in near-forward and near-backward directions, the contributions
from t o (cos®) are dominant over those from p g (cos8), so
that 8, is associated with magnetic polarization and S, with
electric polarization. ' .

If P> 1, the {th partial wave can be pictured in terms

of incident rays with an impact parameter

D
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and only those parttal waves with bﬁﬁ a are signifieantly
distorted, so that one must keep roughly ~B terms in the
Mie series. Since B is very large in the range of interest,
the partial-wave series provides essentially no insight into
the physical effects that are responstble for the glory.

On the other hand, it can be employed in computer
calculations, as a source of numerical data. Numerical
studies of this type have been made - by Bryant and

12,17 ¢0r the P -dependence of the glory intensity,

coworkers
and by Dave18 for its angular distribution and polarization.
In both cases, the results show extremely rapid and complic-
ated fluctuations with all of the parameters: P, © and N.
Bryant and coworkers computed the intensity at & = 7
in the ranges 200.0 £ B £ 201.8 and 500.0 £P € 501.0 for
N = 1.333, and in the range 3000.0 £ B< 3001.4 for N = 1.333
and for N = 1.333 + 2 x 10 61. The results show the follow-

ing features (see also figs. 8 to 10 below):

i) The backscattered intensity is a rapidly-varying, quasi-
periodic function of B , with a quasi-period AP =~ 0.815.

ii) Within a quasi-period, there is a relatively more
slowly-varying background, showing about three humps per
quasi-period.

1id) Superimposed on the humps, there are additional
fluctuations, including some extremely sharp spikes, represent-
ing intensity variations by one to two orders of magnitude
within a range 8p~o 01, bt)rrespondlng to a change in droplet
radius by a few thousandths of the wavelength!

iv) When a small absorptive term is included in the
refractive index, the spikes tend to be smoothed down, but
not the humps.

The relative contributions of different partial waves
were also numerically investigated in terms of the "localiz-
ation principle" (4), by plotting the growth of the sum of
the Mie series as a function of the number of terms retained.
The conclusions were:

v) The backscattered intensity arises predominantly




from incident rays very close to tangential incidence at the
"edge" of the sphere,

vi) The contribution from axtal and paraxtal rays, as
remarked above, is too small, by up to one order of magnitude
or more, to account for the backscattered intensity.

Fahlen and Bryant17 also made an experimental study of
the backscattering of a focused laser beam from a single
water droplet suspended from a glass fiber; the size parameter
was iﬂ the range 103 to 104. In view of the continuous
evaporation of the droplet, a plot of the backscattered
intensity as a function of time reproduces its behavior as
a function of B . The above-described features of the mmerical
computations are also apparent in the experimental results.
Similar experiments were performed by M.J.Saunderslg, with
much smaller droplets (p in the range from ~50 to ~300) suspend-
ed from submicroscopic spider threads.

Dave18 computed the angular distribution and polarization
for N = 1.342 near 6 =% for Pp= 98.2, 196.3, 392.7 and 785.4.
For the lower values of B, the first dark ring is only a small
depression; this "haziness of the first dark ring" was also
pointed out by Van de Hulst7. The outer rings tend to be *
parallel-polarized. For the higher values of p, perpendicular
polarization predominates in the outer rings; for ﬁ = 785.4,
the first bright ring is brighter than the central field. Thus,
both the angular distribution and the polarization undergo

considerable changes as a function of p.

5. The Watson Transformation

We are faced with the situation of having at hand the
exact solution of the problem (Mie series), and yet being
unable to understand its physical content. Even numerical work
is difficult and costly, in view of the extremely rapid
variation with all the parameters: e.g., in the computations

described above, calculated points were spaced 0.001 apart
in B , and double-precision arithmetic, with 22 significant
figures, was employed.

The first successful attempt to extract the physics




contained in the partial-wave series at high frequencies was
the Watson transformation, which resulted from the work, among
others, of Poincaré and Watsonzo, around 1910Q. The motivation
was to find out how radio waves overcome the Earth's curvature
(this was before the discovery of the tonosphere!), so that
the main concern was with the neighborhood of the Earth's
surface, in the shadow zone of the transmitter. The idea was
to substitute the partial-wave series by an equivalent contour

integral in the A -plane, where A= Q + L can be interpreted,

according to (4), in terms of angular mgmentum. One gains

the freedom of path deformation in the complex-angular-momentum
plane. This can be employed to obtain rapidly convergent
asymptotic estimates, by suitable choosing a path to concentrate
the dominant contributions in a few "critical points", rather
than having them distributed among many partial waves.

In Watson's case (shadow region), the critical points
were complex poles:Rn, which nowadays would be called Regge
poles. Their imaginary part, associated with angular damping,
grew quite rapidly with n, so that only a few poles closest
to the real axis had to be considered, leading to a rapidly-
convergent "residue series". 1Its terms are "creeping waves"
generated at the edge of the sphere (points of tangential
incidence in fig. 2), which travel along the surface shedding
radiation tangentially, so that IHlAn represents radiation
damping.

If one moves aways from the shadow into a lit region,
Watson's original method breaks down. The procedure for
dealing with this situation was discussed by dekzlaround
20). Besides
Regge pole contributions, one must also consider what became

1945 (for the work of some predecessors, cf.

known as the "background integral" in the A-plane, which is
now dominant. The critical points for this integral are
saddle points 'ié. which, when located on the real axis, are
associated with geometrical-optic rays and give rise to the
expected contributions therefrom; when additional terms are
taken into account in the saddle-point method, one recovers
the WKB series.

On the surface of the sphere, the transition between
light and shadow takes place in a "penumbra region”, and it
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is described by a new mathematical function, the "Fock
function"2t, This is the regton near the edge where Creeping
waves are generated; its angular width is of the opder of
p-1/3. Fock's function interpolates smoothly hetween the
geometrically 1lit (WKB] region and the creeping-wawe region.

The method was applied not only to radio wave propxﬁwiogl'zz
and to the scattering by impenetrable spheres, but also to the
transparent sphere problem23'24’25. Although significant
advances were made, e.g. in the discussion of creeping waves
and of Fock's penumbra region, only a few disconhected regions,
separated by wide gaps, were treated. While contact was
established with previously known approximations, like Airy's
theory of the rainbow23, the results did not go beyond them.

In the glory problem, some justification was provided to Van
de Hulst's conjectures about surface waves, but quantitative
results were still lacking.

6. The Modified Watson Transformation

An improved version of Watson's method, deve10ped26 in
1965, finally made it possible to derive from the partial-wave
expansion the asymptotic behavior of the solution at any
distance from the sphere and in afty direction. The new method
was applied to the scattering of & scalar field by a impenetrable

sphere26 and by a transparent spherell

s including a discussion
of the rainbow and the glory. It was later extended to electro-
magnetic scattering27, and the results were compared with the
exact Mie solution both for the rainbow28 and for the gloryg.
We refer to the original papers, as well as to a previous
surveyzg, for a detailed discussion of the method. We are
concerned here only with the aspects that are relevant for the
explanation of the glory.

The modified Watson transformation is based on the

application of Poisson's sum formula30

2 = o me® 2imnA
Z9(+4.p0) ;Z -) Sap(ag;p,em )
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2 - 00 (5)
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followed by completion of a symmetric path about the origin
and its judicious deformation in the A-plane. This deform-
ation, which must be performed differently in different angular
regions, also leads to Regge pole contributions and to back-
ground integrals, usually dominated by saddle-point contribu-
tions.

A saddle point on the real axis is also a stationary-
phase point in (5), thus characterizing an extremal path, i.e.,
a geometrical-optic ray (classical orbit, in particle language).
The integer m in (5) has the topological significance of a
winding number, corresponding to the number of turns performed
by a path around the center of the sphere. The Poisson sum
formula has also been employed as the starting point in semi-
classical approximations to scattering; the connection between
this approach and Feynman's path integral method has been
discussed by Berry31.

Regge poles for a transparent sphere are of two quite

different types. One of them, similar to Watson's, is
32

14

associated with surface ("creeping”) waves; as shown by Keller
such contributions can also be given an extremal characteriz-
ation, in terms of "diffracted rays". The other type of Regge
poles is associated with resonances. Since resonances appear

in many partial waves at high frequencies, one finds lots of

poles of this type clustered close to the real axis, spoiling
the rapid convergence of the residue series.
A way out of this difficulty had already been pointed

out by Van der Pol and Bremmer23
33

, who applied an expansion
first employed by Debye in the case of a circular cylinder.
The interaction with the sphere of each spherical multipole
wave can be broken up into a series of interactions at the
surface, much in the same way as the problem of a Fabry-Perot
interferometer can be solved in terms of a series of multiple
internal reflections. One reflecting surface is the surface
of the sphere; the other one degenerates into a point, the

center of the sphere, which simulates a perfect reflector.

The expansion is obtained by representing the S-matrix
elements SE'M(p) in (3) in terms of a geometric series
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P P
4 P-4 p

—_— = E 9 -+ ’ (6)

1- P =1 L ~‘P
where P (A,B) is, apart from a phase factor, the internal
spherical reflection coefficient for multipole waves of order 2
(A=a£+-%). This leads to a corresponding decomposition of the
scattering amplitudes (3}, p

S;(p,0)= S, (ﬁ,9)+ZS. (B,6)+ rematnder (3=1,2), (7)
¢ #° 4p !
p=
where each Sj,p has the form of a partial-wave series. This is
the Debye expansion: Sj ° represents direct reflection from
’
the surface, and Sj D (p21) represents transmission through
14

the surface after p-1 internal reflections.

The modified Watson transformation can now be applied
to each term of the Debye expansion. The associated poles in
the:k—plane, which will be called Regge-Debye poles, no longer
cluster near the real axis: they are all of the surface-wave
type, so that we regain rapid convergence of the residue
series. The Regge-Debye poles are the same for all Debye
terms; however, they are poles of order p+l for the pth term.
Physically, although the resonances disappear from each term,
their effects may become manifested in the sum of the series
(as in the Fabry-Perot case).

For partial waves with associated impact parameter bQA< a
(cf. (4)), lpl is essentially the Fresnel reflection coeffi-
cient at the corresponding angle of incidence, and this
coefficient, for water, is very small until one gets close to
grazing incidence. It is only near the edge (Fock's penumbra
region) that |P| gets close to ynity. For §27’a, although lPl
is very close to unity, the corresponding partial waves do not
contribute to the scattering, because they are prevented by
the centrifugal barrier from reaching the sphere, except again
very close to the edge, where they can tunnel through the
barrier. Thus, we expect that high-order terms in the Debye
expansion may give significant contributions to the scattering
only for partial waves in the edge domain, defined by

A3 3
p-cPp L NE prcp T, (8)
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where ¢ is a nymerical constant Of order unity. This is the
region pear the top of the barrier in the effective potential
~ where, for smooth potentials, orbiting effects take place34.
In the present case, the effective potenttal has a cusp, as
shown in fig. 3, but the edge domatn still gives rise to
effects similar to orbiting, as will be seen below. The
numerical studies mentioned above12 tndicate that the leading

contributions to the glory arise from the domain (8).

7. Non-glory Regions

We discuss the resultsll'27_29

obtained away from the
near-backward region only to the extent that they are relevant
to the theory of the glory. In these non-glory regions, the
dominant contributions usually do not come from the edge
domains, so that the rapid convergence of the Debye expansion
follows from the damping effect of multiple internal reflec-

tions, and one may ordinariiy stop at P=2 in (7).

i) Geometrical optics
At the level of geometrical optics, the pth term of the

Debye series is associated with rays that undergo p-1 internal
reflections. For each p, the domain 0 £ £TX is subdivided
into angular sectors characterized by the number s of geome-
trical-optic rays of class p scattered in the same direction
(s=0 for a dark sector). When the modified Watson transfor-
mation is applied to SJ (B,8), each such ray is associated
with a saddle point on the real A-axis in (5). Different
path deformations in thelﬁ-plane are generally required in
different angular sectors.

ii) Surface waves

The contributions from Regge-Debye poles represent
surface waves, generated both at the edges of thevsphere and
following shortcuts through the sphere at the critical angle
(fig. 2). The contxibution from a Regge—Débye pole An contains
a factor

exb (A, y), (9)
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where V¥ is the total angle described along the surface; the
damping factor ImA, represents the radiation damping associat-
ed with travel along a curved surface. For an internally
incident ray at the critical angle, there are two possible
types of interactions with the surface (fig. 4): (I) "Total"
reflection ; (II) Critical refraction to the outside,
followed by describing an angle ¢ as surface wave and by
critical refraction into the sphere. Since @ may take any
value and since we may have any combination of type-I and type-II
"vertices", there are several classes of "diagrams" with p-1
vertices that contribute to a Debye term of order p.

At the boundaries between adjacent angular sectors,
corresponding to changes in s (the number of rays in the
same direction), geometrical optics would predict sharp
discontinuities. Each of them is replaced by a transition
region where diffraction effects become important. The follow-
ing types of transition regions are found:

iii) Forward diffraction peak
This is the sector 0 <6 £ ﬁ" , where the Airy diffraction
pattern (cf.Sect.2) is dominant.

iv) Fock-type transitions

They are associated with the substitution of a real
saddle point (geometrical ray) by a set of Regge-Debye poles
(surface waves), interpolating smoothly between these two
types of contributions. Their angular width is usually of
the order of ﬁ‘l/a.

v) Rainbow regions

They are associated with the transformation of a pair of
real saddle points into complex saddle points. At an extremum
of the deflection function, one scattered ray "folds back"
onto another one, leading to double coverage of one angular
sector ("1lit side"), whereas both rays are missing on the
other side ("dark side"). 1In the A-plane, this corresponds
to a collision between two saddle points, which move towards
each other along the real axis as the scattering angle
approaches the rainbow angle from the lit side, come together
at the rainbow angle, and then move apart in complex-conjugate
directions on the dark side (fig.5).

When the ranges of two saddle points overlap, the
ordinary saddle-point method can no longer be applied. Chester,

Friedman and Ursell35 have shown how to obtain a uniform
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asymptotic expgnsion in this situation, The result for a
typical ralnbow term is of the form (cf. (25) below)

J(x,0) { [po(0) + pye)/k +---] Ai [k**2(0)]

113 . 213 _
K400 + 4@/ 1A I}, kep,

where Ai(z) is the Airy function, and the functions f and C, as
well as the coefficients Pyr 94, are determined by the two

saddle points,Airy's classical theory of the rainbow is obtained
by retaining only Py and by making the lowest-order approxima-
tions in the evaluation of f, t and p . The amplitude enhancement
at the rainbow angle is of the order of ﬁl/s.

For the primary bow, which appears in the p=2 Debye term,
it is found28 that the corrections to the Airy approximation
(arising mainly from dy in (10)) are small for S, (magnetic
polarization), but quite large for §, (electric polarization).
On the dark side of the rainbow, the Airy functions get rapidly
damped; for large positive argument, we may employ the
asymptotic expansion

ALK ) oxp (-3x8™) 2V ™™ (k¥35 5 1), )

which yields the exponentially damped contribution from the
lower complex saddle point in fig. 5 sufficiently far from
the rainbow angle. This contribution may be interpreted in terms
of a "complex ray": the rainbow, as is well-known, is associat-
ed with a caustic36, and complex rays appear on the shadow side
of caustics32, an effect that may be compared with quantum-

mechanical tunnelling.

8. Application to the Glory

We now confine our attention to the immediate neighborhood
of 8= and we discuss some of the physical effects that are
found in this neighborhood.

i) Cross-polarization




16.

For =%, one has
2
L1 = - pp(-H= ()" (1+4), (12)
and the Mie series (3) becomes

S, (B,7) = SM(P) + SE(P)f- -S,(p,m), (13)

where the magnetic and electric contributions are now of the
same order of magnitude. This is the cross-polarization effect
mentioned by Van de Hulst (Sect.3); the effect actually extends
over a small neighborhood of the backwards direction.

ii) Geometrical-optic terms

The paraxial-ray contributions to near-backward scattering
include, besides the direct-reflection term (p=0), the
geometrical-optic contributions from even values of p in (7),
representing rays that are backscattered after p-1 internal
reflections. Since the reflectivity at perpendicular incidence
is very small, only p=2 need be taken into account. The
combined effect of these two main terms is readily evahx&edrh27;
at @ =M, it is of the form

Si,q(pr)~ Rp (j=1,2), (14)

where the magnitude of R is of the order of the reflection
coefficient at perpendicular incidence, i.e., ~10—l; R is
oscillatory in ﬂ, with a period of order unity, due to the
interference between the directly reflected ray and the once-
internally-reflected one. Within the range of ﬁ of interest,
as has already been mentioned in Sect. 2, (14) gives only a
small contribution to the intensity, in the form of a smoothly-
varying background, which is totally unrelated with the

glory.

For N=z1.33, non-paraxial geometrical-optic contributions
can occur only for large p (cf. Sect. 2), where they are
strongly damped by multiple internal reflections, except for
incident rays in the edge domain; these, however, give rise to
different effects, as will be seen below.
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iti) Yan de Huylst's term

This term (fig. 2) is the contribution of Regge-Debye poles
for p=2, corresponding to surface waves that take two shortcuts
through the sphere. The residue-series evaluation at € =0 leads
11,27 4 the form (cf£. (97)

to a result

a'q;: (p,7) ~ cﬁ MP(‘OL}PM) (4=1,2), a5

where ¢ is of order unity and only the lowest Regge-Debye pole
is taken into account, so that (15) is to be understood only as
an order-of-magnitude result.

In the relevant range of P, the contribution from (15) is
several times larger than (14) and, for ﬁ-dﬁz, it is of the same
order of magnitude as the glory amplitudell. Nevertheless, (14)
and (15) together cannot account for the main features of the
backscattered intensity (cf.Sect.4); higher-order Debye

contributions must play an important rolell

iv) Axial focusing

For all higher-order Debye terms, we may restrict our
attention to "peripheral” contributions, i.e., those arising
from incidence in the edge domain (8). All other contributions
are strongly damped by multiple internal reflections, whereas
in the edge domain the reflectivity is close to unity. This
also agrees with the conclusions derived from numerical
studies (Sect. 4(v)). 1In the complex A-plane, therefore, all
significant contributions arise from a neighborhood of A:=P.

Near the backward direction, (3) should be replaced27 by.
a representation in terms of t2 (-cosB), Py (-cos©®). Sett-
ing
0=Y-¢ , O<¢t 1 , (16)
we may employ Szegd's uniform asymptotic expansions26
. 1/2
Py.s(eose) = 2(&/sime) Ji(xe)/ e,
2
£ Yr 2 (¢/sine)* AT (2e) (17
34 (cose ) = 1 , 17)
2 .

where l_7\‘~ﬁ>>1 + and J, is Bessel's function of order one.
As we move away from the backward direction, the amplitudes
decrease by a factor -~ ( psinE )1/2 PUZ sufficiently far
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away. Conversely, we can say that the amplitudes are enhanced
by a factor of the order of 31/2 as we approach the backward
direction. This is Van de Hulst's axial focusing effect
(Sect.3).

This effect has been experimentally observed by
placing a photographic plate behind the droplet in the near-
field (Fresnel) region. The circumference of the droplet appears
as a thin luminous line, and it has been verified that19 this
is more luminous than the reflected axial spot roughly in the
ratio of (15) to (14) for B~102. In fact, for PX 80, only
the circumference remains visible: the axial spot is no longer

seenlg. The phenomenon may be likened to the luminosity of

diffracting edges discussed by Sommerfe1d38.

17,19,37

v) Orbiting
Within the edge domain (8), the reflection coefficient in
(6) is of the form

lpl = 4 -8 ) S ~ bp-"/a ’ (18)

where b is of order unity. We expect, therefore, that the
amplitude of the pth Debye term is damped, for large p, by
a factor of the order of

o1 = (1-8)F ~ axp(-$9). (19)

A rough estimate of the number of contributing Debye terms
would be, therefore, that it is of the order of 2/6 . This
yields a value of the order of 50 for ﬁ-»lO2 and of the order
of 100 for ﬂ~103. These large numbers of internal reflections,

as mentioned in Sect. 6, represent a kind of orbiting effect.

vi) Geometrical resonances

When paths involving large numbers of internal reflections
close to the critical angle are considered, the possibility of
"geometrical resonances"llassociated with closed or nearly-
closed orbits must be taken into account. The existence of
such orbits leads to periodic or quasi-periodic features that
play an important role in the theory, as will be seen below.

The rapid variation of the glory pattern with N is related with
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the closeness of approach to periodic orbits. 1In view of the
reflection damping (19), only the lowest closed orbits need to
be considered. For

N= [ cs(Mu/u8)]™! »1.33007, (20)

a tangentially incident ray gives rise to a closed orbit, a
regular star-shaped polygon of 48 sides inscribed within the
droplet (fig. 6). The resulting periodicity with period 48
simplifies the discussion, so that the value (20) of N, which
is within the range of variation of the refractive index of
water in the visible spectrum, will be employed from now on.

9. Dominant Debye Terms and Their Physical Interpretation

What types of contributions from higher-order Debye terms
do we expect to be dominant in the glory, and from which terms
do they come? It suffices to consider the case of exactly
backward scattering, 8 =N, and the contributions due to incident
rays in the edge domain.

One type of contributions generated by such rays is that
of surface waves, which we already know to be important for
p=2 (van de Hulst's term). In view of the damping factor (9),
we may restrict ourselves to those surface waves that emerge
closest to the backward direction (within less than one short -
cut). The corresponding total angle described along the
surface is given byl1

O\<§P<9{= 206’3’1('1/N), (21)

and the relative surface-wave contribution of different Debye
terms11 should be the larger the lower the corresponding ZFV
since the damping exponent, according to (9), is proportional
to Zp (ignoring the additional reflection damping (19)).

For N given by (20), we have Cz4=0, corresponding in
geometrical-optic terms to a higher-order "glory ray". This
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actually means that, for p=24, the backward direction coincldes
with a geometrical shadow boundary from which further suxface
wvaves are launched, i.e., t lies on a Fock transition region
(Sect. 7). Still disregarding reflection damping, we would
expect p=24 to yield a dominant surface-wave type contribution,
followed, in order of decreasing importance, by the values 6f
p shown in the fourth quadrant of fig. 6 (p=37, 2, 15,...).

Due to the exact geometrical periodicity associated with (20),
further values of p are obtained by adding multiples of the
period Ap=48. However, the effects of reflection damping (19),
neglected above, become increasingly more important for higher p
and may alter this ordering.

Apart from p=24 (mod 48), no other "glory rays" arise from
the edge domain. However, we may ask about possible "back
effects" at 6 =N of rays emerging "beyond" ® =N (in terms of
their total deflection angle). Although® =% is then in a shadow
region for these rays, they may still have sizable back effects
if an intensity enhancement occurs close to their‘'direction of
emergence. This 1s precisely what happens27 for directions
close to a rainbow angle, where there is an amplitude enhancement
by a factor of ~P1/6 (Sect. 7(v)).

The angle of incidence 91R associated with the rainbow in a
Debye term of order p (rainbow of order p-l) is given by

cos O = [(N2-1)/(p? -] (22)

For large p, this corresponds to incidence in the edge domain
( @4 —> N/2 ). For rainbows that turn their dark side
towards © =M, the rainbow angle 9 P associated with a bebye
term of order p lies at a deviation =N~ 9 away from

Erip

the backward direction, where
Eap = 1%yl = (N2 1)/ (1), (23

and ; is defined by (21), now extended to negative values.
Thus, for large p, negative values of Cp represent approxima-
tely the deviation between 8= and the rainbow angle for the
pth Debye term. '

On the shadow gide of the rainbcw, the amplitude becomes




21.

exponentially damped, and the damping exponent at §=7 for
large p is proportional to (cf. (L1} and (25) belowl
ﬁ(ER, /1;)3/2,«: ﬁ(n; |/P )3/2 ; thus, as p increases, the
angular width of the rainbow region also increases, and the
effect of the rainbow enhancement may be felt at larger
deviations from the rainbow angle.

This leads us to expect that significant contributions
to the glory from the shadow side of a rainbow occur in Debye
terms of order p such that

Gy = - 40y (med 21), -0,¢ £p< 0, 4

and also that the relative importance of these contributions
decreases as I‘CPI/P increases. The corresponding values
of p (modulo 48) are shown in the third quadrant of fig. 6,
where the ordering is qualitatively indicated by the lengths
of the arrows (p=46, 11, 33,...). Again, this disregards the
effects of reflection damping.
In order to test the validity of our expectations, we

have computed the contributions of different Debye terms to

ISM@)* ana to [SB()* (cf. (13)) for =150, 500 and
1,500, by numerical summation of the corresponding partial-
wave expansions. The results are shown in fig. 7, where all
terms that contribute up to ~0.1% are included. Inspection
of this figure and of fig. 6 shows that the dominant p values,
as well as their ordering, are generally in good agreement
with the above discussion. Discrepancies are due to several
factors that were not taken into account: (a) Reflection
damping effects (19) affect the ordering: large p values are
damped, favoring lower-p contributions. According to (18},
. the ordering is most strongly affected for low values of ﬁ .
(b) For the rainbow terms, the deviation from the rainbow
angle differs from |§P| by the correction term in (23), which
is significant for lower p: e.g., in fig. 6, the rainbow angle
for p=11 lies only ~3° away from the backward direction,
rather than ~7.5° away. It follows that p=11 should give
the leading rainbow-type contribution to the glory. (c) For
low ﬁ , the angular width of the transition regions increases,
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so that lower-p values may prevail, in spite of larger damping
parameters. Thus, for p=7, the backward direction lies deep
inside the rainbow shadow for B =1,500, but it lpes within the
principal rainbow peak for P=150, so that the exponential
damping (11) is not yet effective at this P .

10. Asymptotic Representation of the Dominant Terms

Our next task is to justify the physical interpretation
that was proposed for the dominant Debye terms. For this
purpose, the asymptotic representations obtained by the
modified Watson transformation are compared with the exact
solution in some typical cases.

i) Rainbow contributions

The Chester-Friedman-Ursell method mentioned in Sect.

7(v) may be applied not only to the primary bow28, but also to

a rainbow of arbitrary order. The magnetic rainbow contribu-
tion to the pth Debye term at © =T (cf. (13)) is given by>’

S:,R(ﬂ) - ,3,1“4(-)(3“)/2 x N K‘5/3 P/XP (k A)

M I . K;/; _ -113 M - NIRRTE ,
XL [ b + O] AL(K*E) - X [+ BG] ALk :)(}25)
where K = 2B and s is an integer; furthermore,

spve ) = 3 [PN(esoit ol - (i am0l)],
3

where 7\,=fbsi'n9f|=Nﬁsi'n9;and A= ﬁsim@ﬁ': NP sin 9'5
are the two saddle points in the complex;l-plane (cf. (10));
the Chester-Friedman-Ursell coefficients pg'p, qg'p are also
determined by the saddle points. A similar expression is
found for the electric contribution. Deep within the shadow
side, one may employ (11) and, to first order in 1/p for large
p, one finds Ztsltpl/P , yielding the damping exponent
mentioned in Sect. 9.

In particular, for p= 11 (dominant rainbow contribution
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to the gloryl, one gets

M -3 M -2
Pou ® 4.4 x40 N, C}o,44"’4'5)‘40 ,

?oe,u % 1.3 x1074 ) “rg,u ~ 1-0x10'2, (27)

so that, unlike the situation found for the primary bowzs, the

Airy approximation is inadequate for both polarizations. This
is due to the sharp variation of the Fresnel reflection
coefficients in the edge domain.

On the other hand, the magnetic rainbow contributions are
larger than the electric ones for all p, as may also be notic-
ed in fig. 7. This is so because the Fresnel reflection
coefficient is always larger for magnetic (perpendicular) po-
larization.

Table I shows a comparison between the results from (25)
and the exact partial-wave sum for p=11l. The physical inter-
pretation of this Debye contribution as a rainbow effect is
clearly justified. The deviations arise from corrections
not taken into account, including the effect of higher-order
Chester-Friedman-Ursell coefficients.

ii) Surface-wave contributions

It is quite difficult to obtain accurate asymptotic
representations of the surface-wave contributions for large
p in manageable form, because they correspond to residues at
Regge-Debye poles of order p+l. In general, one is led to
representations in terms of Fock-type integrals (Sect. 7(iv))
which, when evaluated by residues, lead to these surface-wave
contributions. One may take advantage of a "geometrical
resonance", e.g. for N given by (20), to sum over the associated
periodicity: for (20), this means summation over the period
Ap=48. Due to the periodicity, the sum is over surface waves
which all have the same damping angle Zp(Zp.=Z if p's p (mod
48)).

The summation restores some features of the origiﬁal Regge

p

poles (before the Debye expansion): the resulting poles are
all simple. Also, by suitably distbrting the path of tntegra-
tion, only surface-wave-type poles contribute. However, the
price one pays is that each Regge-Debye pole is replaced by a
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cluster of simple poles (in the present case, 48 of them). The
poles cluster around

: Al3 .
Ap =B+ ¢! (B/2) "xn - C(28)

where -x is the nth zero of the Alry function.

For N given by (20), the residue contribution from the
neighborhood of (28) associated with all Debye terms p=p,
(mod 48) is, at O =T,

(- fs +4)/2 mxp(-iwle)(p/Z)WB

2xp(-11 iTh, /u8) axp (iBEp)

Y7 . M3 1/3
e
X%Z uxp (2R /48) MP[IL - “np (P2) Bp) ,
heo Anh + Xak An (29)

where 8¢ is an integer,ql=l for magnetic polarization andTl=N2
for electric polarization, X0 % is the solution near x=x of
!

ALI("'X—)/AL (-'X-) =z - Qi‘nB (NZ“1)4/2/Yz (5/2)4/3
x tam [ (N2-1)"*p - w(2k+13)/96], o)
and

Ang = Ail(-x 80 Ang= Ai(-x 4). (31)

Within a cluster, the summands in (29) are slowly-varying,
resulting in a considerable amount of cancellation among the
terms, specially at large values of n. The magnitude of each
term is comparable with that of Van de Hulst's term (15); in
particular, as mentioned above, the associated damping exponent
is of the order of 51/3

Numerical comparisons with the exact results were carried
out for the "glory-ray" term p,=24, for which Zpéo. For this
purpose, the parent (Fock-type) integral from which (29) is
derived was employed , retaining correction terms one order
higher in p‘l/ 3, The results near p=1,500 are given in Table
II. Again, they show that the proposed physical interpretation
of the associated Debye contributions is justified.
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11. Discussion of the Glory Pattern

We can now interpret the results obtained in numerical
studies of the glory pattern (Sect. 4) in terms of the dominant
Debye contributions.

The glory pattern results from the interference among
many Debye terms. For each term, rapid variations with ﬁ
arise mainly from the phase factor assoclated with the corres-
ponding optical path through the sphere. According to the
above discussion, this optical path, for the pth term, is
composed mainly of p shortcuts through the sphere at an
angle of incidence close to the critical angle. Each shortcut
contributes 2(N2-l)1/2ﬁ to the phase. 'IfP changes by

Ap = 51/ (22VN?%-1) = 0.844 (32)

for N given by (20), the phase of the dominant Debye terms in
fig. 7 changes either by X or by an amount very close to TC
(mod 2%). Thus, we expect a quasi-periodic behavior (not an
exact periodicity) with the quasi-period (32), which is in
excellent agreement with the observed value (Sect. 4(i)).

Figs. 8 to 10 show the behavior of ,SM(ﬁﬂz’within a
quasi-period39 near f3 =150, 500 and 1,500. In each case,
the exact solution (curve in full line) is compared with the
contribution from the two leading Debye terms in fig. 7
(dash-and-dot curve). We see that the interference between
these terms, respectively the leading surface-wave term and
the leading rainbow term, is responsible for the slowly-varying
main humps within a quasi-period (Sect. 4(ii)).

When we include the contribution from all Debye terms
indicated in fig. 6 (without summing over the period Ap=48),
we reproduce (curve in broken line) most of the main features
of the exact solution, except for the sharp superimposed spikes
(Sect. 4(1ii)). As more and more Debye terms are included,
the approach to the exact result may be likened to the way a
Fourier series approaches a periodic function.

Finally, when we carry out the summation over the period
Ap=48, the spikes are recovered (fig. 10, inset). We conclude
that the spikes are geometrical resonance effects assoctitated
with the quasi-periodic orbits with Ap=48 (cf. fig. 6), their




26.

sharpness being due to the very long optical paths involved.
It also follows that the spikes should be the first to
disappear when absorption is taken into account by adding a
small imaginary part to N. This has indeed been observed17
(sect. 4(iv)).

Both the spikes and the other interference osctllations
occur at different values of B for SM(p) and SE(B) , so
that the total intensity |S1(p;ﬂ)'z (cf.(13) shows additio~
nal structure due to the interference between magnetic and
electric contributions (cross-polarization). One must also
take into account the interference with the direct-reflection
term (p=0), which has been omitted in figs. 8-10; its effect
is small, except possibly at the minima.

Both the order of the leading Debye term and the nature
of the leading contribution to the glory undergo considérable
changes with.ﬂ within the range of values of ﬂ for which glories
are observed. The order of magnitude of the surface-wave
contribution is exemplified by that of the Vande Hulst term
(15), which yields, as a very rough estimate,

1s” ()~ ap® axp(-bp1"?), (33)

2, Jus

with a and b of order unity. On the other hand, for p=l11,

the argument of the Airy functions in (25) is small (£1) for
B < 40" , so that, taking into account (27), one finds,
within this range of B,

\SM (P,Tf)lz"'cﬂw” (1 +dp*3), (34)

1,R

where c~10"°, d~10%. It follows from (33) and (34) that,

for B in this range, the magnetic contribution from p=2 domi-
nates over that from p=11 for ﬁfvlﬂz, but the reverse is
already true for ﬂfv 5x102, as is also clear from fig. 7. How-
ever, (34) only holds while © =7 is still close to the
rainbow peak; as P increases to values & 104, the ‘width of the
rainbow shrinks and © =7 gets deeper into the shadow, where
the damping eventually becomes exponential in f (cf. (11)),
i.e., stronger than that of (33). For still higher B , both

terms eventually get damped below the geometrical-optic
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contribution (14]. On the other hgnd, according to (18], the
effect of reflection damping tn the edge domain decreases as
B increases, so that it has less influence on the oxdering of
Debye contributions; thus, for p== 1,500, the ordering of
magnetic terms is closer to that shown in fig. 6.

Now let us briefly discuss the angular distribution
and polarization of the glory rings. We restrict ourselves
to the domain where u = P€ = p (N-0) is not D 1 (first few
glory rings). Since both rainbow and surface-wave contributions
arise from the neighborhood of A= in the A-plane, we may
employ the asymptotic expansions (17) of the angular functions
(with A replaced by ﬂ). For small enough £, the coefficients
of these angular functions may be replaced, as a first approxi-
mation, by the values corresponding to €= 0, i.e., by the two
terms of (13), leading to

ji' S, (p,7-¢) ~S"(p) Jdl(u)+ SEBIT, (W), u=pe, (35)

where Jq is Bessel's function of order one; S, 1s obtained by
interchanging M and E and changing the sign. A similar ex-

pression was given by Van de Hulst7, whose coefficients c

M 1

and Cy correspond to 28 and ZSE,_respectively.
The angular distribution of the glory results from the

interference between the two terms of (35). The squares of

the two angular functions are plotted in fig. 11. Beyond its

first zero, the contribution from Jl(u)/u becomes

very small, so that S1 is dominated by magnetic contributions

and S, by electric ones, as was mentioned in Sect. 4. Setting
. 2 .
AJ‘(P,G)‘-‘: IS:;(?,GH (4=1,2), (36)

the total scattered intensity, for natural incident light
(sunlight), is proportional to il + 12, and the degree of po~
larization of the scattered light is

P(p,0) = (hy-i,)/Cig+in). (37)

The angular distribution and polarization of the glory
therefore depend on the relative magnitude and rhase of SM(p) and




28.

SE(BI. gince hoth of them undergo considerable variations as
a function of B, so do the angular distribution and the
polarization, as was verified by pave® (Sect. 4]). The shape
of the angular functions in fig. 11 shows that, if SM and &°
are of comparable order of magnitude, the first dark ring
will be hazy t.e., it will not correspond to a very large
depression in the intensity, as has indeed been observed (Sect.
4). From (37) and fig. 11 we see also that the outer rings
tend to be mainly perpendicular-polarized or mainly parallel-
polarized depending on whether SM or SE predominates at the
value ofp‘under consideration; however, the polarization also
varies with 6.

According to Sect. 10(1), magnetic polarization is dominant
for rainbow contributions, whereas, according to (29), electric
polarization would tend to dominate for surface-~wave contri-
butions, Since the leading contribution to the glory arises
from surface waves for p~102 and from rainbow terms for ﬂ~103,
it follows that the dominant polarization in the outer rings
tends to be electric (parallel) for B'Vloz, changing over to
magnetic (perpendicular) for B~103. This agrees with observa-
tions quoted by Van de Hulst7, as well as with Dave's18 results
(Ssect.4).

Detailed computations of the scattered intensity in other
directions have shown that it also undergoes rapid fluctuations
as a function of B , although the amplitude of these fluctua-
tions decreases rapidly as we move away from the backward
direction. These "ripple" effects represent an attenuated
version of the gloryll, and they may be treated in exactly
similar terms. The same is true for the ripple in the total

cross—section40.

12. Conclusion

The glory is a highly intricate scattering effect, that
results from a large number of physical effects acting together:

a) Edge effect: The glory is due to indident rays in the
edge domain (8), t.e., close to the top of the barrier in the
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effectiye potenttal - both above the top, corresponding to
rays that hit the sphere within Fock's penumbra regton, and
below the top, corresponding to rays that reach the surface
by barrier penetration.

b) "Orbiting": Such rays penetrate within the sphere
close to the critical angle and undergo nearly~total internal
-reflection, so that they take many turns around the sphere
before being appreciably damped - an effect related with
orbiting. Thus, many higher-order Debye terms contribute.

a factor rv‘ﬁdlz that arises from axial symmetry and from the
peripheral nature of the leading contributions to the glory.
d) Cross-polarization: Interference between contributions

of comparable magnitude from electric and magnetic polarizations
leads to additional structure in the glory pattexn.

e) Surface waves: This 1is one of the two types of leading

contributions; it arises from Regge-Debye poles. Besides Van
de Hulst's term, surface waves that have taken additional short-
cuts through the sphere must also be included. Particularly
important as a limiting case are "glory-ray" contributions,
such as that from p=24 for N given by (20), which yields a
Fock-type term.

f) Complex rainbow rays: The other type of leading

contribution is that from complex rays on the shadow side of
higher-order rainbows formed near the backward direction. These
complex saddle-point contributions are important both due to

16 and due to the flattening of
the rainbow peak for higher-order rainbows. -

the rainbow enhancement by ~ ﬁ

g) Geometrical resonances: Closed or nearly~closed quasi-
-periodic orbits are related both with the quasi-periodicity

of the glory pattern and with the formation of very narrow
31

resonances, the glory "spikes". As is well-known™~, periodic
orbits play an important role in the semiclassical approach to
quantization and in the tratment of bound states and resonances.
h) Competing damping effects: The evolution of the glory
pattern and polarization as a function of B and © reflects the
interplay of several damping effects that compete to determine

whether the leading term is electric or magnetic, of surface-
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wave type or of rainbow-type, and the ordering of Debye contri-
butions. Surface vaves aye damped by radiata\.on in tangential
directions, rainbow terms are damped as complex rays in the
shadow of a caustic, and all terms are damped by the effect of
multiplevinternal reflections. Surface-wave effects tend to
predominate near ﬁ~4cf and rainbow effects are dominant near
p~103.

one or more of the above effects may play a significant role
in other fields of physics. The glories that have been observed
in atomic and molecular scattering41 are usually due to the
existence of glory rays, and the effect of axial focusing must
be taken into account42. According to the above discussion,
axial focusing is to be expected in processes dominated by
peripheral interactions of high angular momentum. This situation
is apparently found in nuclear scattering involving heavy 1ions;
it has been suggested that surface waves, as well as complex
saddle points, also play a role in this case43.

The glory shows for the first time in optics that diffrac-
tion effects due to complex orbits (surface wvaves, complex
rainbow rays) may be strongly dominant over geometrical-optic
ray contributions (real orbits). The moral this suggests is
that complex extremals of Feynman path integrals may have to

be taken into account in more general situations31'44'45.
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TABLE I - Comparison between é?l(s,wl (exact] and S?IIR(Bl

("rainbow" term)

8 Exact Asymptotic
1,500.1 -333 -~ 7941 -304 ~ 8231
1,500.2 - 860 - 4341 878 - 81
1,500.3 . ~-249 + 8241 ~-289 + 8291
1,500.4 -690 - 5141 -681 -~ 553i
1,500.5 719 - 4744 752 ~ 4541

TABLE II - Comparison between S§4(B,n) (exact) and the "surfa-

ce-wave" term (both summed over Ap=48)

B Exact Asymptotic
1,500-1 183 - 2311 214 - 1931
1,500.2 _250 - 1021 ‘245 - llli
1,500.3 52 + 2441 38 + 255i
1,500.4 205 - 1871 229 - 1781

1311

11500.5 _254 1171 -236
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FIGURE CAPTIONS

FIG. 1 - An incident beam associated with the plane wave front

FIG.

FIG.

FIG.

FIG.

FIG.

4 -

5 -

6 -

ii' around a "glory ray" ABCDE is transmitted, after
one internal reflection, as a diverging pencil (tt' =
transmitted wave front) with a virtual focus at F. Due
to axial symmetry for backscattering, the locus of
virtual foct is the focal circle FF', which generates
toroidal wave fronts, giving rise to the axial focus-
ing effect .

According to Van de Hulst's conjecture, the glory would
be due to tangentially incident rays penetrating at

the critical angle Oy and taking two shortcuts AB and
CD, linked by pieces of surface waves such as TlA +

BC + DT,. The total angleo(+P +¥ described by the

surface waves would be =14°.

The effective potential seen by a partial wave is the
sum of a square well with the corresponding centrifugal
potential, giving rise to a barrier with a cusp at the
top. The edge domain (8) corresponds to values of the
angular momentum A such that the energy E is within a
small neighborhood of the top of the barrier.

The two types of "vertices" associated with the inter-
action of a critically incident ray with the surface

of the sphere. The angle ¢ described as a surface wave
may have any value.

Behavior of the saddle points in the A ~plane around

a rainbow angle GR. As 8§ approaches 8, from the lit
side, two real saddle points (real rays) approach each
other, colliding at 6= GR and moving away along
complex-conjugate directions for © on the dark side.
The complex ray on the dark side arises from the lower
complex saddle point.

Path of a tangentially incident ray for N given by (20).
The values of p at each vertex are indicated next to
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the arrows, which point in directions corresponding

~to the angles tp n (21) and (24) (e.g., §;,=-7.5°).

rainbow terms; ~==-~ Surface~wave terms. The

ordering of terms by increasing Cp (surface waves)
or |Xp[/p (rainbow terms) is qualitatively indicated
by the lengths of the arrows. The actual rainbow
angles 9 Rr,p are somewhat shifted from the corres-
ponding |C |- The direction corresponding to O 11
is indicated, since &R 17711 < &R 46/ 46, the order-
ing is inverted in this case, and p=11 is the leading
rainbow contribution.

FIG. 7 - Contributions from Debye terms of various orders to
1" (812 ana to |sF(B)| 2 for B=150, 500 and 1,500:
rainbow terms; =----- surface-wave terms. All

terms contributing up to 0.1% are shown. Forﬂ=150,
there appear some terms not indicated in fig. 6
(shown by =-.-.-).

FIG. 8 - Behavior of ISM(ﬁ)'2 within a quasi-period near
. p =150; exact; ~.-.- contribution from the two
leading Debye terms in fig. 7; ---- contribution from

all Debye terms indicated in fig. 6 (without summation
over Ap = 48).

FIG. 9 - Same as fig. 8, near P = 500.

FIG. 10 - Same as fig. 8, near p = 1,500. The spike marked A
is amplified in the inset, which shows the effect
of summing over the period Ap = 48 on the approach

to this spike: exact; =----- contribution from
all Debye terms indicated in fig. 6 summed over
Op =

? FIG. 11 - Squares of the angular functions .appearing in (35)

as functions of u.
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