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1. INTRODUCTION

The quantum-electrodynamical treatment of the emi-
ssion of light by an atom has been strongly influenced by
Weisskopf and Wigner's early contributionl to this subjet.
While their work was highly successful in accounting for the
observed line shape, several disturbing theoretical questions
concerning the underlying assumptions remained unsettled:

(1) An initial state for the system corresponding
to an excited atomic eigenstate with no photons present was
assumed, which seems quite unphysical. The state preparation
and the dependence of the decay on the excitation should be
discussed.

(1i) It is well known that the exponential decay
"Ansatz" cannot be valid for all times, although deviations
from it are expected to be extremely small for 1long-lived
decaying states such as the atomic ones. However, the range
of validity of the exponential decay law should be determined.

(i1i) The state space was restricted to a two-le-
vel atom and to the vacuum and one-photon sectors, without
any indication of how to proceed in order to improve the
approximation. For such a basic problem as this one, one
should start from a clearcut formulation, and a systematic
procedure for deriving corrections to the Weisskopf-Wigner
approximation should be given.

Measurements of the Lamb shift "~ in hydrogen
provided a sensitive experimental test of the predicted line

2

shape. It was remarked by Lamb“ that the Weisskopf-Wigner

line shape disagrees with experiment in this case if the usual




minimal-coupling interaction Hamiltonian is employed, and
that one must use instead the interaction - er.El, where

El is the transverse electric field. As will be seen below,

the discrepancy is orders of magnitude larger than the
present accuracy in the measurement. Since the minimal-
coupling Hamiltonian is widely employed in quantum electro-
dynamics, this discrepancy should be resolved.

An extensive study of the line shape problem was
made around 1950 by Heitler, Arnous and collaborators3’4’5.
They applied a dressing transformation in order to go over
from "bare" states of the system to physical states. They
began3 by imposing unphysical constraints on the dressing

transformation;‘later‘l’5

» these constraints were removed,but
they employed a cumbersome formalism, and their attention
was focussed on the evaluation of radiative corrections to
the resonant term in a transition between two atomic states.
The effect of nonresonant terms was not considered, and
there was no discussion of the time development of the
system. Similar remarks apply to Low's6 covariant S-matrix
treatment.

The relationship between time evolution and the
analytic properties of the S-matrix as a function of energy
has been clarified in nonrelativistic potential scattering,
where decaying states can be described in terms of
propagators associated with complex poles on unphysiéal
sheets’. This has also been verified in some models of e
unstable particles in quantum field theory.

The present paper is a survey of results that were

recently obtained8 in a ﬁéw treatment of the 1line shape

problem. We deal with a nonrelativistic hydrogen atom - :f




interacting with the quantized radiation field. This is the
simplest and best-known atomic system; the corresponding exact
transition matrix elements including retardation have been
recently determined9 and they lead to an extremely simple
analytic structure of the transition probabilities (Sect.2).

We employ Van Hove's10 resolvent operator approach.
An outline of its main features is given in Sect.3. In Sect.
4, we discuss the physical consequences of some of the
approximations employed in previous treatmentsll, where
various terms in the Hamiltonian are omitted or simplified.
We proceed by successive approximations.

We begin with a simplified multi-level model in
which "counter-rotating” terms are omitted. This eliminates
persistent perturbation effects in the sense of Van Hove
(incuding self-energy and dressing effects), and leads to a
decomposition of Hilbert space into sectors, such that the
model becomes exactly soluble in the sector of interest.
Unlike previously solved models, transitions from the reso-
nant level to other excited states are taken into account.

Employing the exact transition probabilities of
Sect.2, the resolvent is explicitly obtained and its
analytic behavior is found (Sect.5). This allows one to
describe the time evolution of the system. In particular,
we discuss the decay of a Weisskopf-Wigner initial state
and the dependence on the excitation in the scattering of a
wave packet, determining the range of valid@ty of the
exponential decay law within this model (Sect.6).

The effect of adding back the "counter-rotating”

terms is considered next. In order to remove the associated

persistent effects, we apply a generalized version of a




dressing transformation proposed by Faddeevlz, which is
defined order-by-order in perturbation theory (Sect.7). The
previously described resolvent operator method can then be
applied to the transformed'Hamiltonian, which generates the
dynamics of "dressed" states.

The results obtained by applying this procedure to
second order in the coupling constant, in dipole approxima-
tion, are described in Sect. 8. The dressing transformation
yields the nonrelativistic Lamb-shift correction to the
ground-state energy. The corresponding . Lamb-shift
corrections to excited-state energies appear, as they should,
in the poles of the resolvent on unphysical sheets.

' Finally, in Sect.9, we discuss the relation between
the minimal coupling and -eg.gl interaction Hamiltonians, as
well as the results they yield for the line shape. While
these results are equivalent when both the resonant and all
nonresonant terms are included, this is not so when, as is
usually done, only the resonant term is taken into account.
The background contribution due to transitions to all
nonresonant levels can be explicitly computed with the help
of the Coulomb Green's function. For the Lamb-shift transi
tion, the background correction to the minimal-coupling
resonant term is important, and it resolves the discrepancy
observed by Lamb. For the Lyman-aline, although the correction is
much smaller, it is the minimal-coupling resonant term that
yields better results. The evaluation of corrections to the

line shape should become of increasing importance as the

accuracy of Lamb-shift measurements increases.




2. The Model

We consider a nonrelativistic hydrogen atom (recoil
is neglected) interacting with the quantized radiation field.

The Hamiltonian of the system is (we take fi=c=1 throughout

H=H +H + Hp o + HL2 , (2.1)
with
Hy, = p’/2m - &%/, (2.2)
- _1 3 1.2 2
HF-S‘K fdr[(g) +(\~7x13)].(2.3)

where A is the vector potential in the Coulomb gauge, and
‘gl is the transverse electric field; the linear and quadra-

tic parts of the interaction Hamiltonian are respectively

given by
H =-£ A(r) (2.4)
I’l m Ea~ -~ I 4 -
2
He , =5— a%(). (2.5)

1,2 2m ~

We rewrite the atomic Hamiltonian in terms of the
hydrogen-atom stationary states In> ( where n stands for a
complete set of quantum numbers ) and the corresponding

energies EOn , as

Hy = & E In><n]| , (2.6)
n

where the summation is to be understood as integration for

eigenstates in the continuum. We will be concerned, however,

mainly with the discrete spectrum.

We employ the multipole expansion13




o0

1 o0 J
aw =22 5 Y |a&WVK ag A ko +hoc., (2.

JMX
Y=0 J=1 M=-J o)
in terms of the usual basisl3, where A represents an
“IM%
electric (T= 0 ) or magnetic("C= 1) multipole field of

order 2J. The operator (k) annihilates photons of

ame
frequency k with the set of quantum numbers

p =(amx), (2.8)

so that

[aﬂ(k), aﬂ:+(k')] = 5”' S x-xn. (2.9)

The field Hamiltonian becomes (after zero-point energy

subtraction)
o .
Hy =2, |ak x agTo agm0 . (2.10)
B P P
0
The exact matrix elements <n| B.§p|m> for the

nonrelativistic hydrogen atom have been evaluated by Moses9

To express H in terms of them, it is convenient to adopt

I,l1
"atomic units" for the frequency k, measuring it in units of
the inverse Bohr radius aB_l , 1. e., setting
-1 . _ 1
aB = Q0 m = l' (2-1 )

where o 1s the fine-structure constant. We then have

o0
HI,]_ - ﬁ E , J‘ dk Vx fnmp(k) aﬂ(k) |n><m| + h. c., (2.12)
0 . .

nmp
where we have defined a coupling constant ( in the units

(2.11) )

3 7

A= (e/m)?=w (%4 x 10 ) . (2.13)




Let n = (Nn, jn, Mn), where Nn' jn and Mn are the
principal quantum number, angular momentum and magnetic
quantum number of the state n , respectively. The matrix
elements fnt vanish unless they fulfil the following exact
selection rules, which follow from angular momentum and

parity conservation:

J 4+ 3, +3, = T (mod.2), (2.14)

Under these conditions, it can be shown8 that

| £ (k)l2 (derived from the results of Ref.9) is a

nm
rational function of k2 » of the following remarkably simple

form:

2 _ 2 2 . -p
fomp W17 = Popg 00 (kS 4k ) Pan (215

where ane(k) is a polynomial ( in kz) with real coefficients,
that are 6(1) in the units (2.11), pnm is an integer ? 4,

such that
| fnms(k’ |2 = C’(k_a) as k »+ o , (2.16)
and Knm-l = G(l) is an atomic transition radius of the

order of the Bohr radius. For example, for the Lyman=a« and

Lyman- B lines ( electric dipole transitions ),Ifnt(k) |2

is proportional to, respectively,
[+ a/22]1, [n? + %22 [x2 + (/37" .

The functions |fnt (k)l2 play the role of exact

atomic form factors, introducing a natural cutoff at distances




of the order of the Bohr radius. The Yukawa-like dencminators

in (2.15) reflect the exponential fall-off of the bound-state
wave functions. The extremely simple analytic properties of
(2.15) play an important role in the soluble model discussed

below.

3. The Resolvent Operator

Our treatment is based on the resolvent operator

10. We briefly recall its

method, as developed by Van Hove
main features.

The resolvent operator g%(z) associated with the
Hamiltonian H = H0 + HI is an operator-valued function of
the complex variable 2z defined, for Im z # O, by

1

9,(z)=(z-n)‘. (3.1)
It is expected to be holomorphic for Im z # O. The time
evolution operator may be expressed in terms of g(z) as

exp ( -1iHt ) -.-.--ﬂl—i- f exp (~izt) g(z) dz (£>0), (3.2)
¢

where C is a straight line taken above the real axis, from

S S to « + ig¢ (£ > 0),

The operator SZ(Z) can be split into a diagonal
part with respect to H_, d@ (z) , and a nondiagonal part with

respect to Ho ’ dV}z) s

g 2) =D + N, (3.3)

where, for every eigenstate |t of Ho '

HO|0<> = EglxX> . (3.4)

we have

Doy = o@d(Z) o> - (3.5)




The eigenvalue "@o((Z) determines the persistence
amplitude of the state |O(>, i. e., if we start out from
the initial state |&X) at t = 0 , the probability amplitude
to find the system in the state |o) at time +t is given

by

{ot|exp (-iHt)loD = - —Lfexp(-izt) ,,9«(2) dz. (3.6)
201
c

This amplitude therefore depends crucially on the analytic
properties of o@d (z)
The unperturbed resolvent operator go(z) is

defined by
- - -1
go(Z) = (z-H )T, (3.7)

The analogue Z (z) of Dyson's mass operatérl4 satisfies

Dz - go(z) + Dy > (2 g (2) (3.8)

(0]

and it can be pictured diagrammatically by

2@ = [o+80,Bw@n +..] , (3.9)
i.d.
where the index "i.d." stands for a summation over all irredu

‘cible diagonallodiagrams .
As 2z approaches a point E on the real axis, we

havelo

1im 2(z) = A® F % I & , (3.10)
Z E$.0

where [ (E) 1is a positive semidefinite operator, ' (E) 2 o.
Thus, denoting by an index ol the eigenvalues of diagonal ope

rators in the state |Jo() ,

-(e-5 - ;4 -1
z-)]éi;:nioe@“(z) - [ Eo = D ® 73T (E)] .

If I;(E) # O , we see that E lies on a cut of 09 (z),

which is holomorphic for Im z # O (physical sheet).




10.

The Weisskopf-Wigner approximation would correspond

to

09“(2) = [z - E, - %T‘d]‘l , (3.12)
which would violate the analyticity on the physical sheet.
By comparison with (3.11), we see that A(E) and [ (E) in

(3.10) play the roles of level shift and level width operators,

respectively.

The nondiagonal part cAf(z) in (3.3) may be written

W(Z) = 09(2) U (2) 09(2) ' (3.13)

where the transition operator 'Z[(z) is diagrammatically

as

represented by

U = (o, +8, D on, +....]

summed over all irreducible nondiagonal diagrams ( i.n.cL)lo.

i.n.d.’ (3-14)

As will be seen below, 2‘(2) determines the transition ampli-
tude in scattering processes.

Let |o() stand, as in (3.4), for an eigenstate of
H_ . with unperturbed energy Eoo( , and let us assume that the

o]
equation (cf. (3.11) )

- - = .15
E EOO( Ao((E) 0 (3.15)
has one and only real root E = Eo(' Then, there are only
three possibilities:

w [yen # o (3.16)

In this case, by (3.11), E = Eo( lies on a cut

of o((Z)' Van Hovelo calls this a dissipative state ;

typically, it decays in the presence of the interaction, and e

ZC&K(EC‘) and I:K(E: represent the energy shift and

o)
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linewidth due to the interaction. This situation is well

illustrated by a Weisskopf—Wigner initial state,

o> = 10> = 1:>)0) , (3.17)

where |r >' is an excited state of HA and IO) denotes the
photon vacuum ( we employ round brackets for photon state vec-

tors). It will be discussed below in Sect. 6(a).

(ii) FO((E) = 0 for all real E. (3.18)

In this case, JQL(Z) has a simple pole at E ='Ed
and no cut. The state |&) is classified by Van Hove as

asymptotically stationaxjylo ,» because its asymptotic ewvolution

is not affected by the interaction. The interaction produces
only transient effects, as in ordinary scattering from a
short-range potential. An example will be provided by the

scattering of a one-photon wave packet from the ground state

for the exactly soluble model discussed in Sect. 6 (b).
(111) T Bg) =0, but T (®) #0 for same reale. (3.19)

In this case, the state kX)-is not asymptotically

stationary. The interaction produces persistent perturbation

effects; besides self-energy effects, they include, typically,
"dressing” ( "cloud" ) effects. Thus ( cf. Sect. 8 ), the
state D= | 1;0> = 1> IO) , where |1 is the

ground state of H is not asymptotically stationary; the

A’
interacting ground state of the system is "dressed".

If |0(> and |O('> are asymptotically stationary,
the S - matrix element <o(| S|oDbetween these states can be
shown to exist (with no heed to adopt the unphysical procedure

of adiabatic switching of the interaction). It is then given




12,
by
KxISl’> = §(ot-o') -2inm S(Ed-Ed,)Zld“,(Ed),u.zo)

where

u

with 21. given by (3.13)-(3.14), is the transition amplitude

, = <txl 21 IO(’> ’

ol « (3.21)

matrix. The corresponding differential cross-section, for

one-photon incidence, is given by

Ol = (27()4luo(o(,(Eo()lzpo((Eo(), (3.22)

where FL: is the density of final states.

4. Possible Approximations

Our approach is based on the idea of sucessive
approximations, retaining first only a part of the Hamiltonian,
such that the problem becomes exactly soluble, and then
adding back the omitted pieces of the Hamiltonian and inves-
tigating how they affect the solution. A somewhat related
approach for Weisskopf-Wigner type theories has been
advocated by Grimm and Ernstls. We start with a physical
discussion of some of the main approximations that have
previously been employedll, as well as an extended version

to be employed in Sect.5.

{I) Finite number of atomic states: This amounts to

cutting off the spectrum of HA beyond some discrete level
N , so that, in (2.6) and (2.12),
(n,m £ n . (4.1)

In particular, if only two states are kept, this is the two

level atom. The accumulation point at the ionization
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threshold as well as transitions to the continuum are

eliminated by this approximation.

(II) Generalized RWA ("Rotating-Wave Approximation”):

We consider a specific excited state | r) , to be kept
fixed, where "r" stands for "resonant", because this state
is supposed to be selectively singled out by resonant
processes, as will be seen below. Keeping only those terms

in (2.12) where one of the levels involved in the transition

is r , the generalized RWA corresponds to the following

choice of interaction Hamiltonian-
00

HI = szsdk k £ (k) a, (k) |r >< n| + h. c., (4.2)
rnf B
np 5

where the "counter-rotating terms", which differ from those
in (4.2) by the interchange of r and n within the
summation, are neglected.

This is an extended version of the usual RWA, to
which it reduces for a two-level atom. It corresponds to

coupling the absorption of a photon only with transitions

that end in r, and emission of a photon only with those
that start from r, whether the transitions are to levels
above or below r.

If we call "resonant atomic excitation" the
occupation of level r (so that the atom is not "resonantly
excited" whenever it occupies a level n # r ), the generalized
RWA leads to an additipnal conservation law, corresponding
to the conservation of the number of photons plus the
resonant atomic excitation. This is represented by the

operator
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0o

&=L 1K1t 3 addal + S ( ag’ k) ag (), (4.3)
nFEN p 0

which commutes with

H= H + H = H + HF + H

0 I A (4.4)

II
i.e.,

[E.8]- 0 . (4.5)

This leads to a splitting of Hilbert space into sectors,
allowing an exact solution in the sector of interest, as
will be seen below.

Furthermore, (4.2) allows a transition from the
ground state ( n =1 ) to level r only in the presence of

a photon, so that the unperturbed ground state of the system

l1:0> = 11> o (4.6)

is also the interacting ground state, an eigenstate of H in
the sector ég = -1/2 (so long as (5.6) below is satisfied).
Thus, the generalized RWA exludes persistent perturbation
effects.

(ITII) Dipole Approximation: This amounts to

substituting, in (2.4) and (2.5),

A(r) = A(0), (4.7)

As a consequence of this, only electric dipole waves remain
coupled to the atom, i.e., the photon index ranges only

over the values

J=1; M=0,+1;T=o0. (4.8)

At the same time, this corresponds to neglecting retardation

over atomic dimensions, so that the electric dipole form fac

tors in (2.15) go over into their k—=>0 1limit, which is
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just a constant. This would lead to divergent integrals, so

that this approximation is often coupled with

(IV) Sharp Cutoff : To avoid divergences in the

dipole approximation, one replaces the effect of the atomic

form factors by a sharp cutoff,

p(k) =0 (K-x) , (4.9)

where @ is the Heaviside step function, and the cutoff

parameter K is of the order of the inverse Bohr radius,
K ~ aB—l.

The combination of approximations (ITII) and (1IV),
although it has often been employed in conjunction with
two-level atomic models, leads to spurious effects. It
introduces a spurious pole of the resolvent on the real
axis, which gives rise to a non-decaying, non-ergodic
contribution to the time evolutions, for the state (3.17).
This does not happen for a smooth form factor, such as (2.15).

We do not employ either (III) or (IV) in the

soluble model that willlnow be discussed.

5. Exactly Soluble Multilevel Moldel

This model is defined by the Hamiltonian (4.4),

1 = E._Im><n]| > "k (k
H ;;3 on ‘F:%:.é: dﬁ& ‘& (lp (k) CIP )

(5.1)

oo
d S | b VE [f s a,doln><nl +hic],

np o '
where n&¢N , and B also ranges only over a finite set of .

values, due to the selection rules (2.14). The coefficients

frnP (k) are taken to be the exact hydrogen-atom matrix ele
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ments. This corresponds to making approximations (I) and (I1)
of Sect. 4 and neglecting the guadratic Interaction
Hamiltonian (2.5).

The transitions allowed by the interaction

Hamiltonian in (5.1) are schematically represented in Fig.1l.
16

’

In contrast with éhe multilevel model treated by Davies
the present model allows for transitions (within the genera-
lized RWA ) between the resonant level and other excited
levels, but it does not take into account the decay of the
other levels.

We restrict our discussion to the Hilbert Space
sector associated with the eigenvalue (5 =1/2 of the

operator (4.3). Any state vector in this sector is of the

form
WY >=ulro> + | D), (5.2)
where o
1d> = 2 S‘dk P np®) | nilp x>, (5.3) '
n¥np

l£>10), Ins1p k> = % ) [n2>l0), (5.0

|riod>

> [Tle gl
YIY>= [ ul? + (k) dk = 1 . (5.5)
v ntn,p o LP“B

The state vector th>evolves in the O photon + 1 photon

subspace. Thus, cascade and multiphoton processes are exclu
ded, but the effects of transitions to other levels on the
excitation and decay of the resonant level are partially

taken into account.

The condition

00 2
_}_. Z J ’L‘“p(&n &0”2 < 1, (5.6) ’
0 Eo
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which follows for this model from the smallness of the cou-
. pling constant (2.13), ensures that H has only a continuous
spectrum17 » ranging from the unperturbed ground-state energy
E to infinity. We take the unperturbed ground-state energy

0l
as the zero level of energy,

Eyj7 = O. (5.7)

The resolvent then has a cut along the real axis ranging from
O to 00 ,
The matrix elements of the resolvent in the sector

under consideration follow from the identity

9 (2 = G, (2) + g = m Goto. (5.8)

They are explicitly given by8

<n‘,0‘ g(l), n,o0> = <n}0109(2)|11;0> ="9ﬁ'o(1) = -gz-—s +(5.9)
' z
_ TV D @) Qg (B
<R'O‘9ml¢> D( M*n? g z-% -E,n k520

‘Pn "R Php (R)
<<I>sg(z>|4>>n*”§ e dk

* !
A goof Lpns (&)?m,p(&)dﬁz J\/—fnmp(&)cpmg(ﬁ)dﬁ’
"D &, ) K- Eon mh 3 -k Eom .01
£)
where D)= 2 - Eon - S rnnp( d&,(S.IZ)
n#ulp Oh

rmp(ﬁ) = 2MA R | frnp Ol (5.13)

. The analytic properties of 59 (z) and of the

r;0

other matrix elements of the resolvent are therefore deter-

mined by those of the denominator function D (2). This
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function can be explicitly COmputed8 from (2.15). It is given

by

D(z) =z - EOr - i%F'EE: [ﬁrnP(Z—EOn) In [kEOn- z)/[<rn]
n#n,p

Q (z-E._)
+ A Z rn} On , (5.14)
n#n,p [(z-—Eon)2+ Krnz Prn

where, on the physical sheet,
in [, _-E% 10)/K_1=1n | -m)/K_|% 17 O£, ) .

(5.15)

® being the Heaviside step function, and anﬂ(Z) is a poly-
nomial with real coefficients, that are C’(l) in the  units

. £ -
(2.11) , with degree anp-\ Zprn 1l . Thus,

p(z) = O(z) (|zl—=00 ) . | (5.16)

The function D(z) is holomorphic and zero-free on the
physical sheet. The coefficients of the polynomial anf£2)
follow from (2.15), (5.13), (5.14) and the condition that
D(z) has no singularities at z = Eon + il{rn on the physical
sheet.

According to (5.14), D(z) has a logarithmic branch

point at each unperturbed bound-state energy E. , except the

On
resonant one, n=r . The logarithmic terms, while reminiscent
of the "Bethe-log" contributions to the Lamb shift (cf.Sect.

8 ), are exact within this model.

6. Applications to Decay and Resonance Scattering

We now apply the exactly soluble model of Sect.5 to
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investigate the decay of a Weisskopf-Wigner initial state and
the resonance scattering of a wave packet.

(a) Decay of a Weisskopf-Wigner initial state:

The initial state Ir;0> defined by (5.4) is a
dissipative state in the sense of Van Hove (cf. (3.16) and

(5.15) ). According to (3.6) and (5.9),

. - . = __1 exp(-izt)
{r;0 | exp(-iHt) | r;0) ST J' 5 dz. (6.1)

Let us now deform the path C in the manner indicated
in Fig. 2, into a series of paths Cl, C2,...., CN directed
parallel to the bisector of the fourth quadrant, such that

the path Cj winds around the branch point E Thus, the

0j°
left-hand side of Cj and the right-hand side of Cj are on
different Riemann sheets, but the left-hand side of each
path is on the same sheet as the right-hand side of the
preceding one. These deformations are allowed by (5.16),
with no contribution from portions of the "circle at infinity".
Each time the path winds around a branch point on in the
indicated manner, a new term

+ i ; Trj p (z—EO

is added to the determination of D(z) in the corresponding

j)

Riemman sheet (cf. (5.14) - (5.15) ). On each sheet, the
integrand has a finite number 6f poles, the positions of
which can be determined8 from (5.14). With the above choice
of contour it may be shown8 that only one pole z (indicated

in Fig. 2) will be crossed, with

T (k)
_ _i _ 1 rn B
2 =E 5 Iq = E + 557 P ‘j- . dk

r Or
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n-1
-4 W\Zﬂ FmP(EOr -E, ) + 0N, (6.2)
where only those thresholds crossed up to Eor contribute
to the imaginary part, and P denotes Cauchy's principal value.

n
For times much longer than the optical period(E, t 1,

the asymptotic behavior of (6.1) is given by8

{r;o |exp(-—th) | r;0> %[1 + & )2)] exp(-—iErt - -;‘- rrt)

-z'v
+ Z , Arnﬂ t rnf exp(-1E  t) , (6.3)
‘“#ﬂop

where A are constants and
rnp
BJrn[!» = Jrnp+ Trnp' (6.4)

Yhere Jrnﬂ and rnﬁ are associated with the multipolarity
of the transition (cf. (2.8) ); for electric dipole transi-
tions, Xrnp = ],
The first term in (6.3) corresponds to the Wigner-
w Weisskopf exponential "Ansatz", with the level shift Er - EOr
given by the principal-value integral in (6.2) (which already
contains, as we have seen, pieces of "Bethe-log"-like
contributions). The half-width I‘r , according to (6.2), is
the sum of the partial widths for transitions to all lower
levels, as it should be. Both the level shift and half-width
include contributions that were not taken into account in
previous exactly solved models (in particular, those involving
two-level atoms).

The terms in the second line of (6.3) rebresent correc
tions to exponential decay, arising from the integrals around
the cuts Cj in Fig. 2. A rigorous estimate8 shows that, for

electric dipole transitions, such corrections are negligible

up to times t0 such that




o

2
2 1 2e 2
ty° exp (-3 [t -5 <rlzfl > (6.5)
For the Lyman-a line, this yields a value of t, of the

order of 96 lifetimes, so that corrections to the Weisskopf-
Wigner "Ansatz" in this case are extremely small. It is
interesting to note that such corrections behave as t-2 for
t =00 , just like a free-photon wave packet when account
is taken of causal propagationls. Analogous features have
been found for decay involving massive particles7, suggesting
that limitations in the validity of the exponential decay
law are to be traced to the limitations in the validity of
of the particle concept itselfvwhen applied to unstable
particles. In order to discuss the observability of such
deviations, however, one would need a theoretical analysis

of the measurement process.

(b) Resonance scattering of a wave packet:

The dependence of the decay on the excitation in the
present model can be investigated by discussing the scattering
of a photon wave packet by the atom. In order for the model
to remain reasonably realistic, we must assume that the mean
energy E of the incident wave packet is close to resonance
( cf. (6.7) below ), so that we are discussing resonance
fluorescence.

As a consequence of the generalized RWA employed in
our model, the state |1; ].p ,k > defined by (5.4) (atom in
the ground state + 1 photon ) is asymptoticglly stationary
in the sense of Van Hove, so that the incident wave takes the

form

'¢> = Soodk @ | 1:2p,xy, (6.6)

o

21.
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where Lp(k) is associated with a mean energy E and a half-

width 2( such that

|E - B, | < |E0,r - Eo,r-_l_-llrw«‘Eo,r- : X (6.7)

The excitation amplitude of the atom is given by (cf.
(5.10) )

{r;0 | exp(-1Ht)| q>> = - ?1(1"{_( exp (-izt) {r;0 | g ()| Paz.

C
(6.8)

By suitable choice of (P(k) ( e. g., a Lorentzian wave
packet ), this can be treated8 similarly to (6.1). Typically,
the excitation probability is characterized by a rise time

5,7

T and by a decay time T such that

rise decay

~min(¥7LT. 7Y max(¥ "L, T_"Y. (6.9

Trise r Tdecay - r

For excitation by a broad line ( Y»Fr) , the excitation and
the decay may be regarded as to some extent independent
processes; for a Lorentzian wave packet, the Weisskopf-Wigner
state is excited with a probability ~(I"r/x )2 and it
decays with the natural line shape.
The scattered wave packet, as well as the emitted

line shape, can also be obtained8 with the help of (5.11). The
asymptotic behavior for large times is found to depend very

strongly on the excitation.

7. Persistent Effects and Dressing Transformation

When the "counter-rotating" terms that were omitted
from the Hamiltonian to yield the exactly soluble model are

reintroduced, drastic changes take place: these terms lead
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to virtual transitions from the unperturbed ground
state | 1;0) to excited stateswith the emission of a photon,
followed by the reverse transition in which the photon is
absorbed. This produces persistent perturbation effects in
the sense of Van Hove, i. e., both self-energy and cloud
effects.

These effects are manifested in several ways: | 1;0
is no longer the ground state of the interacting system ( it
gets "dressed by a photon cloud" ), and the statesll;lﬂ , kD
are no longer asymptotically stationary, so that they cannot
be employed as a basis to build up wave packets in the
treatment of resonance scattering.

In order to deal with this situation, we first apply
a dressing transformation in order to get rid of the
persistent effects. After this is done, the resolvent operator
method can in principle be employed as before, with the
transformed Hamiltonian now generating the dynamics of
"dressed" states of the system. However, exact results are
no longer obtained: the transformation is defined order-by
order in perturbation theory; we discuss the results obtained
to second order. Mass renormalization must also be performed.

Attempts to perform such a transformation were made
by Heitler, Arnous and collaborators in a series of papers3,
but they met with difficulties, because they attempted to
solve the unphysical problem of dressing also excited atomic
states. In their subsequent work4’5, the transformation was
suitably restricted, but no explicit eXpressions for it and
for the transformed Hamiltonian were found; the treatment
is also needlessly complicated. Coulter's dressing transfor-

mation19 for an atom within a bounded volume also attempts
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to satisfy unphysical requirements and it is not convergent
in the infinite-volume limit.
Our procedure is based on a generalization of a

dressing transformation proposed by Faddeevlz. We transform

H=HO+)\V, (7.1)

where the coupling constant Al is the small perturbation

parameter, into
H' = UHU = H' + V', (7.2)

where U is a unitary transformation,

U = exp(iw) ’ W = W , (7.3)
and
V' = Z AR v , W =Z A" W, (7.4) .
nz1 nzi :
. Equating the coefficients of equal powers of A , we
get
’ =
vy v+1[w1,no] , (7.5)

2
v, =i[w,v]+ olw, [wn 1]+ 1 [wy,m,7,

and soO on.

We now choose Wl so that i[?Wl,HO] cancels out ( cf.

(7.5) ) those terms in V that lead to persistent effects,
thus eliminating these effects to first order in A . With

this choice for Wl, we next choose W, in (7.6) so that the Ca

2

nondiagonal part of V' _ is free from persistent effects (the

2

diagonal part is incorporated into H_ ' ). In principle, this

o
procedure can be continued up to arbitrarily high order inlk.
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The terms that lead to persistent perturbation effects,
according to (3.19), are those that lead to Im‘Z;éE) # O for
non-dissipative states. They are readily recognized in the
present problem as those terms that give rise to transitions
from the ground state ( such as the "counter-rotating" terms
in Vv ).

The choice of W W, ,+..... is clearly not unique.

1’ 72
This non-uniqueness is inherent in any dressing transformation:
transformations whose effects differ by an arbitrary admixture
of transient terms ( i. e., terms not conducive to persistent
effects ) are equivalent according to the above definition.

w

In practice, our choice of W is guided by

1 r Wyr eeee
criteria of simplicity: their form is determined by that of
the terms we wish to cancel out, with the inserxrtion of
suitable energy denominators to obtain the cancellation when
the commutator with HO is taken.

8. Dressing Transformation for the Hydrogen Atom

For the sake of simplicity, and in order to facilitate
the comparison with the usual treatment, we restrict our
discussion of the dressing transformation for the hydrogen

atom to the dipole approximation. The Hamiltonian of Sect. 2

is simplified to

' (8.1)

en

= +
H Hy + Hp ) + Hp 5 + H)
4

o0
: +
Z Eqp | nD<n | + Z gk ay, (k) aM.(k) dk , (8.2)

Ho =
mzi4 M:-1£
By p= 2 Ay 1943 ‘jf(k) [a,00 + a, o0 Jfk ax, 6.3
iyM o

where f)(k) is a cutoff factor ( usually taken in the form

(4.9) ) and
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=-1 1/2
AijM- = (20(/ 37W) <tlp,l3i> (8.4) i
Py being the spherical components13 of p
1 oo 00
/
B, = N 20 (-1)Mf ax \x P(k)f ax' Vx p xh
' M:"’1 [s] o)
x[aM(k) a_yx) + (DM a Fx) a k') + n. c.] , (8.5)
where
2 = o /37m . (8.6)

We have already written H in normally-ordered form,

1,2
subtracting out a constant term. Finally, in order that m

be the experimental mass of the electron, the usual
nonrelativistic mass-renormalization counterterm Hren is
added. To second order ( which is as far as we will carry

out the calculation ), it is given by

Hen,2 = ¢ An/m) p‘/am (8.7) ‘
’ o0
Am/m = 4 A JP(k) ak . (8.8)

In order to apply the dressing transformation, some
slight modifications in (7.6) are required, owing to the fact

that, besides terms linear in the coupling constant (H ),

the Hamiltonian also contains quadratic terms ( HI 2 Hren)'
14
To first order, the "counter-rotating" terms that

are responsible for persistent effects in (8.3) are those in

‘i)(l' aM+U<) and their hermitean conjugates. To
eliminate them, we choose .
oo +
1){1la, (k) ‘
7\Wl=i Z)ims‘dk P(k)'\/-}: 1)< lay + h.c. .
; E .-E_ .-k
A, M 5 o1 “oi

(8.9)
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Applying a similar procedure to second order, we get

for the transformed Hamiltonian
H' = H.' + H.' + H ’ (8.10)

where Hl' is given by (8.3) with the counter-rotating terms
connected with the ground state subtracted out, and HZ' is
a sum of several terms that will not be written out here8;

H_.' , which incorporates the diagonal contributions found in

(o)
second order, is given by

4 00
Hy' = > 'y, | nO<n]| £ \xatoo a ) ax, @.10)
n 21 M=-1
where o
o0
B} = E,_+ 4)\1<n|£2/2m|n>gp(k) dk, n#l, (8.12)
(o]
Eor = Eoa +j21 ’ (8.13)
and 00
_ 2 P(k) dk
ivl - >0 Afiw Bop - E01)5 A ¢ (8.14)
n#i.M fo) On 0l

When ’)(k) is replaced by (4.9), 131 becomes identi-
cal with the nonrelativistic contribution to the ground-state

Lamb shift, as computed by Bethe20

. Thus, for the ground state,
the dressing transformation cancels out the contribution from
the mass-renormalization counterterm ( cf. (8.12) ), and it
adds the Lamb-shift correction. Furthermore, the interaction
terms Hli and H2' in ( 8.10 ) produce no pgrsistent effects

to second order. We can therefore apply the resolvent operator

method, with H' as generator of the time evolution, to

discuss decay and resonance fluorescence by prqcedures similar
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to those described in Sect. 6. We confine ourselves to a
description of the main resultss.

The time evolution of an initial excited state |n)|0)
is determined, as in Sect. 6(a), by the analytic properties
of ‘égn;o(Z)' the associated eigenvalue of the diagonal part
of the resolvent. It is found in the second-order treatment
that, in analogy with (6.2), the dominant exponentially-decay~-
ing term arises from an unphysical-sheet pole

- - i = -4 E
Z—E 21-‘ E0n+£n 2 I_‘

n (8.15)
}(n;M

njMm ’
where ;\P’n is the nonrelativistic contribution to the Lamb
shift for state n and ‘F;jM are the partial widths for the
transitions to all lower levels.

Thus, the analogue of the energy correction (8.13) for
excited states ( cancellation of the mass-renormalization
counterterm in (8.12) and Lamb-shift correction ) appears,
as it should, in the poles of the analytic continuation for
the resolvent, and not through the dressing transformation,
which should lead to the correct energy only for the ground
state. This essential difference between ground and excited
states was obscured in previous treatments where dressing
transformations were attempted.

The discussion of resonance fluorescence also
proceeds in analogy with Sect. 6(b). In order to treat the
line shape problem, we consider, in particular, the differential
cross-section for scattering of a photon with momgntﬁm E and
circular polarization )\ from an atom in the ground state,
leading to a photon with momentum E' and circular polariza-

/
tion A . The resulta, obtained with the help of (3.22), is
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given by a modified Kramers-Heisenberg dispersion formula :

do_ prlg B LAY <AlLP EgAImD<nl B Ea 11D
dft ’ Nﬁ) ﬁl\ m'ruM Eo4‘Eon- &

(8.16)

LY <4tt.g*ﬁ,x|ﬂ><ﬂk.:gﬁ),4> , z,
S N CXR VRIS S IERTS

/N ~

where r, is the classical electron radius, 5,& and &£ 7141

0] ~ /v)\ ~RA
are polarization vectors of the incident and scattered photons,
and an and Iﬂn are defined in terms of the resolvent by
(3.11). The first line of (8.16) contains the effects of
Thomson scattering and of antiresonant terms. If the incident
photon energy approaches a resonance associated with a given
level n, the corrections An and r'n to the Kramers-Heisenberg

formula in the corresponding term of the second line of (8.16)

. i .

become important. In this case, EOn +Z§n ZIén is close
to z ( c£. (8.15) ), so that the Lamb-shift correction and
the linewidth are also properly taken into account in the

resonance scattering cross-section.

9. Interaction Hamiltonian and Line Shape

We finally discuss the connection between the line
shape and the choice of the interaction Hamiltonian. The
problem is to compare the results obtained with the minimal
coupling interaction Hamiltonian employed in (2.1), in
dipole approximation, with those obtained from the interaction

Hamiltonian

2]}

]

1
]
2}
e}
S

(9.1)
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which has been widely employed in quantum optics. The relation
between these two Hamiltonians seems to have been first dis-
cussed by GSppert-—Mayer21 in a semiclassical context, and by
Power and Zienau22 for a quantized field; other recent dis-
cussions include that of Woolley23. The resonant term obtained
from the two different interaction Hamiltonians yields different
results for the line shape, and it was remarked by Lamb2 that
only the resonant term derived from (9.1) is in agreement with
experiment for the Lamb-shift transition.
In Woolley's treatment, E~3'L= -‘aﬁl}/‘bt is indeed the

transverse electric field, while in Power and Zienau's

treatment it is replaced by

D'L=('E.+4T[_I:)'L ’ ; (9.2)

~

where
P =er E;(g) (9.3)

is the polarization operator in dipole approximation.

Both interpretations are possible, and the difference
between them simply corresponds to regarding the transforma-
tion connecting the two Hamiltonians from the active or from
the passive point of views.

In the active point of view23

, which will be adopted
here, the new Hamiltonian H is connected with H ( as given

by (2.1), in dipole approximation ) by

H = exp( -i2) H exp(i2) , : (9.4)

Z: = er. A(O) (9.5)
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leading to
F-2 - L0 [eh? s (Ixm?]- er.etio
om r 81 ~ ~ ~i~ s
v 2w\ [t ]? &% , (9.6)

where the last term contributes to second-order ( or higher-
~order ) calculations, e.g., in the evaluation of the Lamb
shift. Here, H is regarded as a new Hamiltonian, expressed
in terms of the old canonical variabels, whereas, in the
passive point of viewzz, we would get the old Hamiltonian
expressed in terms of new canonical variables.

Since the two Hamiltonians are connected by a unitary
transformation, they must lead to equivalent results, provided
that the state vectors are correspondingly transformed. If
one tries to define the natural line shape in terms of the
decay of a specified Weisskopf-Wigner initial state vector,
without taking into account the transformation of this state
vector ( it can be shown8 that this corresponds to adopting
different definitions of the photon vacuum ), the two
Hamiltonians lead to different results, but one cannot say
a priori which ( if any ) is to be preferred, because this
depends on how realistic it is to regard the associated
Weisskopf-Wigner state as being produced by the excitation
process. An unambiguous definition of the line shape must
include an account of the excitation process.

If we define the line shape in termé of resonance
fluorescence, we must discuss the effect of the transformation

(9.4) on the S-matrix. The exact S-matrix elements for transi

tions between corresponding physical states are indeed identi-
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cal for H and H . However, when they are defined in terms of
the usual adiabatic hypothesis, this is true only after wave
function renormalizations, and the corresponding renormaliza-
tion constants Z and Z ( which represent the probability of
finding the unperturbed ground state in the interacting ground
state ) are different. Since 2 and Z differ from unity only
by terms of order ez, the Kramers-Heisenberg matrix element
is the same for both Hamiltonians, as is well—knownzs. However,
this need not apply to (8.16), which already includes partial
summations over higher-order terms, embodied in theAh and
I1n corrections. It can be showns, nevertheless, that, for
photon energies k within the resonance width associated with
each given resonance denominator, these corrections also are
the same, up to order ez.

Let r be the resonant level, R the corresponding
resonant term ( the term n=r in the second line of (8.16) ) ,
and B the background, i. e., the sum of all remaining terms
in (8.16). The result just stated then implies that, to order

2
e,

ao/afl = ?|r+8|* = 2R +3[|°. (9.7)

However, we have R # R , B # B . If, as is often done, one
approximates the result by retaining only the resonant term,
the results are indeed different, and the only way to find
out which is the better approximation ( apart from comparison
with experiment ) is to estimate the effect of the background
terms.

Let us do this first for the Lyman-®& 1line. In this
case, we have

2

R/R = kz/(Eoz - E,)° (9.8)
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where E02 is the energy of the 2p level. To compare the
line shapes, we characterize them by two parameters: the

photon energy kO at the peak of the curve and the asymmetry
8 » defined by

5 - [(‘%lo+g‘(%lo-g]/(§%ko SN

where T' is the linewidth associated with the 2p level.

In terms of these parameters, we find that
" = 1
(ko= k) /T = 2 T s, , (9.10)
and that R is symmetric (O = 0 ) , whereas for R

S = 2T /x, . (9.11)

Since r‘/ko ~ lleO-'8 » both deviations are extremely small
in this case. It may stil be asked, however, which one yields
a better approximation.

In order to find out, one must compute B, the sum of
all "background” terms. This can be done in closed form,
with the help of the Coulomb Green's function: which has been
employed by Gavrila26 to compute the Kramers-Heisenberg matrix
element.

The result8 for the photon energy ké at the peak when

both R and B are included is

ke . T -
« k& ko) /T = 0.22 F/ko, (9.12)

and the corresponding asymmetry parameter is

/
6 = - 1.8 T /x, - (9.13)
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Comparing these results with (9.10) and (9.11), we see that
the corrections associated with R have the wrong sign, so
that, in this case, it is R that represents a better approxi
mation.

As a final example, let us discuss the line shape for
the Lamb-shift transition, i. e., for the induced decay from
the metastable 251/2 state to the 291/2 state, in the
presence of near-resonant microwave photons of frequency ko
( followed by a Lyman- transition to the ground state).
This corresponds to a more recent version27 of Lamb's experi
ment, which does not employ magnetic-field tuning of the
251/2 - 2p1/2 energy difference.

We make use of the fact that, up to second order,

Im EEZS =0 (cf. (3.10) ), so that the metastable 2s

1/2
state may be treated as stable, to this order. However, to
L J
the same order, Re ZZs # O, so that one must correct the
energy of the 2s state in order for it to behave as an

1/2 .
asymptotically stationary state. This is achieved by adding '
a term to the unperturbed Hamiltonian (8.2) and then subtrac

ting the same term from the interaction Hamiltonian. This

term should be nondiagonal, so as to remove the degeneracy

8

between the 2s and 2pl/2 states2 , and it must not aifect the

1/2

ground-state energy. A suitable choice 158

— 3 —
H, = 8N €  ay § ) s €, 1)<, (9.14)

where ag is the Bohr radius, and 60 is the (un}enormalized)

nonrelativistic contribution to the Lamb shift of the 251/2

state. -

This leads to the replacement
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Eozs > Egoe * € (9.15)

in (8.12), where € is the renormalized nonrelativistic
contribution to the Lamb shift of the 231/2 state, whereas
(8.13) remains unaffected. Corresponding modifications must
be made in the dressing transformation to ensure that the
251/2 state ( as well as the ground state ) remains asympto
tically stationary to second order.

A contact term similar to that in (9.14) appears in
the usual treatment29 of the nonrelativistic contribution to
the Lamb shift. It has also been employed by Fried30 as a
phenomenological term in a treatment of the same problem
based upon a semiclassical Hamiltonian.

Taking the above modifications into account, we find
expressions8 for the differential cross-section to second
order that can be analysed in terms of resonant and background

contributions, as in (9.7). We find that R is peaked at a

photon energy

ko™ €- T8¢, (9.16)
whereas R 1is peaked at
k x €+ T'%se, (9.17)

o)

while the corresponding asymmetries (9.9) are given by

6

Since [ /€ = 10

R

-T,2¢ , 6=T/ 2¢ . (9.18)

3

L we have ( K, - kg )/€% 2.5x107°

which is about three orders of magnitude larger than the

accuracy of present-day measurements of the Lamb shift.
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Thus, the differences between R and R are easily detectable
in this case.

The background contribution B can again be evaluated

in closed form3l, with the help of the Coulomb Green's func-
!

tion. The results for ké and 5 when both R and B are

includea® agree with fb and of (9.17) and (9.18) up to
terms of the order of € (I'/€ )4 ana (T'/7€e)?, respectively.
This remains valid when fine and hyperfine structure
contributions are taken into account.

Thus, in agreement with Lamb's remarkz, the resonant
term derived from (9.1) indeed yields better results for the
line shape in the Lamb-shift transition. However, this does
not hold true in other cases, as shown by our discussion of
the Lyman-o line. Similar conclusions were reached by
Fried30.

The line shape in the Lamb-shift transition, defined
in terms of the usual minimal-coupling Hamiltonian of quantum
electrodymanics, illustrates the need to go beyond the
Weisskopf-Wigner approximation. In order to obtain agreement
with experiment, one must take into account the effect of
( virtual ) transitions to all nonresonant levels. These
background corrections to the line shape can be systematically
evaluated by employing the Coulomb Green's function.

As the accuracy of Lamb-shift measurements increases,
the evaluation of background corrections to the line shape
becomes of comparable or possibly greater significance than
that of higher-order radiative corrections to the resonant

term, since the result of the measurement is directly

affected by the line shape, which arises from the

interference between resonant and background contributions.
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FIGURE CAPTIONS

Fig. 1. Transitions taken into account by the soluble
N-level model. r = resonant level { —-—=—=—95> absorption;

-3 emission.

Fig. 2. Equivalent path of integration for (6.1). The
positive real axis is covered by a series of superimposed
branch cuts associated with the threshold branch points, and
the path winds around successive branch points; portions

belonging to the same Riemann sheet are similarly represen-

ted. The pole z. of ( 6.2) is indicated.
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