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Abstract. Using Stroboscopic lamp,[1] we have investigated instabilities, 

with droplets formation, in vertical water jets in air in a gravitational field.                                                                                                            
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(I) Introduction.                                                                                           

 We perform a simple analysis of instabilities that appear in a vertical 

water jet submitted to a gravitational field g in the air. As a first approach, 

in Section 1, both water and air are assumed as ideal fluids. In these 

conditions, water flow is laminar.[2-6,8] In Section 2 will be analyzed 

vertical jets taking water and air as real fluids. It will be shown that 

instabilities are created by forces acting on the air-water interface. These 

are due to liquid superficial tension γ, viscous forces and difference of 

pressure between air and water.[2 -6] In these conditions the flow will 

become turbulent[2-6,8] and, finally, water droplets are created..  

 

(1)Ideal Fluids.                                                                                                           

 Let us analyze water ejected in air along a vertical line submitted to a 

gravitational acceleration g. Assuming that they are ideal fluids we put 

their densities ρ = constants and  viscosities η = 0. It will be also neglected 

water superficial elastic effects (Appendix A).                                     

 In these conditions, we can assume, in a first approximation, that 

water mass elements would fall along a vertical z-axis submitted only to 

the gravitational force. In this way, their velocities U(z) along the z-axis 

would be given by,                                                                                                     

                                             ∂U/∂t = - g k                                              (1.1). 

mailto:mcattani@if.usp.br


 

2 
 

 Integrating Eq.(1.1), neglecting the initial speed, we verify that fluid 

moves in a free fall along the z-axis, with U(t) = gt k, getting, 

                                             U(z)  = (2gz)1/2k.                                        (1.2).  

 As water is incompressible, the mass flux Φ = U(z)A(z) = Q will be 

constant along the flow tube. Being A(z) = π r2(z) the tube cross section 

area and r(z) its radius we get, taking into account Eq.(1.2):                 

                                        r(z) = {Q/π√2gz}1/2                                         (1.3), 

showing that the tube radius decreases as z increases.                        

 In Figure (1.a) is shown the case of ideal water ejected in ideal air 

by a circular orifice with radius a. The tube flow would have a cylindrical 

symmetry. 

 

 

 

Figure (1.a) Jet flow of an ideal water extruded from an orifice of radius a accelerated under 

the influence of gravity. Its shape is influenced by the gravitational acceleration and also by the  

and surface tension γ.   

 

(2)Real Fluids.                                                                                                    

 When water emerges from the tap, at the very beginning of the 

vertical flow, we see that there are no instabilities. The trajectories of mass 

elements δm along the flow tube would be "parallel" lines. It is known as 

laminar flow.[2-6](see Figure(2.1)). 
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Figure (2.1). Initial laminar flow of mass elements during the free vertical fall.  

  Far from a tap we always observe that it will break up into droplets, 

no matter how smoothly the stream is emitted from the tap. In Figure (2.2) 

is seen the stroboscopic photo of the water flow. Are clearly seen 

instabilities (turbulence) in the flow tube, that is, sometimes it becomes 

twisted, gets thinner and, finally, it breaks and droplets are created. 

 

Figure (2.2). Instabilities of the falling water thread in air with formation of droplets. 
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 The mathematical description of real fluids instabilities in air is an 

extremely difficult task. To do this it would be necessary to use the Navier-

Stokes equation given by,[3,5,7]  

 

             ∂v/∂t  + (v•grad)v = - grad(p)/ρ - grad(φ)/ρ + ν lapl(v)          (2.1), 

 

where φ(x,y,z) is the (gravitational) external potential, p(x,y,z) fluids 

pressures, ρ(x,y,z) fluids densities, η(x,y,z) fluids viscosities and ν = η/ρ 

their  cinematic viscosities. Note that Eq.(1.1) is obtained from Eq.(2.1) 

neglecting (v•grad)v, grad(p)/ρ, ν lapl(v) and putting grad(φ)/ρ = g/ρ.                                

 Instead of an intricate mathematical analysis[7] we only intend to 

describe, in a simple way, the main mechanisms responsible by the flow 

instabilities and the droplets formation. These occur due to surface tension 

perturbation effects that are always present in the interface of the two fluids 

which are in relative motion. Instabilities are created by forces acting on 

the air-fluid interface due to liquid superficial tension γ, viscous forces and 

difference of pressure between air and liquid and the flow becomes 

turbulent.[2-6].In Figure (2.3) these perturbations are represented by circles 

R(z). As z increases r(z) decreases and R(z) increases, finally breaking the 

jet tube into droplets (Figure (2.2)). It can be shown that when r(z) → 0 we 

have v(z) → ∞.[7] 

 

Figure (2.2). Surface perturbations are represented by circles with radius R(z) . When these 

R(z) increase the stream tube radius r(z) decrease and the water jet breaks into droplets.  

 

https://en.wikipedia.org/wiki/File:SurfTensWavyJet.svg
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Appendix A - Surface Physics.                                                            
 As seen in basic physics courses,[2-5] a paperclip, an insect or a needle 

can float on water. Drops of mercury or water do not spread on a surface. 

When the clean glass with a small diameter are immersed in water, the 

water rises in the tube, however, when the liquid is mercury it falls into the 

tube. This phenomenon is known as capillarity. Bubbles of water with soap 

can created and float freely in the air. Thin liquid films of water with soap 

can be created  in wire frames. To stretch these films is necessary to apply 

a force F.[2] In this stretching if the film area is modified by dA is realized a 

work dW defined by dW = γ dA, where γ is named surface tension 

coefficient or, simply, surface tension effects of the film. It has the 

dimension of energy per unit of area [J/m2] or force per unit of length 

[N/m]. The thin film behaves as an elastic membrane.                                    

 In materials science, surface tension is used for either surface stress 

or surface free energy and, usually, instead of "force" F we take into 

account "tension" T which is "force per unit of length". These phenomena 

and many others are observed in interfaces of fluids in contact. A clear 

understanding of the interface physics can be only obtained taking into 

account the molecular structure of the fluids and their mutual interactions.                                                                       

 Usually, in undergraduate physics courses[1,3] are studied only liquid-

air interfaces since in this case is easier to understand basic effects derived 

from surface tension. At liquid-air interfaces, surface tension results from 

the greater attraction of liquid molecules to each other (due to cohesion) 

than to the molecules in the air. Thus, the surface becomes under tension 

from the imbalanced forces. The net effect is an inward force at its surface 

that causes the liquid to behave as if its surface were covered with a 

stretched elastic membrane. Surface tension[6] is the elastic tendency of a 

fluid surface which makes it acquire the least surface area possible. An 

illustrative example is the water droplet free in the air:  the liquid assumes a 

spherical shape which is the least surface area possible, that is, an area with 

a minimum of elastic energy. 

 

Appendix B. Turbulent or Chaotic flows.                                               

 In Section 1 was seen that ideal water jets in the air are laminar,[2-6] 

that is, water would travel smoothly or in regular paths; the flow lines are 

"parallel" according to Figure (B.1). In turbulent or chaotic case[7] there 

https://en.wikipedia.org/wiki/Materials_science
https://en.wikipedia.org/wiki/Surface_stress
https://en.wikipedia.org/wiki/Surface_energy
https://en.wikipedia.org/wiki/Cohesion_%28chemistry%29
https://en.wikipedia.org/wiki/Fluid
https://en.wikipedia.org/wiki/Surface_area
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are no continuous flow lines. Water travels along small mixing paths 

submitted to irregular fluctuations. These cases are shown in Figure (B.1). 

 

 
 

Figure (B.1). At the left side, fluid is moving following a laminar flow and at right it 

is moving following a turbulent flow. 

 

 In Figure (B.2) is shown a candle flame flow: the lower part is 

laminar and the upper one is turbulent.  

 

 
 

Figure (B.2). Candle flame flow. The low part is laminar and the upper is turbulent. 

  

 In fluid mechanics is very difficult to exactly determine the 

necessary conditions to have laminar or turbulent flows.[2-6] There is, 

however, a dimensionless quantity called Reynold number(Re) that can 

help us to see when we can have a turbulent or laminar flow.[4,8] It is 

defined by 

                                                 Re = 

https://en.wikipedia.org/wiki/Dimensionless_quantity
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where L = characteristic linear flow dimension, v = flow velocity,ρ = fluid 

density and η = fluid viscosity. For a tube with diameter D we put L = D.                                                                               

 (1)Laminar flow occurs at low Re, where viscous forces are 

dominant and is characterized by smooth, constant fluid motion.[4,8]                                                                    

 (2)Turbulent flow occurs at high Re. It is dominated by viscous and 

inertial forces that tend to produce chaotic eddies, vortices and other flow 

instabilities.[4,8] 
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