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ABSTRACT

We extend the Lee-Nauenberg analysis to the case of Coulomb
scattering, where the diagonal elements of the interaction
Hamiltonian are singular functions.

We then show, using a simple argument, that the leading

infrared singularities in the cross-section cancel out.




It is well known that field theories containing massless
particles have infrared singularities associated with the fact
that these particle can propagate to arbitrarilv large distances.
Such is the case of Quantum Eletrodvnamics ((ED) and, even more
importantly, of Quantum Chromodynamics (RCD) which is a non-
abelian gauge theory of strong interactions containing massless
gluons. The cancellation of the infrared divergences for
physical processes like cross-sections e.t.c., is by now well

understood in } zpt)

. On the other hand, the same cannot be
said of QCD, where this cancellation has been verified only in
lowest orders of perturbation theory for the leading divergen-
ces(z). In this case it results from the consideration of a
large number of Feynman diagrams and so it is difficult to have
a simple understanding of the reason why the cancellation does
occur.

It is therefore important to try to find out another method
which hopefully can provide a way for a more direct
understanding of this phenomenon. An approach in this direction

(3) who

has been undertaken some time ago by Lee and Nauenberg
have shown that in some cases these cancellations are conse-
quences of an elementary theorem in quantum mechanics. We shall
briefly review here their approach mainly in order to explain
its limitations and to point out a possible generalization.

Consider an arbitrary Hamiltonian (¥10+glt) which can be

diagonalized by a unitary matrix U:

UT(H0+;H,)U:E (1)




where Hb and E are diagonal matrices and g is the
coupling constant. U=U_ or U, depending on whether incoming
or outgoing scattered waves are used. The S matrix is given

by:
5'-‘ U__T U+ (2)

so that the transition probability from a state a to a state

b is:
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Lee and Nauenberg have shown that, provided (Hi)ii is a

finite quantity, the infrared divergences are completely

cancelled in the power series expansion of the sum:
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Here the summation extends over all states degenerated in energy
with the state a [of course, the same type of consideration
applies for [T_. (Eb)lj] .

This theorem is very simple and powerful. Unfortunately, it
does not directly apply to the realistic cases where (Hi)ii
is not a well behaved function, in general. For instance, the
Hamiltonian which describes the familiar Coulomb scattering
becomes singular in this case.

We conjecture that in these cases the matrices Tt are still
relevant quantities in the understanding of the cancellations
of the infrared singularities. In fact, we show in the next

that
sedtidﬁrlhe leading infrared divergences completely cancel in



the product:
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in the case of the scattering of a charged particle by an

external Coulomb potential.

2. Coulomb scattering in an external potential

We will now consider the interaction’Hamiltonian which describes
the scattering of a charged particle (a fermion of charge e)
by an external potential:
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which becomes in the limit A0 the familiar Coulomb potential.
This procedure has the advantage of providing a regularization

for the infrared singularities. In fact,this method has been
(4)

used by Dalitz whose calcullations in lowest orders indicate

that the leading divergences exponentiate in the scattering
amplitude.

as
From (6) we obtain usual for the Hamiltonian in momentum space:
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where g=Ze2 and EF 2 (P + ™M J, m being the fermion mass.

Note that as TO’-b 7::' ) By ne becomes a singular function, as we




have mentioned previously.

From equation (4) we see that the infrared singularities of
the T matrix are determined by those of the matrices U
which are related to H; wvia equation (1).

Now, the matrices U: involve the limit as t++t00 of U(t,o0)
over an infinite time interval. To establish the existence of
such limits it is useful to multiply the coupling constant g

-£ 1t
by a slowly varying function of time, say € , where §&

gE,n
is a small positive number. Then, the matrices [/+' defined

€
by the power series expansion of bﬁ :

o &n
Uf =2 j" U, (8)

will be given recursivelly in terms of the Hamiltonian H

y by
(3

the relation

En+ < L En
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(9)
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where

A

i

& n
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h=-A4

In terms of these quantities, the matrices T: defined by the

power series expansion:

o0
T (E) - Z g." T: (B)
n-o

(11)




will be given, using equation (4), by the relation:

n+l K

SN m ,ntd-
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Here we have used the fact that, in the case of the pure Coulomb
scattering we are considering here, there are no other states
which become degenerate in energy with the state ¢ in the
limit \ -»0.

From the structure of equation (9) we see that the infrared
singularities arise when the energy denominators vanish and
when the interaction Hamiltonian becomes singular in the sum
over intermediate states.

We.will consider here only the leading infrared singularities

which are proportional to 32% >\ for each integration over

; -3 3
internal momenta. [In the continuum 2 — Vi) JOL k. J.
kR

Then the leading divergence in the matrix element \)yh*i will

.’-
n
be proportional to ( gfe~\A ) and arises from the n inte-
grations implicit in the iterative solution of equation (9).

We can now conclude, using equation (12) that the leading

13p+j)L' will be proportional

-

divergence of the matrix element (

n
to ( 2@'\) ) and comes from only two terms:

L n+ L n+ ~ L
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where we used the fact that (L@)~j:igd' . All other terms in
-1
equation (12) are proportional at most to ( gfmf\ " and

hence are not relevant for our purposes.

We must therefore calculate the leading infrared devergence of

)cj
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the matrix((if' . Using equation (7) and (9) we obtain:
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which is represented digramatically in figure 1.

Figure 1. Graphical representation

e n+1
for the matrix element J'

The wiggly lines represent the

propagator of the Coulomb field

R

and the dotted lines stand for

the sum over intermediate states.
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Since we are interested only in the leading infrared divergences,
we can considerably simplify expression (14] by noting that
these occur only when all momenta-zpl,..tan are simultaneously

small quantities. In this case equation (14) reduces to:

%
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where tI:t is given by the following expression:
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In order to obtain this expression we have neglected kl terms

%
compared with P.k, in the fermion denominators. This is just
the eikonal approximation which does not affect the leading
divergences.

We now make use of the important identity:

4 L
2 e ey wn

where the sum i1s over all permutations of the indices 1,...n.

Then we can write T} as follows:

) i : n
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where.]:ﬁ represents the lowest order contribuition:

(aml R+ 2 Bk £

The infrared divergent part of this integral is calculated

more easily, using the usual Feynman parametrization, by
2

reinstating the factor.Iz in the fermion denominator:

L L. : L i 1
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Substituting equation (20) in the relation (15) and using (18)

we obtain for the leading divergences of the matrix element
Ewn +i
Qj't CJ the result:

i
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We are now in a position to calculate the leading infrared
behaviour of the matrix ['T}-(Ec)] (1. With the help of the

equations (8), (11) and (13) we find:

L kUL
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where the matrix element (L)t_)gj'is given, using equation(21),

by the relatign:

L ' i m ‘/—L m -14‘
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(23)
" We can finally return to our equation (5). We consider non-
forward scattering, so that the state a is different from

state b. Of course, Eg=Ep since the energy of the scattered
particle is conserved. It is then easy to show, using equations

(22) and (23), that the leading infrared singularities do
ab
cJ .

cancell in the product 'P

3. Conclusion

We have seen that, in the case when the diagonal elements of
the interaction Hamiltonian are singular functions, the T:
matrices do contain infrared singularities. But their infrared
behaviour in the leading approximation is very simple: the
leading infrared divergences sum into an exponential.
Furthermore these are given by linear cavbinations of the U:x ma-
trices (see equation 22). Consenquently, the leading infrared
singularities cancel, in the product T+Ti (see equation 5),
whence it follows, in this approximation, that the cross
section is a finite quantity.

The extension of these results to the case of QEDis , in

principle, rather simple, since in this case only the Hamilto-

nian describing the Coulomb interaction is a singular function.




.11.
However, the generalization to CQ(LD 1s/in the Coulomb gauge,
more complicated, in view of the fact that the interaction
Hamiltonian contains an infinite number of such functions(s)'
Presumably simplifications will occur in the axial gauge where
the Hamiltonian contains only a small number of singular

(6)

terms . We shall report on these and related matters in a

future communication.
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