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Abstract. Particles motion is briefly analyzed in inertial and non inertial coordinate 
systems. Special attention was dedicated to rotating coordinate systems to describe the 
famous Foucault pendulum. Accelerated rectilinear motion was also briefly described.                                                                                                                     
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(I)Introduction.                                                                                                       
  Our analysis is performed in the Galilean limit, that is, when particles velocities  
are much smaller than the light velocity. A reference system of coordinates is called 
inertial frame of reference when it is not undergoing acceleration.[1] In this system, a 
physical object with zero net force acting on it moves with a constant velocity or, in 
other words, it is a frame in which Newton's first law of motion holds. All inertial 
frames are in a state of constant, rectilinear motion with respect to one another; in other 
words, an accelerometer moving with any of them would detect zero acceleration. 
Measurements in one inertial frame can be converted to measurements in another by a 
simple transformation. In Classical Physics in a non-inertial reference frame the 
physics vary depending on the acceleration of that frame with respect to an inertial 
frame, and the usual physical forces must be supplemented by fictitious forces.[1] For 
example, a ball dropped towards the ground does not go exactly straight down because 
the Earth is rotating, which means the frame of reference of an observer on Earth is not 
inertial. As will be seen in what follows, the physics must account for the Coriolis effect 
(in this case thought as a force) to predict the horizontal motion. Another example of 
such a fictitious force associated with rotating reference frames is the centrifugal effect, 
or centrifugal force. In Section 1 is considered the general case of relative accelerated 
frames. In Section 2 are analyzed rotating coordinate systems showing inertial forces, 
that is, centrifugal and Coriolis forces. In Section 3 is seen the Harmonic Oscillator 
motion in inertial and non-inertial frames. In Section 4 is analyzed the motion of the 
famous Foucault Pendulum. In Appendix was studied the harmonic motion in an 
accelerated referential system.  
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(1)Accelerated Coordinate Systems.                                                              
 Let us consider two coordinate systems S and S* with origins O and O*, 
respectively. The system with origin O is taken as fixed in space .[1] The distance of the 
origin O* from O is given by h. The relation between the rectangular coordinates r and 
r* is given by                                                                                                                     
    r = r* +  h          and             r* = r -  h                      (1.1).  
 Taking the origin O as fixed and O* moving with respect to O we get, 
differentiating  r ,given by Eq.(1,1) 
                                                v  =  dr/dt = dr*/dt + dh/dt = v* + vh                         (1.2), 

where v and v* are the velocities of the moving point relative to O and O*, respectively, 
and vh  the velocity of O* relative to O. Noting that the coordinate system S* is obtained 
by a translation of the S.  The relation between relative accelerations is 

                                  a =  d2r/dt2  =  d2r*/dt2 + d2h/dt2 = a* + ah                               (1.3). 

 Newton´s equations of motion, in the fixed coordinate system S, for a particle 
with mass m subjected to a force F is given by 

                                                 m a =  m d2r/dt2  = F                                                 (1.4). 

 Using Eqs.(1.3) and (1.4) we can obtain 

                                               m d2r*/dt2 + m ah   =   F                                              (1.5). 

If  O* is moving with a constant velocity relative to O, then ah = 0, and we have, 

                                                    m d2r*/dt2 =   F                                                       (1.6). 

Thus, Newton´s equations of motion, if they hold in any coordinate system, hold also in 
any other coordinate system moving with constant velocity relative to the first. This is 
the Newtonian Principle of Relative.[1]                                                                                        
 For any motion of O* we can write Eq.(1.5) in the form 

                                                m d2r*/dt2 =   F  -  m ah                                              (1.7), 

where the term  - m ah  can be interpreted (called) as a fictitious force. We can treat the 
motion of a mass m relative to a moving coordinate system using Newton´s equations of 
motion if we add this fictitious force to the actual force which acts. From the classical 
mechanics point of view, it is not a force at all which is defined by F.  
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(2)Rotating Coordinate Systems.                                                                                
 Let us consider two coordinate systems, S(x,y,z)(fixed ) and S*(x*,y*,z*), with 
coincident origins O and O*, whose axes are rotated relative to one another.  Let us now 
suppose that S* is rotating around the z-axis through the origin O, with angular velocity 
ω (see Figure(2.1)). 

 

Figure(2.1). S*system rotating around the z-axis of the inertial system S. The coordinates 
(x,y) and (x*,y*) axes are co-planar. 

 We define the vector angular velocity ω as a vector of magnitude ω along the   
z-axis in the direction of advance of a right-hand screw rotating with S* system.[1]                                                                                                                                          
 So, when a vector B is at rest in S*, its starred derivative dB*/dt = 0 and it can be 
shown that its unstarred derivative is given by 

                                                             dB/dt = ωx B                                               (2.2). 

Taking ω = constant it can be also shown[1] that for any vector A and A* we have,  

                                                      dA/dt = dA*/dt +ωx B                                         (2.3), 

which is the fundamental relationship between time derivatives for rotating systems..[1]                           
 For velocities v = dr/dt, v* = dr*/dt and accelerations a = dv/dt and a*= dv*/dt 
are satisfied the following equations,[1] remembering that ah = 0 since O ≡ O*, 

                                                      dr/dt = dr*/dt + ωx r                                            (2.4), 

                            d2r/dt2 = d2r*/dt2 +ω x (ω x r) + 2ω x (dr*/dt)                        (2.5). 

Eq. (2.5) is called Coriolis´Theorem.                                                                                       
 If we assume that Newton´s law of motion F = ma = m d2r/dt2 holds in S, we  
have in  S*[1]                                                                                                                                                     
            m d2r*/dt2 + m ω x (ω x r) + 2m ω x (dr*/dt) = F                             (2.6). 

Transposing the second and third terms to the right side, we obtain an equation of 
motion similar in form to Newton´s equation of motion: 

                         m d2r*/dt2  = F  -  m ω x (ω x r) - 2m ω x (dr*/dt)                         (2.7). 
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The second term on the right is called centrifugal force (that is, "away from the center") 
and the third term is called Coriolis force. Note that F is a real force and another ones 
are "ficticious" forces. 

 

(3)Harmonic Oscillator in Inertial and Non-Inertial Frames.                                                        
 Let us consider now a 3-dim inertial Cartesian system S ("fixed in space") and a 
non-inertial Cartesian system S*(accelerated relatively to S). They have the same 
origins O and O* and the same z an z* axis (see Fig.1). S* is rotating around the 
vertical z-axis with constant angular velocity ω = ω k.                                                                                  
 Let us assume that in S ("fixed") we have an harmonic oscillator, with mass m 
and frequency ψ, vibrating along the x-axis, obeying  the equations                 

                                   x(t) = A cos(ψt) i    and   v(t) =-Aψsin(ψt) i                            (3.1), 

where ψ = (k/m)1/2, k is the spring elastic constant and the period T = 2π/ψ.                                   
 Note that the spring moves along the x-axis in the fixed (x,y) plane and that 
coordinates (x,y) and (x*,y*) axes are co-planar.                                                                         
 As S* is rotating around the vertical axis with angular velocity ω= ω k, we have 
dr*/dt = dr/dt + ω x r (Eq.(2.4)). When ω x r is very small we have dr*/dt ≈ dr/dt and 

       v*(t) =  v(t) cos(ωt) i* - v(t) sin(ωt) j* = Aψsin(ψt)[cos(ωt) i* - sin(ωt) j*]     (3.2),  

taking into account that at for t = 0 we have v(0) = 0.                                                           
 According  Eqs.(3.1), in S the particle moves harmonically along the x-axis in 
the plane (x,z). On the other hand, in S*, from Eq.(3.2), we verify that its motion is 
along the axis x* and y* which are performing rotations around the z-axis.  

 

(4)The Foucault Pendulum.                                                                                           
 A very interesting application of the theory of rotating coordinate systems is the 
famous problem of the Foucault Pendulum. In Figure (4.1) is seen the inertial 
coordinate system S(x,y,z) with the Earth center at the origin O. The Earth is rotating 
with angular velocity ω = ωk around the north-south z-axis                                                                          
 The pendulum is in the system S*(x*,y*,z*) (inside a "box")fixed in an 
horizontal plane of the Earth (see Fig.(4.1)).The pendulum with length ℓ, fixed at the 
point P along the z*-axis, has a ball with mass m. This mass is hanging from a string 
arranged to swing freely in the vertical plane inside the "box" frame fixed in the Earth 
northern hemisphere. The z*-axis forms an angle θ ("colatitude") with z-axis of S. 
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Figure (4.1).Rotating Earth with angular velocity ω around the z-axis. The pendulum is 
shown inside the non-inertial system S* fixed in the Earth. Due to the Coriolis force it will 
rotate around the k´- axis of  S´, as will be shown below.  

 

 Indicating by T the tension in the string we can verify, following Eq.(2.7),that 
the equation of motion of the ball in the S* system becomes given by,[1] 

                               md2r*/dt2 = T  + m ge - 2m ω x (dr*/dt)                                (4.1), 

putting  ge = g - ω x (ω x r) ≈ g.[1]  If the Coriolis force were not present, Eq.(4.1) would 
be the equation for a simple pendulum on a non rotating Earth.                                             
 According to Eq.(4.1), The horizontal component of this force is perpendicular 
to the velocity dr*/dt. Thus, it will be impossible to the pendulum to continue to swing 
in the fixed vertical plane (x*,z*). In order to solve this problem including the Coriolis 
term, is used the experimental result as a clue.[1] That is, is introduced a new coordinate 
system S´(x´,y´,z´). The z´-axis would be coincident with the z*-axis and the S´ would 
have a rotation around this axis described by a constant angular velocity Ω = Ω k´.                                                                                     
 In these conditions we have                                                                                     

                                        m d2r*/dt2 = T + mg  - 2mω x (dr*/dt).                           (4.2). 

 As ω ≈ 7.5 10-5 rad/s, for velocities dr*/dt  < 8 Km/h the Coriolis force is very 
small, less than 0.1% of the gravitational force. Since the Coriolis force 2mω x (dr*/dt) 
is perpendicular to the oscillation "box plane" (x*,z*), will be impossible for the 
pendulum to swing in this fixed vertical plane.[1]  This force would be responsible by a 
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ball rotation with angular velocity around the z*-axis. As can be seen from Figure (4.1) 
the angular velocity Ω would be given by [1] 

                                                 Ω = Ω k* = - ω cosθ k*                                             (4.3), 

where ω is the angular velocity rotation of the Earth and θ the colatitude angle.                               
 So, Ω is the angular velocity of the precessing S´ system ("box frame" ) relative 
to the earth and θ is the angle between k* and k´ axis, shown in Figure(4.1). The ball 
rotates, describing a circle in the (x*,y*) plane, around the z*-axis with the tangential 
velocity v*= ω x r*.[2]                                                                                                                             
 At the equator, that is, when θ = π/2 → cosθ = 0, we have Ω = 0. That is, there 
is no pendulum precession: the swinging "frame" S* remains fixed.                                    
 At the north or south pole when  θ = ± π  we have Ω = ± ω. That is, the 
pendulum swings in a vertical plane fixed in space while the earth turns beneath it. In 
our laboratory the case when the pendulum is hanged at the north pole of motion can 
be exemplified taking into account the apparatus seen in Figs.(4.2 and 4.3). When the 
pendulum is initially put to oscillate along the support plane and the platform (which is 
attached to the circular support) is put to rotate we verify that the pendulum continue to 
swing fixed in space along the initial position of the platform plane.   

 

Figure (4.2). Pendulum hanged at the north pole of the circular support oscillating in its 
plane which is rotating around the z*-axis.  

 In Figure (4.3) are shown the pendulum and circular support positions after 180o 
angular rotation of the platform. 
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Figure (4.3). Pendulum and circular support positions after 180o angular rotation of the 
platform. 

 If φ is the Earth latitude angle we have Ω = 360o sinφ/day [1], where latitudes 
north and south of the equator are defined as positive and negative, respectively. A 
"pendulum day" is the time needed for the plane of a freely suspended Foucault 
pendulum to complete an apparent rotation about the local vertical.  For example, a 
Foucault pendulum at 30° south latitude rotates counterclockwise 360° in two days.             
 Using enough wire length, the described circle can be wide enough that the 
tangential displacement along the measuring circle of between two oscillations can be 
visible by eye, rendering the Foucault pendulum a spectacular experiment: for example, 
the original Foucault pendulum in Paris Observatory (France) moves circularly, with a 
heavy ball with m = 28 Kg, ℓ = 67 m and 6 m pendulum amplitude, by about 5mm each 
period.[1] In reference [1] is also shown the video of the Foucault pendulum in motion at 
COSI (Center of Science and Industry)which is a science museum and research 
center in Columbus (Ohio, University). 

Appendix. Harmonic Oscillation in an Accelerated System.                                                                                                                 
 Let us consider an harmonic oscillator, with mass m and elastic constant k, 
inside a wagon train that moves with velocity much smaller than the light velocity, but 
with acceleration ah relative to a station. The station is fixed in an inertial system S and 
the oscillator is fixed in an accelerated non-inertial system S*. Thus, according to 
Eq.(1.7), in S* the motion described by 

                                             m d2ℓ*/dt2 =  F  -  m ah                                                            (A.1), 

where ℓ* is the spring compression in S* and  F = - kℓ + ma is the force observed in S. 
Since ℓ = ℓ* and a = ah we verify that   

                                              m d2ℓ*/dt2 =  -k ℓ*                                                                      (A.2).  
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 This implies that, as the frequency ω = (k/m)1/2  it is not modified by the 
acceleration, time intervals measured in inertial and non-inertial systems are equal. 
Remember that, according to the Theory of Relativity, time intervals in inertial and non-
inertial systems can be different for velocities close to the light velocity..[3,4]                                                                                                                                         
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