IFUSP/P-112

ON LINEAR EQUATIONS FOR THERMAL AVERAGES AND ON QUASI AVERAGES IN THE GENERALIZED DICKE MODEL.

by

L.C.Jafelice and W.F. Wreszinski
Instituto de Fisica, Universidade de São Paulo
Brazil

*Work supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo.

ABSTRACT

A rigorous justification of equations proposed by

De Vries and Vertogen ([1]) is provided for mean field

models and applied to a generalized Dicke model ([3],[4],

[5]) with non zero counterrotating term.

Thermal expectation values of <u>certain</u> operators in the Dicke model is the "rotating-wave" approximation (i.e., with zero counterrotating term) may be obtained from the system of equations by a limiting process, which coincides with the method of "quasi-averages" ([9]). This point is illustrated by the calculation of the thermal expectation value of the same operator, considered in [1]. Finally, a discussion is made of quasi-averages in this model both from the mathematical (Proposition II-1) as well as from the physical point of view.

I - INTRODUCTION AND SUMMARY

Let $\mathbf{H}_{\mathbf{N}}$ be a Hamiltonian for N two-level atoms in on mode of radiation field of the form

$$H_{N} = NP\left(\frac{S_{N}^{3}}{N}, \frac{S_{N}^{+}}{N}, \frac{S_{N}^{-}}{N}, \frac{a}{\sqrt{N}}, \frac{a^{*}}{\sqrt{N}}\right)$$
 (I-1)

defined on the Hilbert space $\mathcal{H}_{N} = \mathcal{F} \otimes \mathcal{H}_{N}^{1}$ where \mathcal{F} F is Fock space for one Boson (photon), $\mathcal{H}_{N}^{1} = \bigotimes_{i=1}^{N} \mathbb{C}^{2}(i)$ the Hilbert space of the N- atom system,

$$S_{N}^{3,\pm} = \frac{1}{2} \sum_{i=1}^{N} \sigma_{i}^{3,\pm} \qquad \sigma_{i}^{\pm} = \sigma_{i}^{1} \pm \sigma_{i}^{2}$$

being Pauli matrices over $C^2(i)$, a and a the photon annihilation and creation operators, and P a polynomial in the given operators. Some of the most general "mean-field" models in the literature may be so described: the Dicke maser model ([3], [4], [5]), Hioe's model ([6]). (The BCS model in the strong-coupling limit ([9]) is even simpler and may also be tackled by the forthcoming methods).

also be tackled by the forthcoming methods). Operators $\frac{\sum_{N}^{t,3}}{N}$, $\frac{a}{\sqrt{N}}$ and $\frac{a^*}{\sqrt{N}}$ are called "intensive" ([3]). Thermal expectation values of intensive operators O_N are defined by

$$0 = \lim_{N \to \infty} \langle o_N \rangle_{\beta N} = \lim_{N \to \infty} \beta_{\beta}^{N}(o_N) = \lim_{N \to \infty} \frac{Trg_{\ell_N} \left(e^{-\beta H_N} o_N\right)}{Z_N(\beta)}$$
(I-2)

where we defined the "Gibbs state"
$$\int_{\beta}^{N}(\cdot) = \langle \cdot \rangle_{\beta,N} = T_{N}(e^{-\beta H_{N}} \cdot)/Z_{N}(\beta)$$
 to abbreviate notation, and $Z_{N}(\beta) = T_{N}(\beta) = T_{N}(\beta) = T_{N}(\beta)$

For the Dicke model ([3], [4], [5]), Hioe's ([6]) and the BCS model ([9]) it was explicitly proved in the given references that the limits (I-2) exist for all polynomials in the intensive variables.

In ([1]) certain linear equations for thermal expectation values were proposed and used to compute the average value of S_{N}^{3}/N , reproduciong the known result ([3]). Subsequently, Pimentel and Zimerman applied this method to several models (including the ones mentioned above). always reproducing the correct thermal averages already known from the literature ([2]). As no theoretical explanation was offered by the autohrs, and given the great attraction of method due to its simplicity, we propose to remedy this flaw in sect. II, where we present a rigorous interpretation of their procedure for Hamiltonians of type (I-1) (which is easily adaptable to other mean-field Hamiltonians as the BCS model ([9])). For this purpose, it is necessary to present two formalisms : a) a formalism for Hamiltonians of a certain class (A) not exhibiting a certain kind of symmetry, under a certain set (C1) of assumptions; b) a formalism allowing calculation of thermal averages of certain operators for Hamiltonians of the complementary class (B) by limiting processes ("quasi-averages", [9]) from the equations deduced for Hamiltonians of class (A), also under an assumption (C2) countained in Proposition II-1.

In Sect. III we illustrate this formalism, taking as class (A) Hamiltonian the generalized Dicke Hamiltonian H^1 , that is, with nonzero counterrotating term ([4],[5],[2]) and as class (B) Hamiltonian the Dicke Hamiltonian in the "rotating wave" approximation H^2 , that is, without counterrotating term

([3]). In Sect. IV we discuss the meaning of "quasi-averages" in this model, in greater detail.

II - A GENERAL FORMALISM

Let H_N be of the form (I-1). H_N belongs to class (B) if an operator C_N over \mathcal{H}_N exists such that

$$[C_N, H_N] = 0 \tag{II-1}$$

and such that (II-1) implies that certain intensive operators have zero thermal average. (A) is the complementary class. Let H_{N} be of class (A). We have

$$g_{\beta}^{\prime\prime}([H_{N},O_{N}])=0 \qquad \forall N,\beta \qquad (II-2)$$

where $\mathbf{O}_{\mathbf{N}}$ is any intensive operator, whence the system of equations

$$\lim_{N\to\infty} \int_{\beta}^{N} ([H_{N}, O_{N}^{(i)}]) = 0 \qquad i=1,2,...,5 \quad j \quad \forall \beta \in \mathbf{I} \quad \text{(II-3)}$$

follows, where $O_N^{(i)}$ are the operators $S_N^{\pm,3}/N$, a/\sqrt{N} , a^*/\sqrt{N} , if the limits in (II-3) exist, and I is a nonempty subset of \mathbb{R}_+ .

The commutator $[H_N, O_N^{(i)}]$ is a polynomial in the intensive operators, but it in general involves products as, e.g., $\frac{S_N^+}{N} \frac{\Delta}{\sqrt{N}}$. Hence, in order that the system (II-3) become a system in the thermal averages $O_{\beta}^{(i)} = \frac{7_{im}}{N-20} \langle O_N^{(i)} \rangle_{\beta,N}$ (we note $S_{\beta}^3 = \frac{7_{im}}{N-20} \langle S_N^3/N \rangle_{\beta,N}$ and similarly for the other operators), it is necessary that one have

(C-1a)
$$\frac{7_{im}}{N \to \infty} \left\langle O_{N}^{(i)} O_{N}^{(j)} \right\rangle_{\beta,N} = O_{\beta}^{(i)} O_{\beta}^{(j)}$$

$$\forall \beta \in I \; ; \; \forall i,j \in [1,5] \qquad (II-4)$$

under assumption (C-la) the limits in (II-3) exist and furnish a system of equations for the $O_{\beta}^{(i)}$. If, however, one or more of the $O_{\beta}^{(i)}$ are zero identically, one or more equations of (II-3) will consist of the identity O = O, which fact in general will not allow them to be solved (this occurs in the case of H^2 , see sect. III). We impose therefore

$$(C-1b) O_{\beta}^{(i)} \neq 0 \forall i \in [1,5] ; \forall \beta \in I$$
 (II-5)

Under assumptions C-1 we expect that some thermal averages can be determined (for $\beta \epsilon$ I) solving (II-3). This will be illustrated in sect. III for the Hamiltonian H¹. For Hamiltonians of class (B) in general no one of assumptions (C-la) and (C-lb) holds. This is illustrated for H² in Sect.III and justifies our division into two classes. In Sect.III we also verify (C-1) for H¹ and use the equations thereby obtained to calculate S³ $_{\beta}$, which is shown to coincide with the explicitly calculated value.

Let now $H_N(M)$ be of class (A) $\forall M \neq 0$, such that $H_N(M) = H_N(0) + M A_N$; $A_N = NP_N$, P_N polynomial in the intensive operators

$$\frac{a}{\sqrt{N}}$$
, $\frac{a^*}{\sqrt{N}}$, $\frac{S_N^+}{N}$, $\frac{S_N^-}{N}$, $\frac{S_N^3}{N}$ (II-6)

and such that $H_N = H_N(0)$ be of class B (one such example is given in Sect. III). Let O_N be an intensive operator and consider the sequence of "free energies"

$$f_{N}(\beta, \beta, \mu) = -\frac{\beta^{-1}}{N} \log Z_{N}^{1}(\beta, \beta, \mu) \qquad (II-7a)$$

$$Z_{N}^{1}(\beta,\beta,M) \equiv T_{\mathcal{R}_{N}} e^{-\beta \left[H_{N}(\mu) + \beta NO_{N}\right]}$$
(III-7b)

Let also
$$f_N(\beta, \beta) = f_N(\beta, \beta, 0)$$
 (II-7c)

and denote also $f(\beta, \beta, \mu) \equiv \lim_{N \to \infty} f_N(\beta, \beta, \mu)$, and $f(\beta, \beta) \equiv \lim_{N \to \infty} f_N(\beta, \beta)$ if these limits exist.

Proposition II-1 If $f(\beta, \beta)$ is differentiable at $\beta = 0$ (C-2) the quasi-average of O_N , defined by $\left(\langle O_N \rangle_{\beta, N, \mu} = \frac{T_{r_{N,\mu}}}{T_{n_{N,\mu}}} \frac{e^{-\beta H_N(\mu)}O_N}{T_{n_{N,\mu}}} \right)$

and the thermal average of $\mathbf{O}_{\mathbf{N}}$ in the system described by Hamiltonian H_N (0) coincide, i.e.,

$$\frac{7im}{\mu \cdot o_{+}} O_{\beta,\mu} = O_{\beta} \equiv \frac{7im}{N \cdot o_{0}} \langle O_{N} \rangle_{\beta,N,\mu=0}$$
(II-8)

Proof. $\{f_{N}(\beta,\beta,\mu)\}$ is a sequence of concave functions of - 00 < p < 00 (this may be proved by using the results of [10] and the methods in the appendix of [4]).Hence f(B,P,M) will be, if it exists, a concave function of g. The sequence $f(\beta, \beta, \mu)$ in μ (putting, e.g., $\mu = \frac{1}{n}$ and taking $\eta \rightarrow \omega$) is therefore a sequence of concave functions of ρ and by Griffiths' lemma (see, e.e., [4], pendix).

$$\frac{\partial}{\partial g} \lim_{\mu \to 0_{+}} f(\beta, \beta, \mu) \Big|_{S=0} = \lim_{\mu \to 0_{+}} \frac{\partial}{\partial g} f(\beta, \beta, \mu) \Big|_{S=0}$$
 (II-9)

(which exists because $f(\beta, \beta, \mu)$ the limit $\lim_{\mu \to 0} f(\beta, \beta, \mu)$ is a concave, hence continuous, function of μ) is differentiable . But

=
$$\lim_{N\to\infty} \lim_{N\to\infty} \left[-\frac{\beta^{-1}}{N} \log Z_N^1(\beta, \beta, \mu) \right] = \lim_{N\to\infty} \int_N (\beta, \beta) = f(\beta, \beta)$$
 (II-10)

is uniformly (in N) bounded in absolute value for μ in some neighbourhood of the origin. For $A_N = N P_N$ (cf.(II-6)) this may be explicitly proved in all mean-field models. Differentiability of $\lim_{\mu \to 0_+} f(\beta, f, \mu)$ at f = 0 is therefore equivalent to the differentiability at f = 0 of the r.h.s. of (II-10). (II-8) follows by Griffiths' lemma.

In ([4] , appendix) it is shown by examples that in general intensive operators 0_N not invariant by the simmetry transformation (i.e., such that $[C_N, O_N] \neq 0$) the derivative of $f(\beta, \beta)$ at $\beta = 0$ does not exist; a discussion of the general reason for this is also given there. Meanwhile, it is explicitly verified in the models ([4], appendix) that the derivative exists in case of operators invariant by the symmetry transformation (which we shall call "gauge-invariant" operators).

In Sect. III we consider the thermal average of the gauge-invariant operator S_N^3/N in H^2 . The remarks above apply and by the previous proposition $S_\beta^3 = \lim_{N \to 0_+} S_\beta^3 = \lim_{$

We take ([3], [4], [5])

$$H_N^1 = H_N(n) = H_N(0) + \mu(S_N^1 a + S_N^+ a^*) / \sqrt{N}$$
 (III-1)

where

$$H_N^2 = H_N(0) = a^*a + \mathcal{E} S_N^3 + \frac{\lambda}{\sqrt{N}} (S_N^+ a + S_N^- a^*)$$
 (III-2)

 H_N^1 is the "generalized" Dicke Hamiltonian, the term with coefficient $\mathcal M$ being the "counterrotating" one and H_N^2 is the Dicke Hamiltonian in the rotating-wavw approximation, the term with coefficient $\mathcal M$ being the "rotating" one ([7]). H_N^1 exhibits a superradiant ([7]) phase transition at a critical temperature T_C ($\mathcal M$) defined by

$$\frac{\mathcal{E}}{(\lambda+\mu)^2} = \tanh\left[\frac{1}{2}\beta_c(\mu)\mathcal{E}\right], \quad \beta_c(\mu) = \frac{1}{kT_c(\mu)} \quad \text{(III-3)}$$

 H_N^2 exhibits the same behaviour, where the critical temperature is given by (III-3) putting $\mu=0$, whence it follows that

$$T_{c}(\mu) \geqslant T_{c}(0)$$
 if $\mu \geqslant 0$ (III-4)

Both H_N^1 and H_N^2 commute with $S_N^2 = \sum_{j=1}^3 \left(\sum_{i=1}^N S_i^{(j)}\right)^2$, but H_N^2 presents an additional symmetry:

$$\left[C_{N}, H_{N}^{2}\right] = 0 \tag{III-5}$$

where
$$C_N = a^*a + S_N^3$$
 (III-6)

while $\left[\underline{S}_{N}^{2}, H_{N}\right] = 0$ does not imply that any thermal averages are zero, $\left[C_{N}, H_{N}^{2}\right] = 0$ implies that for H^{2}

$$\left\langle \frac{a}{\sqrt{N}} \right\rangle_{B,N} = \left\langle \frac{a^*}{\sqrt{N}} \right\rangle_{B,N} = \left\langle \frac{S_N}{N} \right\rangle_{B,N} = \left\langle \frac{S_N}{N} \right\rangle_{B,N} = 0$$
 (III-7)

for instance, $[C_N, a] = -a$ and $\langle [C_N, a] \rangle_{\beta,N} = 0$ because $[C_N, H_N^2] = 0$ (III-7 shows that (C-lb) does not hold for H². Further, (C-la) does not hold either, because of spontaneous symmetry breakdown ([3]). Hence H² is of class (B). It may be shown explicitly that H¹ is of class (A).

Letting
$$\alpha_{\beta,\mu} = 7im \left\langle \frac{a}{\sqrt{N}} \right\rangle_{\beta,N,\mu}$$
, $\alpha_{\beta,\mu}^* = 7im \left\langle \frac{a^*}{\sqrt{N}} \right\rangle_{\beta,N,\mu}$

and similarly for $S_{\beta,\mu}^{t,3}$, it may readily be verified that (II-3) yields, under assumption (C-la):

$$\mathcal{L}_{\beta,\mu}^{*} + \lambda S_{\beta,\mu}^{+} + \mu S_{\beta,\mu}^{-} = 0$$
 (III-8a)

$$\alpha_{\beta,\mu} + \lambda S_{\beta,\mu}^{\dagger} + \mu S_{\beta,\mu}^{\dagger} = 0 \tag{III-8b}$$

$$\mathcal{E} S_{\beta,\mu}^{+} - 2\lambda \propto_{\beta,\mu}^{*} S_{\beta,\mu}^{3} - 2\mu \propto_{\beta,\mu} S_{\beta,\mu}^{3} = 0$$
 (III-8d)

$$\mathcal{E} S_{\beta,\mu}^{-} - 2\lambda \propto_{\beta,\mu} S_{\beta,\mu}^{3} - 2\mu \propto_{\beta,\mu}^{*} S_{\beta,\mu}^{3} = 0 \qquad (III-80)$$

from (III-8a,b,d) we obtain under assumption (C-1b), $\alpha_{B,M}^* = \frac{1}{\alpha_{B,M}}$ and $\beta_{B,M} > 0$,

$$S_{\beta,\mu}^{3} = \frac{\mathcal{E}}{2(\lambda^{2}-\mu^{2})} \left(\frac{\mu \propto_{\beta,\mu} - \lambda \propto_{\beta,\mu}^{*}}{\lambda \propto_{\beta,\mu}^{*} + \mu \propto_{\beta,\mu}} \right)$$
 (III-9)

by using the techinique of ([4], appendix) it may be shown ([8]) that, for $T \leq T_C$ (μ),

$$\alpha_{\beta,\mu} = \alpha_{\beta,\mu}^* = -\sqrt{\gamma_0(\mu)} \tag{III-10}$$

where $\chi(\mu)$ is the solution of the equation

$$\tanh \left[\beta \mathcal{E} \left(1 + \frac{4}{\varepsilon^2} (\lambda + \mu)^2 y\right)^{\frac{1}{2}}\right] = \frac{\mathcal{E}}{2(\lambda + \mu)^2} \left[1 + \frac{4}{\varepsilon^2} (\lambda + \mu)^2 y\right]^{\frac{1}{2}}$$
(III-11)

which is known ([4] , [5]) to satisfy

$$\gamma_{c}(\mu) > 0$$
 for $T < T_{c}(\mu)$ (III-12)

It may also be shown that ([8] or [4], appendix)

$$S_{\beta,\mu}^{3} = -\frac{\mathcal{E}}{2(\lambda + \mu)^{2}}$$
 (III-13)

Further, it was shown in [8] that for $T \leq T_{c}(\mu)$ $\lim_{N \to \infty} \left\langle \frac{S_{N}^{3}}{N} \frac{a}{\sqrt{N}} \right\rangle_{\beta,N,\mu} = \lim_{N \to \infty} \left\langle \frac{S_{N}^{3}}{N} \frac{a^{*}}{\sqrt{N}} \right\rangle_{\beta,N,\mu} = \frac{\mathcal{E}}{2(\lambda + \mu)^{2}} \sqrt{\gamma_{0}(\mu)}$ (III-14)

hence by (III-10) and (III-13)

$$\lim_{N\to\infty} \left\langle \frac{S_N^3}{N} \frac{a}{\sqrt{N}} \right\rangle_{\beta_1 N_1 M} = \alpha_{\beta_1 N_2} S_{\beta_1 N_2 M}^3$$
(III-14)

(III-14) was necessary to deduce (III-8d). Other relations similar to (III-14) necessary to prove (III-8c) can be verified analogously ([8]).

By ([4], appendix or [8]) it may be shown that the free energy $f(\beta,\beta)$ corresponding to $O_N = S_N^3/N$ is differentiable at $\beta = 0$ and hence by Griffiths' lemma

$$S_{\beta}^{3} = \frac{\partial f(\beta, \beta)}{\partial \beta} \bigg|_{\beta=0} = -\frac{\mathcal{E}}{2\lambda^{2}}$$
(III-15)

It follows from (III-10) and (III-4) that for $T < T_C(0)$

$$\lim_{\mu \to 0_{+}} \propto_{\beta_{1}\mu} = \lim_{\mu \to 0_{+}} \propto_{\beta_{1}\mu} = -\sqrt{\frac{y_{0}(0)}{y_{0}(0)}}$$
 (III-16)

where $\gamma_o(o)$ is the solution of eq. (III-11) putting there $\mu=0$, which is known ([3],[5]) to satisfy

$$Y(0) > 0$$
 for $T < T_e(0)$ (III-17)

From (III-9), (III-16) and (III-17) it follows that

$$\lim_{\mu \to 0_{\perp}} S_{\beta,\mu}^{3} = -\frac{\mathcal{E}}{2\lambda^{2}}$$
 (III-18)

confirming numerically (II-8) in this special case. This corresponds precisely to the application made in [1].

IV - QUASI- AVERAGES

(III-16) allows a better clarification, in physical terms, of the role of quasi-averages in this model. (III-7) and (III-16) imply that

$$\frac{7 \text{im } 7 \text{im}}{\mu \to 0_{+}} \left\langle \frac{a^{\#}}{\sqrt{N}} \right\rangle_{\beta,N,\mu} \neq \frac{7 \text{im } 7 \text{im}}{N \to \infty} \left\langle \frac{a^{\#}}{\sqrt{N}} \right\rangle_{\beta,N,\mu} (\text{IV-1})$$

which is another ([10]) illustration of the well-know fact that in general quasi-averages do not coincide with the averages (as in the case where there is a spontaneous magnetization in a ferromagnetic model). As in the ferromagnetic case, (IV-1) is due to the existence of a phase transition in the model, which is characterized by

$$\lim_{N\to\infty}\left\langle \frac{a^*a}{N}\right\rangle_{B,N,\mu} = \begin{cases} 0 & \text{if } T > T_c(\mu) \\ Y(\mu) > 0 & \text{if } T < T_c(\mu) \end{cases}$$

corresponding to spontaneous emission of photons below $\mathbf{T}_{\mathbf{C}}$.

For the model with $\mu \neq 0$ (C-la) holds and besides, for

$$T < T_c(0)$$
, $7_{im} Y(\mu) \neq 0$
is a corollary of these facts. Equation (IV-1)

Acknowledgement: W.F.W. should like to thank B.M. Pimentel and Prof. A.H.Zimerman for stimulating discussions.

REFERENCES

- [1] G. Vertogen and A.S. De Vries Phys. Lett. <u>48A</u>, 451 (1974).
- [2] B.M. Pimentel and A.H.Zimerman Phys. Lett. <u>53A</u>,200 (1975).
- [3] K. Hepp and E.H.Lieb Ann. Phys. 76, 360 (1973)
- [4] K. Hepp and E.H. Lieb Phys. Rev. A8, 2517 (1973).
- [5] Y. K. Wang and F.T. Hioe Phys. Rev. A7, 831 (1973).
- [6] F.T. Hioe Phys. Rev. A8, 1440 (1973).
- [7] H.M. Nussenzveig Introduction to Quantum Optics Gordon and Breach 1973.
- [8] L. C. Jafelice M Sc. thesis, University of São Paulo (1976).
- [9] N.N. Bogoliubov Jr. "A Method for Studying Model Hamiltonians" Pergamon Press 1972.
- [10] M.B. Ruskai Comm. Math. Phys. 26, 280 (1972).