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Abstract. This paper was written to graduate and post-graduate students of Physics.  

In General Relativity context we have estimated differences of time that would be 

observed, in gravitational field, between travelling, fixed and rotating clocks.                                              
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INTRODUCTION.                                                                                                                              

 In Section I are pointed some features of Special and General Relativity. It is 

also seen in General Relativity the fundamental connection between time and spatial 

coordinates. In Section II are taken into account clocks submitted to a weak gravitation 

field within the General Relativity context. In Section III is proposed an hypothetical 

experiment to estimate the time dilation between two clocks: one fixed at an spherical 

body with mass M and the other making a round trip to M. In Section IV is analyzed 

the time dilation measured between two clocks near the Earth surface. In Section V is 

estimated the time contraction when a clock is rotating around a spherical body. 

 

(I) Special and General Relativity.                                                                                               

Special Relativity.                                                                                                          

 According to Special Relativity  the space-time of the physical events, is a 4-

dim Riemannian space named Minkowski space
[1,2]

with a pseudo-Euclidean metric. 

Light velocity is taken as constant in inertial and non-inertial reference systems. Let us 

consider systems with 4 coordinates, x1= x, x2 = y, x3 = z e x4
 
= ict. In this space-time 

the trajectory of a particle, named world line, obeys the condition,                                                                                              

                                                                                                                                                     

                 ds
2
 = - dx

2
- dy

2
- dz

2
- dx4

2
 = c

2
dt

2
 - dx

2
- dy

2
- dz

2 
                        (I.1), 

where the invariant ds is the line element in the 4-dim space. Where invariant means 

that ds is independent of the referential system.                                                         

 Let us assume that in a time interval dto a clock Co fixed in So covers a distance 

[dxo
2
 + dyo

2
 +dzo

2
]
1/2 

in So. What will be the time dt indicated by a watch C fixed in 

another system S ? As C is fixed in S, dx = dy = dz = 0 . Thus, as ds is invariant we get,                     

                                 dso
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 = c

2
dto
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 - dxo

2
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2
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2
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giving              dt  = ds/c = (1/c)[c
2
dto

2
 - dxo

2
 - dyo

2
 - dzo

2
]
1/2

, that is,  

                 dt = ds/c = dto[1- (dxo
2
 - dyo

2
 - dzo

2
)/c

2
dt

2
]
1/2

 = ds/c = dto [1-(vo/c)
2
]
1/2

    (I.2). 

Putting ds/c = dτ, defining dτ
 
 as the proper time interval of the clock C. That is, the 

time interval measured by a clock that moves attached to S. That is, 
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                                                 dτ = [1- (vo/c)
2
]

1/2/
 dto 

                                                                        
(I.3). 

If an object is attached to the clock C, τ will be the proper time of this object.
.[3]

                                                                                                          

 Consider, for instance, the case of an unstable elementary particle. Let us assume 

that it is at rest in an inertial system So where its lifetime is To. If So is moving with 

velocity V relative to a system S, its lifetime T measured in S would T = γTo, where γ = 

1/[1 - (V/c)
2
]
1/2

.
[1-3]

 As γ ≥ 1 the particle lifetime increases when it is in motion. 

General Relativity.                                                                                                 

 Einstein generalized the Newtonian gravitation theory assuming that the 

Minkowsky geometry is modified by the gravitational field.
[3,4]

Proposed that the new 

spacetime would be a 4-dim Riemannian space
[3.4.]

where the line element ds is given by  

                                      ds
2
= - c

2
dτ

2
 = gµν(x)dx

µ
dx

ν
 ( µ,ν = 1,2,3,4)                         (I.4), 

where gµν(x) are metric tensors, determined by the mass distribution which creates the 

gravitational field.
.[3,5]

                                                                                                    

 In General Relativity the choice for the reference system is arbitrary. The space 

coordinates x1, x2 and x3, that define the position of the masses in the space, can be 

arbitrary quantities. The fourth component that would be the temporal coordinate xo can 

be determined by a watch that marks its proper time.
[3]

 The problem is to know, using 

these variables, how to describe measured distances and time intervals.                                                                 

 A particle traces in this 4-dim spacetime its trajectory ds (or story) defined as its 

world line and living its proper time or real time dτ.                                                                   

 Let us show now how to determine the fundamental connection between the real 

time τ and the coordinate xo. To do this let us take into account two simultaneous events 

happening in the same point in the space. That is,obeying the condition dx =dx2=dx3= 0. 

So, the interval ds between these two events is surely cdτ, where dτ is the interval of 

time (real) between the two events. As these events occurs in the same point of the 

space we have, according to Eq.(I.4)
[3]                                                                                                                                                   

                                                ds
2
 = - c

2
dτ

2  
=  goodxo

2
  ,                                                                                                   

that is,                                                                                                                                                   

                            dτ = (1/c)(-goo)
1/2

 dxo,                                      (I.5), 

showing that the time τ elapsed between two arbitrary events happening in the same 

point of the space is given by                                                                                                                                

                                              τ = (1/c)∫[-goo(xo)]
1/2

dxo                                      (I.6). 

 These relations determine the real times τ (or, as we say, the proper time in a 

given point of the space) as a function of the coordinate xo. Note that to have real times 

it is necessary that  goo < 0. If this condition is not satisfied the coordinate system do not 

represent real events.  

(II)Clocks in Gravitational Field.                                                                                                

   Let us analyze time intervals marked by clocks located in the vicinity of a 

spherical body with mass M and radius R neglecting rotational and relativistic effects . 
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It will be assumed that the body is an inertial reference frame and that its gravitational 

field  φ(r) = - GM/r is weak. In these conditions goo(xo) becomes given by,
[3]

                             

  

                                                goo(xo) = - 1 - 2φ(r)/c
2
.                                             (II.5). 

In this way, from Eq.(I.5):  

  

                                   dτ = (1/c)[1 + 2φ(r)/c
2
]

1/2
dxo = [1 + 2φ(r)/c

2
]

1/2
dt                 (II.6) 

  

 When φ(r) = - GM/r, using Schwarzschild metric(see Appendix) and Eq.(II.6) 

for one clock at r1 we have 

                                                    dτ = 1 - (2GM/r)c
2
]
1/2

 dt                                      (II.7),  

showing  that as r increases clock runs faster. 

 If φ(r) = - GM/r is weak, using Eq.(II.6) we obtain 

                                                      dτ  ≈ (1 - Rs/2r)dt                                                 (II.8), 

where Rs = 2GM/c
2
 is the Schwarzschild radius of the body with mass M.                                               

 

(III)Time Dilation in Weak Gravitational Field.                                                            

 Let us take two identical clocks. Clock (1) fixed at the Earth surface, that is, at 

the sea level at r = R. Clock (2) will perform a round trip, that is, going from r = R, up 

to r = R + h and coming back to the sea level, that is, at r = R. If during this trip clock 

(1) runs a time τ1 = 2T what will be the time τ2 measured by clock (2 )?                                        

 In our ideal experiment clock (2) will be transported through the gravitation 

field with an average velocity dr/dt = V << c. V will be assumed very small; unable to 

create meaningful kinematic relativistic effects and accelerations during the trip and at 

the points r = R and  r = R + h. Time τ2 will be estimated taking into account the round 

trip using Eqs.(I.6) and (II.8): 

                                 τ2 = (1/c) ∮ [-goo(xo)]
1/2

dxo  =  ∮ [1 - Rs/2r(t)]dt                  (III.1), 

 In the first step of the trip, putting dt/dr ≈ dr/V, when t goes from 0 to T and 

r(t)  from R to R+ h, we get from Eqs.(II.8) and (III.1), 

 

                     
  

  
                       

 
                                           

 

 
(III.2). 

                                                                
 In the second step, that is, that goes from r = R + h  up to  r = R we obtain, 

putting dr/dt = - V, and following similar calculations done before, 

                                              T  -  (Rs/2V)ln{(R + h)/R}                                 (III.3). 
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  So, taking into account  Eqs.(III.2) and (III.3), τ2  measured by the clock (2), 

along the round trip r = R → R + d →R, is given by 

                                       τ2  ≈  2T - (Rs/2V) ln{(R + VT)/R}                           (III.4). 

 So , the time difference between clocks 1 and 2 will be   

                                     ∆τ =  τ1 - τ2  ≈  (Rs/V) ln{(R + VT)/R}                      ( III.5),                                                                                                                

showing that clock 2, which is in motion,  runs more slowly than clock 1.                        

 Let us estimate  ∆τ for Earth and Neutron Stars. 
                                                                                                                                                 

(a) Earth.                                                                                                                                        

  Rs = 8.9 mm ~10
-6

 Km and radius R ~ 10
4
 Km. Let us assume V = 100 Km/h 

and that the travel time is T ~ 10 years ~10
5
 hours. From  Eq.(III.5) we see that        

                                             ∆τ ~ 10
-8

 ln(10
7
/10

4
)  ~ 10 

-7
 hours!!!!                                                                                                                  

 Assuming  that the time dilation  ∆τ* would be created only by kinematic 

relativistic effects, predicted by the Special Relativity, we obtain 

                                                      ∆τ* = (2T)γ                                                     (III.6), 

where  γ = 1/[1 - (V/c)
2
]

1/2
 . Thus, as V = 100 km/h  and  c = 10

9
 Km/h we have                                 

γ = 1/[1 - (V/c)
2
]

1/2   
~  1 + (V/c)

2
 ~ 1 + 10

-14
. This, would imply that 

                                               ∆τ* ≈ 10
5 

*10
-14

 hours  = 10
-9

 hours                           (III.7), 

 showing that the kinematic dilation time would be much smaller than that created by  

gravitational  effects,  ∆τ  ~ 10 
-7

 hours.                                                                                                                  

(b)Neutron Stars.                                                                                                                                     

  Rs ~10
3
 Km and radius R ~ 10

4 
Km. Assuming, as before, V =100 Km/h and the 

travel time T ~10 years ~10
5
 hours we obtain from Eq.(III.5),  

                                               ∆τ ~ 10
2
 ln(10

7
/10

4
)  ~ 10 hours.                                

 

(IV)Time Dilation near Earth.                                                                                                                   

 First measurements of gravitational time dilation  near the Earth were done by 

Pound and Rebka
[6] 

and Pound and Snider.
[7]

 Recently these measurements have also 

been performed by American undergraduate students.
[8]

 These were done by comparing 

the signals generated by a GPS frequency standard (sea level time τ)  to a Cs-beam 

frequency standard at different altitude h above sea level. Very small time dilation due 

Earth´s rotation was neglected.                                                                               

 In these experiments were used two clocks: one at sea level at r = R and another 
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orbiting at r  = R + h. When h/R << 1, time intervals predicted by these clocks are given 

by Eq.(II.8):                                                                                                                                                                                            

                         dτ  ≈ (1 - Rs/2r)dt  ≈  1 - (Rs/2R)(1 + h/R)
-1

dt,                    that is, 

                                           dτ  ≈ 1 - {(Rs/2R) -(Rs/2R)(h/R)} dt                              (IV.1),  

where Rs = 2GM/c
2
 is the Earth Schwarzschild radius.                                                                         

 The dτ measurements
[8]

 were performed  comparing signals generated by GPS 

frequency standard at different altitudes h above sea level. As the contributions of the 

term (Rs/2R) vanishes in the GPS frame, putting dt = dτo, Eq.(IV.1) becomes,
[8]

 

                                                 (dτ/dτo) = 1 + (Rs/2R)(h/R)                                               

or                                                                                                                                                                            

                                     τh = {1 + (Rs/2R
2
)h} τo                                                    (IV.2), 

showing that the proper time, τh ,elapsed on a clock at a height h above R is, therefore, 

greater than the time τo elapsed on the GPS clocks at r = R. That is, we have a "time 

dilation". Putting ∆τ = τh - τo  and remembering that GM/R
2
 = g is the acceleration due 

to the gravity we have                                                                                                                                  

                  ∆τ = (g/c
2
)h τo                                              (IV.3). 

Their ∆τ measurements give  ∆τ ≈  9.5 10
-9

 s /day Km.
[8]                                                                      

  

 

(V)Rotational Time Contraction.                                                                   

 Let us consider a clock fixed at a sphere with radius R which is rotating around 

the z-axis with angular velocity Ω . Thus, taking into account the Schwarzschild metric, 

shown in Appendix, putting dr = dθ = 0, dφ/dt = Ω and neglecting  gravitational effects, 

                                      dτ = [1 - Ω
2
r
2
/c

2 
]
1/2 

dt                                             (V.1), 

according  to Section II, since goo(xo) = 1 - Ω
2
r
2
/c

2
.                                                                      

 In the case of a clock fixed at the Earth equator, that is, at r ≈ 6.4 10
6 

m and 

remembering  that Ω  ≈ 7.3 10
-5

 s, we obtain with Eq.(V.1) 

                                                 τ(R)= (1 - 2 x10
-12

)τo                                                (V.2), 

letting τ(R)
 
 be the proper time measured by a clock at the equator sphere. The time τo 

can be the elapsed time far from the Earth or at the North or South Poles, that is,                                                     

τ(NP) = τ(SP) = τo.  Eq.(V.1) shows a time contraction, that is,  

                                                     ∆τ = - 2 x10
-12 

τo                                                                           (V.3). 
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APPENDIX. Schwarzschild Metric and Metric with Rotation.                                                                         

 The Schwarzschild metric that describes the spacetime around a spherically 

symmetric body with mass M and radius R is given by
[2,3,8]

 

              -ds
2
 = c

2
dτ

2
 = c

2
(1- Rs/r) dt

2
 - [1- Rs/r]

-1
 dr

2
 -  r

2
dθ

2
-   r

2
sin

2
θ dφ

2
           (A.1), 

 where Rs = 2GM/c
2
 . If Rs/r << 1 and for a rotating sphere  with dr = dθ = 0,we have, 

        (dτ/dt)
2
 = (1- Rs/r)

2
 - {(r/c)( dφ/dt)}

2
 sin

2
θ = (1- Rs/r)

2
 -(r

2
Ω

2
/c

2
) sin

2
θ           (A.2), 

where Ω = dφ/dt is the angular velocity of the sphere along the z-axis. 

 When only rotational effects are preponderant we have,
[2,3,8]

 

                         dτ
2
 = -(c

2
 - Ω

2
r
2
)dt

2
 + 2Ωr

2
dφdt + dr

2
 + r

2
dφ

2
 + dz

2
                        (A.3), 

from which we see that goo = -(c
2
 - Ω

2
r
2
) and, using  Eq.(I.5) we obtain, 

                                                   dτ = [1 - Ω
2
r
2
/c

2 
]
1/2 

dt                                              (A.4). 
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