IFUSP/P-112

ON LINEAR EQUATIONS FOR THERMAL AVERAGES AND ON

QUASI AVERAGES IN THE GENERALIZED DICKE MODEL.

by
*
L.C.Jafelice and W.F. Wreszinski

Instituto de Fisica, Universidade de @ Paulo

Brazil

M

* ~ -
Work supported by the Fundacao de Amparo a

Pesquisa do Estado de Sao Paulo.




ABSTRACT

A rigorous justification of equations proposed by
De Vries and Vertogen ( [l1] ) is provided for mean field
models and applied to a generalized Dicke model ( [3] , [4],
[5] ) with non zero counterrotating term.

Thermal expectation values of certain operators
in the Dicke model is the "rotating-wave" approximation (i.e.,
with zero counterrotating term) may be obtained from the
system of equations by a limiting process, which coincides
with the method of "quasi-averages" ( [91 ). This point is
illustrated by the calculation of the thermal expectation
value of the same operator, considered in [l1] . Finally, a
discussion is made of quasi-averages in this model both from

the mathematical (Proposition II-1) as well as from the

physical point of view.




I - INTRODUCTION AND SUMMARY

. Let HN be a Hamiltonian for N two-level atoms in
on mode of radiation field of the form ‘
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the Hilbert space of the N- atom system,
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6::’ /" being Pauli matrices over C (({) , a and a the

photon annihilation and creation operators, and P a polynomial
. in the given operators. Some of the most general "mean-field"
models in the literature may be so described : the Dicke maser
model (L3] , [4], [5] ), Hioe's model ([6]). (The BCS model
in the strong-coupling limit ( [9] ) is even simpler and may
also be tackled by the forthcoming methods).
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Operators .‘%,&.. ) & and 2 are called

W N
"intensive" ( [3] ). Thermal expectation values of intensive
operators 0N are defined by
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where we defined the "Gibbs state" f/}”(-) = <'>@ N =

= T% (e“ﬁHM .)/ZN (p) to abbreviate
notation, and 6_{3[./”
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For the Dicke model ((3] , [4] , [5] ), Hioe's ( [6) ) and the
BCS model ( [9] ) it was explicitly proved in the given referen
ces that the limits (I-2) exist for all polynomials in the
intensive variables.

In ([1]) certain linear equations for thermal
expectation values were proposed and used to compute the
average value of .53/4V » reproduciong the known result
([3)). Subsequently, Pimentel and Zimerman applied this
method to several models (including the ones mentioned above),
always reproducing the correct thermal averages already known
from the literature ( [2] ). As no theoretical explanation was
offered by the autohrs, and given the great attraction of the
method due to its simplicity, we propose to remedy this flaw
in sect. II, where we present a rigorous interpretation of
their procedure for Hamiltonians of type (I-1l) (which is
easily adaptable to other mean-field Hamiltonians as the BCS
model ( [9] )). For this purpose, it is necessary to present
two formalisms : a) a formalism for Hamiltonians of a certain
class (A) not exhibiting a certain kind of symmetry, under a
certain set (Cl) of assumptions; b) a formalism allowing
calculation of thermal averages of certain operators for
Hamiltonians of the complementary class (B) by limiting
processes ("quasi-averages", [9] ) from the equations deduced
for Hamiltonians of class (A), also under an assumption (Cz)
countained in Proposition II-1.

In Sect. III we illustrate this formalism, taking
as class (A) Hamiltonian the generalized Dicke Hamiltonian Hl,
that is, with nonzero counterrotating term ([4] ,[5] ,[2] )and
as class (B) Hamiltonian the Dicke Hamiltonian in the "rotating

wave" approximation Hz, that is, without counterrotating term
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([31). In Sect. IV we discuss the meaning of "quasi-averages"

in this model, in greater detail.

II - A GENERAL FORMALISM

e

Let Hy be of the form (I-1). Hy belongs to class |

(B) if an oéerator CN over }Zb exists such that

- [Cy,Hu] =0 (11-1)

and such that (II-1) implies that certain intensive operators
have zero thermal average. (A) is the complementary class. Let

HN be of class (A). We have

)o(:([ H, 0»/3) =0 VN, 3 (II-2)

where ON is any intensive operator, whence the system of

equations

Z;”: fz"([ Hy , ON(C)J)"O <4,2,-,° ;YBEL (11-3)

t,3 #*
follows, where Oéi) are the operators_-sg'/h ) QKZJ‘/ a/gﬁ',

if the limits in (II-3) exist, and I is a nonempty subset of IR+

, (i}
The commutator [HN,ON ] is a polynomial in
the intensive operators, but it in general involves products
"t
as, e.q., %n_ \7%._. . Hence, in order that the system
«)_ 7. ')
(ITI-3) become a system in the thermal averages 0(31)=me<0*(" (3N
| 3I_ 7. 3 N 7
- ( we note S = fim < Sw /N>(3 N and similarly
: ﬁ N /
for the other operators), it is necessary that one have
() Al)N = V)
N-o /

V(jeI ; Vijjéfijffj (I1-4)
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under assumption (C-la) the limits in (II-3) exist and furnish
a system of equations for the O(i). If, however, one or more M
of the Oé“ are zero identically, one or more equations of
(II-3) will consist ©Of the identity O = 0, which fact in
general will not allow them to be solved (this occurs in the

case of Hz, see sect. IIT). We impose therefore
(C-1b) o0 vielygdVeel

Under assumptions C-1 we expect that some thermal averages can
be determined (for B€I) solving (II-3). This will be illustrated
in sect. III for the Hamiltonian Hl. For Hamiltonians of class
(B) in general no one of assumptions (C-la) and (C-1b) holds.
This is illustrated for H2 in Sect.III and justifies our
division into two classes. In Sect.III we also verify (C-1)
for Hl and use the equations thereby obtained to calculate Sg, *
which is shown to coincide with the explicitly calculated
value.

Let now H (M) be of class (A) \//4#0 , such
that HN {/"{) = HN(O) "7“ AN ; AN: NPN ’ PN polynomial in  the

intensive operators

+ - 3
A ) -—---d'* ) é&. ) SN ) SN (II-6)
W UN N N N
and such that HN = HN(O) be of class B (one such example is

given in Sect. III). Let ON be an intensive operator and

consider the sequence of "free energies"

]('N (ﬁ)fz/’-) = "W%i
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-ﬁ[H (/u)ff/w"] (II-7b)

where Z (ﬁ)f}/u) T

Let also ]l (ﬂ,f) :/ 8,1, a) (II-7c)
and denote also )l((,?)f/a) 7,,,,, ](. (ﬁ)f/“) and }(ﬁ/f) 7,,;.,./ ({3/])

if these limits exist.

Proposition II1-1 1If /-(/jjf) is differentiable at =0 (C-2)

Hu(m)
_ = _Z’w_e__ﬂ._"__QM—
the quasi-average of Oy+ defined by( 0,,) = e‘f"”’”("‘)

GNp
fom O where' = 7/,”. 0
S0, B”“ / < ”>f3
and the thermal average of ON in the system descr:n.bed by the

Hamiltonian HN (0) coincide, i.e.,

7m 2 fom <02,

Proof. {f'n(@f//‘)) is a sequence of concave functions of f

n - to <f< [0 (this may be proved by using the

results of (10] and the methods in the appendix of [4] ).Hence
]L((jjf//a) will be, if it exists, a concave function

of f . The sequence )L(ﬂ/j;/u) ﬁn/u (putting, e.q., :_’%.

and taking n-»o ) is therefore a sequence of concave

functions of f and by Griffiths' lemma (see, e.e., [4] , ap-

pendix) .

3 Tim /(p,f,/t)l = Tom éﬁf;}(ﬂ/ﬁ/‘)lgo (11-5)

A0,
if the limit lim )‘(ﬁ,f/u) (which exists because }((s)],/a)

is a concave, hence continuous, function of u) is differentiable

at f._o . But
: -1 1
lim Fpy) = Jow i [ £ g 2 (B 1 0)] -

"AZ;”;,&[Q‘@’Z (ij/‘] Im f35) = HB9) G-
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if the sequence {}N ((31)’)/")} is uniformly continuous in/u

for/a in some neighbourhood of the origin. This is true if

/saﬁl_(&w/ is uniformly bounded (in N) for /a in

d
some nei/:hbourhood of the origin, which itself holds if and
) - 0
only if Trg (AN e ﬁ[HN(/“) +fN N] )'wn”—“
<TAM>> = —4 1 )
BN p 1 Zy (ﬂ////"

is uniformly (in N) bounded in absolute value Eor/a in some

neighbourhood of the origin. For AN =N P. (cf.(T1-6)) this

N
may be explicitly proved in all mean-field models.
Differentiability Of/]?j-'ono‘,,, f{ﬂ/f//l.) at f=0 is therefore
equivalent to the differentiability at /=0 of the r.h.s. of
(II-10). (II-8) follows by Griffiths'lemma.

In ([4] , appendix) it is shown by examples that in
general intensive Operators ON not invariant by the simmetry
transformation (i.e., such that [CN,ON] # 0 ) the derivative
of ]L(ﬂ/f) at Jﬂ:‘:O does not exist; a discussion of the
general reason for this 18 also given there. Meanwhile, it is
explicitly verified in the models ( [4] , appendix) that the
derivative exists in case of operators invariant by the
symmetry transformation (which we shall call “"gauge-invariant"
operators) .

In Sect. [IT we consider the thermal average of

3 5
the gauge-invariant operator SN /N in H”. The remarks
3 3
above apply and by the previous proposition = [1m

y Y P 5}3 /Zw, Sﬂ//“

(IT~11). This quasi-average is, on the other hand,calculable

from the equations obtained for Hl taking the limit /1,(»~4>0+ ’

allowing for an explicit verification of (II-11) in this

special case.




III - APPLICATION

We take ( (3] , (41 , [5])

Ha = Ho )= Hule) ep( 8 0+ )a%) /7

(ITI-1)

where

H'f:’ HN(D) = d.*d, + (553 +\7£~.:(.S;d. + SN-&L*) (III-2)

ngl. is the "generalized" Dicke Hamiltonian, the term with
coefficient/a being the "counterrotating" one and HI%I is the
Dicke Hamiltonian in the rotating-wavw approximation, the term

1
N

exhibits a superradiant ( [7] ) phase transition at a critical

with coefficient A being the "rotating”one ( [7] ). H

temperature 'I' (/u) defined by

ok [LGAE]

()%) (/1) = kT (/«) (I11-3)

2  exhibits the same behaviour, where the critical temperatu-

Hy

re is given by (III-3) putting /4:0 » whence it follows that

Te(m) 2 T. (o) if /a>0 (III-4)
2

Both H:i and Hy commute with SQ i (J )) but

Hg presents an additional symme;:ry

27 _
[C,N) HN ]“ o (III-5)
- 3

where C, = a*a + SN : (III-6)
while [Sf ) HNJ:O does not imply that any thermal averages

are zero, [CU/ HNZJ:O implies that for H2
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for instance, [CN/ 4_:] = ~da and <[C~/ a_]> = (¢ because
2 2
[C, Hy]=0 (III-7 shows that (C-1b) does not hold for H
Further, (C-la) does not hold either, because of spontaneous
symmetry breakdown ( [3] ). Hence H2 is of class (B). It may

be shown explicitly that H is of class (a).

Letting = 7414 — 'k 7Mm
/ N+ <F> P/‘4 N %} //q
and similarly for S:/’j , it may readily be verified that
f)
(ITI-3) yields, under assumption (C-la):
¥ (IT1-8a)
o< M S
o T
S =0 (11I-8b)
/ *+ A fg/‘/a ﬁ/“
- =0 (I1I-8c)
A"(ﬂ/ )“ﬂ/‘ » */‘ﬂ,«/’/*/“ﬂw"
+ 3 - :0 (ITI-84d)
€ S A %y ‘st o “ﬂ/‘ 5&/«
3 -
£ S -2) 0((,/4 ,,2/4 =0 (I11-8e)
from (III-8a,b,d) we obtain under assumption (C-1b), O(p:q =
Loy ana Apu o, |
83 & (/4 °<ﬁ -/ Q(ijM )
B ,2()/(1) /q ol (III-9)

by using the techinique of ( [4] , appendix) it may be shown




Q-
" fo—
o= %o ==V Y0 (I11-10)

where );(/a) is the solution of the equation

camn[ pE (1 + Lz (219 y)] Tt J»W"y]%

(III-11)
which is known ( [4] , [5] ) to satisfy

Nim) >0 for T <L T, (M (III-12)

It may also be shown that ( [8] or [4] , appendix)

g = -
A M .2()174)2 (III-13)

Further, it was shown in [8] that for TLT

e P
S . -
< > 11 NN J__{L__ 5(5;?@

BN M N-o
(ITI-14)
hence by (I11-10) and (III-13)
3 3
s FE, e
(III-14)

(III-14) was necessary to deduce (III-8d). Other relations
similar to (III-14) necessary to prove (III-8c) can be verified
analogously ( [8] ).

By ([4] , appendix or [8] ) it may be shown that the
free energy f£( p »f ) corresponding to ON= SNJ/N is differen-

tiable at f=0 and hence by Griffiths' lemma

53= gi({ézt) =—_§....

6~ 3 lpeo A (III-15)

It follows from (III-10) and (III-4) that for T<Tc(0)
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where )2(0) is the solution of eq. (III-11l) putting there/v-o,

which is known ( [3][5] ) to satisfy

Y(0) >0 for TX T. (o) (III-17)

From (III-9), (III-16) and (III-17) it follows that

7lm S == gz

0, B <A (III-18)

confirming numerically (II-8) in this special case. This

corresponds precisely to the application made in [1] .

IV - QUASI- AVERAGES

(II1-16) allows a better clarification, in physical
terms, of the role of quasi-averages in this model. (III-7)and

(III-16) imply that

a* #
7I/m 7/'», -—""'-—-> # me Z’,m a
/t(-oa" N-@ \/Tf ﬂ/'\!l/“ Now p~0, <;}N >)~//‘. (IV-1)

which is another ( [10] ) illustration of the well-know fact
that in general quasi-averages do not coincide with the
averages (as in the case where there is a spontaneous
magnetization in a ferromagnetic model). As in the
ferromagnetic case, (IV-1l) is due to the existence of a phase

transition in the model, which is characterized by

. ata 0 if T>Tc(w)
,v7'~Z’2< > Mu)>0 if T<T(,a)

corresponding to spontaneous emission of photons below Tc.

For the model with/a;fa (C-la) holds and, besides, for

T<Tc 0 , Jm Sip) # 0

is a corollary of these facfs. .Equation (Iv-1)
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