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Abstract.                                                                                                                     

 In our Demonstration Laboratory of Physics (EWHL) we intend to show, 

in a simple way, to students of Physics, the difference between stochastic and 

chaotic phenomena. As examples of stochastic processes will be shown two 

cases: (1) the historical analysis performed by Langevin in 1908 to describe the 

motion of a particle with mass m and radius a immersed in a viscous fluid 

("Brownian motion").
[1,2]

 (2)Motion of small balls submitted to the 

gravitational field in a inclined plate colliding periodically with nails displayed 

along the plate ("Galton Board"). As an example of chaotic process we 

present the motion of a double pendulum in a gravitational field submitted to a 

driven force. Key words: particles in viscous fluids; collisions of beads with  pegs; 

pendulum in gravitation field . 

(I) Introduction.                                                                                                   

 There is a growing field of mathematics, physics and engineering 

that has been applied to study a large number of phenomena generically 

named chaotic. These are present in many areas in science and 

engineering,
[1,2] 

including astronomy, plasma physics, statistical physics 

hydrodynamics and biology. As in Greek the word chaos (χαoç) means 

confusion, random, stochastic and turbulent processes may be misleading 

associated with chaos. However, rigorously they are different in the 

framework of physics and mathematics, as will be seen. This article 

analyses only two kinds of chaos theory, stochastic and chaotic, using 

simple mathematical approaches. In Section 1 is shown the process named 

stochastic. Is seen the general case of particles diffusion in fluids 

submitted to a well known external force and to forces defined as 

stochastic. Is also seen the case of the Galton board when beads move in 

vertical board, submitted to a gravitational force and colliding with 

interleaved rows of pegs. In Section 2 is shown the process named chaotic 

analyzing the double pendulum motion in a gravitational field. 
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(2) Stochastic Processes. 

(2.1)Diffusion of Particles in Viscous Fluids.                                                                                       

 As an example of stochastic process we show the historical analysis 

performed by Langevin in 1908 to describe the "Brownian motion". That 

is, the motion of a particle with mass m and radius a immersed in a viscous 

fluid.
[1,2]

 Assuming that the particle is also submitted to a known external 

force F, along the x-axis it would obey the  differential equation,                                                                                                                                

                    ma = m (d
2
x/dt

2
) =  F - η(dx/dt)  + fs(t)               (2.1.1),  

where - η(dx/dt) = - ηv ("Stokes law") is the dissipative viscous force on 

the particle, where η is the viscous coefficient, and fs(t) is force due to 

unknown interactions ("collisions") of the particle with the molecules of the 

fluid. The force fs(t), named noise term, which is interpreted as been 

created by "stochastic forces" obeys the following average values             

      < fs(t) >  = 0   and  < fs(t)fs(t´) > = B δ(t-t´), where B = constant.                            

 When the effects of the external force F can be neglected, following 

Langevin,
[1,2]

 defining  ζ = d(x
2
)/dt  we get  dζ/dt = 2v

2
 + 2x(dv/dt). In this 

way,  Eq.(2.1.1) can be written as                                                                                     

                                  mdζ/dt = 2mv
2 
- ηζ + 2xfs(t)               (2.1.2).  

 Assuming that the time average < xfs(t) > = 0 we get from Eq.(2.1.2),                                                                                                                                

    m d < ζ >/dt = 2m < v
2 
> - η < ζ >           (2.1.3). 

 In the stationary state ("equilibrium")  < ζ(t) > = constant and the 

average kinetic energy of the particle is (1/2)m< v
2 
> = (1/2)kBT, where kB 

is the Boltzmann constant. In this case, from Eq.(2.1.3) < ζ > = 2 D, where 

D =2kBT/η is the "diffusion coefficient".                                                                   

 If instead of  ζ = d(x
2
)/dt, defining distance as d(t) = x(t) - x(0), 

taking x(0) = 0, we  get                                                                                                                                              

                       < d
2
 > = < (x(t) - x(0))

2 
> = < x

2
(t)

 
>   = 2Dt        (2.1.4). 

showing that in the time interval t the average distance d covered by the 

particle from the initial deposited position would be given by                                                                                                                       

                                               d  = √< d
2
 >  = √2Dt                              (2.1.5). 
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 In Figures 1a,1b and 1c are shown one plastic bottle containing 

water and a syringe containing blue ink. The needle is stuck laterally inside 

the bottle and the ink is injected into the bottle that becomes to diffuse into 

the water (Fig.(1.b)). After 1 h, the blue ink is entirely diffused throughout 

the bottle (Fig.(1c)). The effect of the gravitational F = mg is very small. 

 

           

            Fig.(1a)                             Fig.(1b)                              Fig.(1c). 

 

 

(2.2)Galton Board.                                                                                                      

 The Galton board
[3]

 consists of a vertical board with interleaved rows 

of pegs seen in Figure (2.1). 

 

Figure (2.1). Galton board has N horizontal rows of pegs and k columns. 
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 The boxes are along an horizontal line which center O is in the 

intersection of a vertical line that passes by the beads source. The leftmost 

box, at right or left side of O, is the 1-box, the next is the 2-box,.......   

 The beads that are put,one by one, at the upper side of the board, 

falling due to the gravitational field and deviated due to stochastic 

collisions with  pegs, are deposited at the bottom of the board. Beads 

deviated, either to left or right sides of the pegs, are deposited at the bottom 

of the board, forming columns as seen in Figure (2.2).                                                                            

 The beads trajectories r(t), obey by the differential equation,                                                                                                                                                                                                                                                             

                                            m (d
2
r/dt

2
) =  mg k + fs(t)                        (2.2.1), 

where m is bead mass, g the gravity constant, r(t) = x(t) i + y(t) j + z(t) k 

and fs(t) are stochastic ("random") forces responsible for deviations of 

vertical beads trajectories. They would be distributed in the Galton board 

according the Random walk hypothesis, seen below.                                                                                                        

  

                                       

Figure (2.2). Columns of beads deposited at the bottom of the board  



 

5 
 

Random walk                                                                                             

 Let us imagine a bead with an irregular motion, according to a 

process that is called random walk.
[4]

 At the end of each time interval τ it 

either has moved a distance δ to the right or a distance δ to the left. 

 Suppose that the direction of each successive "step"("collision") is 

independent of the direction of the previous one. Let us assume that the 

probability that the step is in the right direction is p and that the probability 

that it is in the left direction is q = 1- p. Then, it can be shown
 [4]

 that the 

probability Pk(N) after N periods that the bead, after k positive steps and  

(N - k) negative steps, ends up in the k-box is given by the binomial 

distribution, 

                                                                                                                                  

   Pk(N) =  {N!/(k!(N-k)!)}p
k
(1-p)

N- k                           
(2.2.2).    

 

 When N is very large, that is, when N →∞,  the discrete binomial 

distribution Pk(N) approximates the normal or "bell shaped" Gaussian 

continuous distribution
[4]

 given by  

 

                  F(x - X) = {1/σ√2π} exp{(x - X)
2
/2σ

2
}                 (2.2.3), 

 

when p = q = 1/2  and δ = σ/√N  << 1. The standard deviation  σ and the 

average value   X  = < x > are shown in Figure (2.3). This is the typical 

behavior of a system subject to a large number of very small independent 

random effects. 

 

 
 

Figure (2.3). Gaussian or normal distribution F(x- X) as a function of x. 

 



 

6 
 

(3) Chaotic Phenomena.                                                                                

 In physics basics courses we learn that all physical laws are 

described by differential equations. So, integrating, that is, solving 

analytically or numerically, these equations knowing the initial and 

boundary conditions we would know the future of a physical system for all 

times. This is the deterministic view of nature. That is, physics systems 

are deterministic because they obey deterministic differential equations. 

They can be conservative or dissipative. If the initial states of deterministic 

systems were exactly known, future states could be theoretically predicted.                                                

 The deterministic theory survived till the 19
.th 

beginning to be 

questioned after the famous visionary works of Henri Poincaré on Celestial 

Mechanics
[5] performed at the end of the 19

th. According to Poincaré, it is 

not always so: it may happen that small differences in the initial 

conditions produce very great ones in the final phenomena. A small error 

in the former will produce an enormous error in the latter. Exact predictions 

becomes impossible, and we have fortuitous phenomena. In practice, as 

observed for many systems, knowledge about the future state is limited by 

the precision with which the initial state can be measured. That is, the exact 

knowledge of the laws of nature is not enough to an exact prediction of the 

future. There are deterministic systems whose time evolution has a very 

strong dependence on initial conditions. That is, the differential equations 

that govern the evolution of the system are very sensitive to initial 

conditions. In these cases we say that the phenomena are "chaotic".“Even 

a tiny effect, such as a butterfly flying nearby, may be enough to vary the 

conditions such that the future is entirely different than what it might have 

been, not just a tiny bit different”.
[6] 

 Many examples of chaotic system can be seen in literature.
[5,6]

 In this 

paper will be only analyzed the chaotic motion of the double pendulum 
[7]

 

 In next Section (3.1) is seen the non chaotic motion of the physical 

pendulum.
[8,9...] 

 

(3.1)Physical Pendulum. 

 Let us briefly present the non chaotic motion of the physical 

pendulum (Figure(3.1.1)) which is studied in basic physics courses
[8,9] 

 
Figure (3.1). Physical pendulum rotating around a fixed horizontal axis ZZ´. 
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 In Figure (3.1) is seen a physical pendulum or simple pendulum 

with mass m and moment of inertia I around the ZZ´axis submitted to a 

gravitational field g. In the general case, the angle θ(t) is given by
[8,9.]

                                                                                                                                      

                                d
2
θ/dt

2
 + (Mgh/I) sinθ = 0                           (3.1.1), 

which is difficult to solve exactly, that is, to obtain θ = θ(t).                                                

 For small deflection angles, that is, θ << 1 we get
[8,9]

 

                                               θ(t) = A cos(ωt + θo)                             (3.1.2), 

which describes the simple pendulum, where A is the amplitude of motion, 

θo is initial deviation angle and ω = (mgh/I)
1/2 

is the frequency of the 

oscillations. If the initial values of A and θo  are given, the θ(t) values will 

be well known with the time evolution. This shows the non chaotic motion 

of the simple pendulum. Pendulum clocks are used to measure (up to now 

days) with great precision the time in our houses. In the general case 

solving Eq.(3.1), we verify that the oscillations are non chaotic. That is, 

we have always an oscillatory motion.
[10]

 

 

(3.1.2)Double Pendulum. 

 A double pendulum rotating around a fixed horizontal axis,
[11]

 shown 

in Figure (3.2), 

 

                
 

Figure (3.2).Rotating axis passing by (0,0) and perpendicular to the plane (x,y).  

 

 Equations of motion for the centers of massed (x1,y1) and  (x2,y2) and 

for the angles θ1 and θ2 are shown in reference [11]. Solving numerically 

these equations (very complicate!) we verify that the motion is chaotic, that 

is, the trajectories of the centers of mass and angles are very sensitivity to 
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their initial values. This chaotic motion can be seen in Figure (3.3) where 

is shown the trajectories of the end point(obtained by numerical 

integration of the equations of motion) of double pendulum.  

 

 
 

                                     
 

Figure (3.3). Trajectories of the end point of the double pendulum. 

 

 

 

 Physical and double pendulums in our laboratory are seen below. 
 

                                                                             
 

                Physical pendulum                           Double pendulum. 
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