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ABSTRACT

A scheme by means of which one can establish the connection
between form factors and charge distribution (for particles of
any spin) is proposed. Except for the nonrelativistic domain
our results differ from previous ones. Consequences of our
relations (some of them 1in agreement with experimental and

previous theoretical results) are briefly discussed.
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On the basis of some diffraction Models(l'z)

, the concep-
tually familiar notion of spatial charge distribution should
play a relevant role in the understanding of some features of
high energy scattering of hadrons. Since the implementation
of such models requires further hypothesis on the shape of the
charge and current densities, we found ﬁorth investigating, in
the relativistic context, the basis for the relationship between
form factors and electric charge distribution which is taken
for granted in the literature .

For spin 1/2 particles like the nucleon, the most commonly

employed relation is ‘(375!
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where Qséf)ls the electric form factor in the Breit
system and/ﬁQE?l) is the charge distribution.

As has been pointed before(l's) the above relationship is
clear only in the case that the recoil velocity in elastic
scattering is zero,i.e. in the limit where the nucleon mass is
very large (M-pOO) and the magnetic moment is held fixed.

In this paper we propose a new way of getting the desired
relationship, without making any assumption about smallness of
the recoil. Our result differs from equation (1) in two points;
first a different dependence of Gg for large ?'aand second a
(spin dependent) function of g?imultiplying G which is res-
ponsible for the fact that a Dirac electron (GE=1) shows some

properties characteristic of a particle of finite extension(7).

The method is easily extensible to particles of any spin.




Our approach is similar to that used a long time ago by

Weisskopf(s)

(in the case of free fields] and consists in - €
’ A
defining a correlation operator WWwhich would have the follow-

ing physical meaning

T\ - [l d) pER

or, in words, its expectation value in a state with one nucleon
at rest, should be interpreted as the probability of finding
charge simultaneously at two points in a distance gr

A first look at expression (2) suggests that the natural

A
definition of WV should be:

\;V = d";( \jo(x+) \.)o (.3(—) (3) "'
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where \l,@xi)is the formal nucleon charge density operator
at the point g = ()(o) i‘ig)and X o is an arbitrary instant.

Let us see now, how the use of equation (2) coupled with
the naive identification (3) allows us to establish the connec-
tion between form factors and charge distributions within the
nonrelativistic Schrgedinger theory. This can be achieved due
to the fact that, after the introduction of a complete set of

one particle states, equation (2) can be written as:
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By expressing the matrix elements% l\)“(x) I/Bb)> in

terms of the nonrelativ1st1c form factor(s)

, equation (4) will




lead after a straightforward calculation, to the desired
connection (equation (1) with Gy replaced by the nonrelativistic
form factor).
Let us consider now the expectation value of (3) in a state
'ﬁ:OJ A) of one proton at rest with spin s . By inserting
a complete set of states, within the relativistic context, we

get:

<o,»l W lo,A> = §/¢[‘§c(o,a|3°(w}«><~|\l(x-)hb(5)

Looking at (5), one can see that the interpretation summa-
rized by equation (2) no longer holds if one insists on the
naive identification (3). The prime reason for this is that
there are many contributions (experimentally accessible inne-
lastic channels) in (5),which wouldn't lead to any information
on what is the charge distribution of the proton and, conse-
quently, should not be included in the identification sketched
by equation (2). A close look at the procedure by means of
which one measures charge densities in the relativistic quantum
theory will allow us to abstract from (5) those contributions
which should be identified with the right hand side of (2).

The measurement of charge densities requires the control
of all momenta transferred to appropriate test bodies (from
an analysis of the change of the momenta one can infer about
the electric field produced by the charge distribution). It
is well known, however, that any experimental apparatus devised
to probe the particle charge distribution, disturbs the system
during the measurement (creation of pairs for instance(g)).

Due to that some care should be taken - a position first
advanced by Bohr and Rosenfeld(g) - in order to eliminate these

effects.




4.

From the previous remarks one has come to grips with the
guestion of which experiments can be interpreted as measuring
the charge of a system in a previously prepared state. The
answer is very simpie: in order to make ourselves sure that
all momenta transferred to the test body, were solely due the
eiectromagnetic field produced by the system to the probed,
the experimental outcome should be such that one has the same
system (which one wants to probe) at the initial and final
states.

The prescription of subtracting in any experiment, all
those effects which cannot be associated with the measurement
of the charge density of a proton, implies that the sole part
of (5) which can be given the interpretation of equation (2),
is the contribution involving just one proton in the interme-

diate states, namely:

f = x(o,alsa(%)bb‘i“)(ﬁ: 413610 8> N
a = [ P d)) o (%= £1)

Our expression (6) differs from an analogous one derived by

Weisskopf(s)

in the context of free field theory. One can
show that the difference stems from the fact that we are
subtracting those contributions associated with creation of
pairs out of the wvacuum.

In order to get the explicit expression for (6), in terms

of the Dirac and Pauli form factors, we take the usual para-

metrization of the current matrix elements(lO):
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Where V is the normalization volume (at the end we take the

continuous limit) and /3@ = \/M'?-# 8°

After substituting (7) in (6) we get, after a straightfor-

ward calculation, the following result:

y = =D

- {/sw‘? 2 4>
G‘({) .-_-_%ﬂx (i) 2 _
7 - Yom > "

where Ggéﬁ) =/:;({) _,_.f;?g@and -{ = WGW'. % )

is the square of the four momentum transferred to the nucleon

at rest.
The same calculations, as sketched above, can be done for
charged spin 0 particles. 1In this case we use the decomposi-

tion of the current matrix elements:
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where F is the eletromagnetic form factor and pPo = \/,,,,?_%’3'

(here m is the mass of the scalar particle).

The resulting relativistic connection with the effective

charge density will be:
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where now —f = QA . (m( — \/,,.,?.g. g" )

Our main results are summarized by equations (8) and (10).

The conclusions that can be drawn are the following:

a) The usual nonrelativistic connection, like equation (1),




can be obtained from ours by taking the limit of low trans-

>R ’4?? ¢
ferred momentum —{::.-’g << 9, where the recoil velocity ‘e
is negligible.

b) By loocking at (8) and (10) one sees that our results
differ from those in the literature (besides the different
-2

dependence of GE and F on i? ) by the presence of spin
dependent factors. The possible existence of such contributions

(3)

has been realized by Yennie et al (see for instance ex-

pression A.23 of ref. (3)). These terms affect the expression
for the mean square radius of the particle when expressed in
terms of the form factors. In the case of the proton we get

from (8):

<: Xﬁ1:> = 7;%%;3 -+ és\f%gsgfiggg a6 (11)

which differs from that obtained from (1) by the additional

term 3/4M‘{ It is worth noting that expression (11) was v

. obtained in ref. (3) by using a completely different line of

reasoning,
In the case of an electron, if one takes GEtél, one gets

from (l1) a value for the effective radius which is equal

(7)

to that obtained from Darwin's term in the hydrogen atom,

being thus in perfect agreement with experiment (Weiss-
(8) 3
M - Qﬂnq ) '

The mean sguare radius for the spin 0 particle can be

kopf's

results predict < »?

obtained from (10), giving:
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; 7.

and it is easy to see that if A @&)& 7 we get < )r.2> =0

and <;CV> = 46‘ both of which are in agreement with Darwin's
(11)

nonrelat1v1st1c corrections of a Klein-Gordon particle in

an external static field.
c) The short distance ()c—_-; |i’|-> (@) ) behavior of/OCX)

fixes the asymptotic (..-6 u@ml?] _>Qo) behavior of Gg(t),

or expllc1tly(12)
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From this it immediately follows that, if//57Cz) is suffi-
ciently smooth at the origin, then G falls off at least as
GE(t) a0 4/65’ . The asymptotlc behavior Gp(t) &2 4/€Q

© -0 € -
compatible, within our approach, with a nonsmooth behavior at

the origin (/(l) ;.\:,bo "At )

As a final remark we would like to point out that, for a
given Gg(t), the different short distance behavior of f)UL)
predicted by equation (8) (in contradistinction with that
obtained from (1)), might play a role in some predictions of
diffrative models. The implications of this to Chou-Yong

1 (1)

mode is presently being investigated.
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