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ABSTRACT

A variational version of the cellular method is
developed to calculate the electronic structure of molecules
and crystals. Due to the simplicity of the secular equation,
the method is easy to be implemented. Preliminary calculations
on the Hydrogen molecular ion suggest that it is also accurate

and of fast convergence.




The multiple scattering method has been applied
successfully to a wide rangesof solids, molecules and molecular
clustersl-z. However there are some molecular geometries where
the muffin-tin potential has to be improved considerably if one
wants to obtain an electronic structure witha reasonable degree
of physical realisms. The unsatisfactory features of the muffin
~tin approximation applied to open structures are already known
from ﬁrevious calculations of electronic structure of solids4.
For open structures, the muffin-tin approximation is poor because
of the large volume where the potential is constant. To circuﬁ-
vent this limitation, it is becoming common practice to overlap

the spheres circumscribing the atoms®

, thus minimizing the bad
effects of a constant potential in a much extended region. This
procedure improves the results considefably, as examplified by
"the case of the ion Hz+ to be discussed below. The extension
of the multiple scattering ﬁethod to non-muffin—tin potentials,
that has been tried by some authors, is difficult and costly to
implement6. In preference to the methods which deal withmuffin
-tin potentials, we suggest in this letter a new approach to the
problem of finding the one electron solutions of the Schroedinger
equation for molecules and crystals. Our starting point goes
back to the Wigner-Seitz-Slater cellular method7, where the so-
lution of the boundary condition problem is reformulated by us
as a variational principle. A critical test of the model is made
by carring out preliminary calculations of the Hydrogen molec-

. + . . .
ular ion H2 « As it will be shortly seen, one important asset

of the present method is the elimination of the constant poten-




tial region of the Multiple-Scattering method. In this respect,
the good features of the overlapping-spheres model can be also
expected in the present case. |

The present method has a resemblance to the one
proposed by Antoci and Nardell_is. Theirs and our method have
a common starting point, which is a variational expression for
the energy eigenvalueg. While Antoci and Nardelli use spherical
cells centered at the nuclei, our cells can have any shape, which
is an asset for open structures. On the other hand, in the
interatomic region, Antoci and Nardelli expand the wave function
in terms of functions which are regular at the origin and at
infinity. Thus, in the interatomic region, the wave function
is not an exact solution of the Schroedinger equation for the
energy eigenvalue. In this respect, the method of Antoci and
Nardelli is an extension for molecules of the augmented - plane
wave method for crystals, and one cannot expect rapidly con-
verging wave functions. The method we present below is dif-
ferently motivated: w;e attempt to formulate the cellular method
in a variational way. Thus we add to the f‘lexibility of the
cellular metho-d a much faster convergency.

According to  the original idea of the cellular
method, we start by decomposing the molecular or crystal space
in cells, eachone surrounding each atom or interstitial region.
In the simplest form of the cellular method, “‘the true potential
is approximated, within each cell, by its spherical average with

respect to the center of the cell. In this letter we will

confine our attention to spherical cellular potentiais. By




solving a central-field problem within the cell i, we generate
a trial function wi , to be used in a fully variational expres

sion for the energy eg
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where we are adding volume integrals in each cell i and surface

integrals in each boundary Sij between cells i and j . In

the equation (1), V 1is the potential and anwi means the
normal derivative to the cell surface Sij , outwards from the
cell i. Thus, at Sij’ ani and anwj have opposite directions.

Equation (1) can be written as
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€ 1s always real for any trial wave function, thus we can vary

B
wi to obtain the conditions for € to be stationary:
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which imply that the wave function and its normal derivative




have to be continuous through the cell boundaries. To proceed
the derivation of the secular 'equationq the wusual spherical

harmonic representation of the trial function wi is assumed

>
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where iA( T) = 2 ( r, A( ri) (4a)
where A = (2 ,m) is the spherical harmonic angular momentum

index. The functions Rzo( r) are the solutions of the radial
- Schroedinger equation for energy . € and potential V(r), which
are regular at the origin or decreases exponentially at infinity.
YA( fi) are spherical hafmonics and the coefficients Ail are
to be determined. If the trial function is a propagating state
in periodic lattice, the coefficients AiA in different cells
are related by the Block Theorem. The variation of the trial
- function w; in equation (2), assuming the representation given
by equation (4), leads fo the following secular equation

) <ix|HJi'a'> Ajiyr = 0 (5)
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where H 1is a matrix whose elements are
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This is a hermitean square matrix where the diagonal elements
are all nulls.

As a test of the method we consider the Hydrogen
molecular ion H2+. This molecular geometry can be partitioned

into cells, by first considering a sphere of radius R0




enclosing the constituent nuclei and centered at the midle point
between them. The outside region of this sphere defines a cell
that extends out to infinity (outer cell). The inside region
of fhis sphere can be divided in two equivalent cells by the
inscribed portion of a plane perpendicular to the 1line joining
the nuclei through the midle point between them (atomic cells).
The averageducellular potentials within these cells can be re-

presented, in Rydberg units, as

_ 2 2
Va(r) = "—r— - _1_2— ) (7a)

within the atomic cells, and

v (r) = —-i— .t > R (7b)
in the outer cell. R is the internuclear distance. In general
Ro will be an adjustable parameter. In order to improve the
physical realism of our potential model we choose Ro in a way
that the averaged potential is continuous at the intersection
of the outer sphere with the plane dividing the atomic cells.
We generate the functions Rio(r) by numerically integrating
the radial Schroedinger equation. For each trial value €,
the outward and inward integrations are perfgrmed respectively
for the potentials Va and Vo . The surface integrations in
equation (6) are performed according to the usual procedure of
numerical integration, where the integrand is evaluated at a
finite number of points and summed with appropriate weight -
-factors. The secular matrix is parametrized in terms of ¢

o
The one - electron energies are given by the zeros of the associ

ated determinaht.




Insert Table I

In Table I is shown a convergence study of the lcg level of
H2+ (R = 2.0 a.u.) as function of the number of terms in the
cellular expansion and the number of pointé used to perform the
numerical surface integrations at the plane and at the hemi-
spheres. The cellular representation includes, in each cell,
spherical:harmonics whose maximum angular momentum is 2max

Table I has two interesting features: first, our
variational version of the cellular method shows fast convergence
with respect to 2. For zmax = 2 the solution is already
convergent within tenths of eV , being fully convergent for

L = 4. Secondly, for a fixed value of lm » the solution

max ax

converges if enough points are used for the surface integrations.
When this number of points is reached, the solution is no longer
sensitive to the number and location of the points on the cell
surfaces. It is well known that the Slater cellular method,
based on exact point matching is an accurate technique to deter
mine one - electron eigenstates in crystals7. However, many
authors have pointed out that the method is not practicallo,
since a too high value of zmax is needed in the cellular
expansion to ensure a reasonable convergence. If the matching
points sample only limitated portions of the cell surfaces, as
originally suggested, it is clear that the eigensolutions cannot
be derived from a variational principlell. Energy eigenvalues

not determined variationally demand wave functions with high

order spherical harmonics. On the other hand, table I shows

that, once the integrations in expression (6) are performed in
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an accurate way, the energy converges even for wave functions
with just a few spherical harmonics.

Insert Figure 1

In figure 1 we show the results of our calcula-
tion for the ground state energy of .H2+ , as a function of the
internuclear distance (empty circles). The results of a
multiple-scattering calculation12 (full circle), a overlapping
sphere (0S) calculation13 (triangle), and the exact solution14
(solid curve) are also shown. For small internuclear distance
the results of our variational cellular method are 1in perfect
agreement with the exact éolution. In this latter case, the
averaged spherical potential within the atomic cells is a good
approximation, since the cells have small size. Other authors
that have been applying different versions of the <cellular
-method to crystals, have already pointed out the accuracy of the
15

method for close packed.structures The arrow in Fig. 1 shows

the exact equilibrium internuclear distance, whichis in perfect

agreement with our result. For internuclear distances greater
than 1.5 a.u. , our results agree with the exact solutions
within 0.05 Ry . Our results presented here could be improved

still further by going beyond the standard spherically averaged

cellular potential mode110717,

The deviation of the multiple
scattering result from the exact solution is due mainly to the
failure of the muffin-tin potential approximation.

To conclude we point out that the proposed vari-

ational cellular method 1is suitable to deal with complicated

structures, since no assumption is made a priori about the shape




of the cells.

We would like to thank Dr. Frank Herman for

originally stimulating our interest in the cellular method.
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TABLE I

Convergence of the lowest energy level of H2+ for the
. equilibrium internuclear distance R = 2.0 a.u. . 2max
is'the maximum spherical harmonic angular momentum in the

cellular expansion. Points. is the number of points used

for numerical integration in the hemispheres and in the

plane.
Elog (Ry)
2Hla.)(
Point 0 1 2 3 4 5
1 ~1.900 -2.105
, 2 -1.900 -2.097 =-2.182  =-2..438
3 -1.900 -2.084 =2.150 -2.167 =-2.240
¢ L -1.900 -2.080 -2.142 =-2.141 -2.181 -2.989
5 -1.900 -2.079 ~-2.139 =-2.140 =2.167 =2.527
7 -1.3800 -2.978 -2.136 -2.142 -2.159 -2.253
g -1.800 -2.077 ~2.135 -2.143 -2.157 -2.191
12 -1.900 -2.077 -2.134 -2.1u44 -2.155 -2.155
15 -1.900 -2.077 -2.134 -2.145 -2.155 -2.155
20 -1.900 ~2.077 -2.134 -2.145 -2.155 -2.155




FIGURE CAPTIONS

Figure 1 -

Ground state energy of H2+ as a function of the

internuclear distance. The multiple - scattering
calculation (full circle ) the overlapping-spheres
calculation (triangle) and the results of the
cellular method (empty circles) are compared with

the exact solution (solid curve).
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