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ABSTRACT

A variational form of the cellular method is pro-
posed as anew model to solve the one-electron Schrbdinger equation
for molecules and crystals. The model keeps the good features
of the traditional cellular method, as the arbitrary partition
of space, andeliminates its main drawback, the slow convergency
of the cellular expansion series. With the aid of a criterion
of precision on the trial wave functions, we discuss the pos-
sibilities offered by the method for more accurate calculations
of the electronic structures of molecules and solids. As an
example of the accuracy and fast convergency of the model, com-
putation of the energy spectrum of the hydrogen molecular ion

H

+
2 is presented.




I. Introduction

One of the earliest method to solve the problem of
finding the one-electron solutions of the Schrddinger equation
for crystals was the cellular model proposed by Wigner and Seitzl.
An impfoved version of the method was suggested by Slater, in
his classic study of metallic sodiumz. In Slater's scheme, the
crystal volume is first decomposed into space - filling atomic
polyhedra (Wigner - Seitz cells). By reducing the crystal wave
equation to a central field problem in each cell, the one elec-
tron solutions of the Schrddinger equation are obtained by im-
posing boundary conditions on the surfaces of the cells. Slater's
cellular method has been applied in various forms to many metal
lic crystalss, diamond lattice-type crystals4 and insulatorss.

From the reported works we can conclude that the
cellular method is an accurate technique for the calculation of
the electronic structure of solids, even for loosely packed
structures as diamond crystals. Furthermore, the theory of the
method is extremely simple and has the advantage of discarding
the muffin-tin approximation of the self-consistent potential,
which is the main source of errors in methods like the augmented
-plane-wave (APW) method6 and Kohn - Korringa - Rostoker (K KR)
method7. However, in order to obtain a realistic crystal elec-
tronic structure with the cellular method, the expansion of the
wave function has to be carried to very large angular momenta4.
This severe convergence problem has been pointed as one of the

fundamental weakness of the methods.
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It has been shown previousiy9 that this limitation
can be overcome by reformulating the solution of the cellulér
boundary condition problem through a variational procedure. This
promi;ing variant of the cellular method was suggested as a new
approach to the problem of finding the one-electron solutions
of the Schrbdinger equation for molecules and crystals, in pre-
ference to the methods which deal with muffin-tin potentials.

The aim of the present paper is to establish the
full theoretical formulation of the variational cellular method
as well give indications on how the self consistency in the
method can be implemented. Under new lights the case of the
hydrogen molecular ion H2+ is restudied. This molecule has

10-12

been already calculated by several authors and the exact

solutions are available in the literaturels.

It is worth mentioning that other modified versions
of the cellular method have been proposed recently as models of

the molecular and crystal electronic structuresl4'lg.



II. Review of the Variational Cellular Method

According to the original formulation of the cell-
ular method, one starts by decomposing the molecular or crystal
spacé into cells. Although is common practice the partition of
the crysfal space into Wigner-Seitz atomic cells,ingeneral the
cells can have arbitrary shapes. The molecular or crystal po-
tential can be expressed as the spacial superposition of spheric
potentials, one centered at each atomic site. In the simplest
form of the cellular method, the potential is approximated within
each cell by its spherical average with respect to the center
of the cell.

Within the cell i , the wave function ¥; is ex-
panded in spherical harmonics |

b= L An £5, (D) (1a)
where

-> ‘ € -
£, = RO(r) Y, () (1b)

In the equations above, A stands for the pair (& ,m) specify-
ing the angular momentum, and Rzo is a solution of the radial
Schrbdinger equation for the energy ¢ . If the trial function
is a propagating state in a periodic lattice, the coefficients
Aik in different cells are related.by the Bloch theorem. Then,

the unknown coefficients Aik are determined by the following

variational expression for the energy eigenvalue
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The dQ integrals are volume integrals in the cell space, while
the dS integrals are integrals in the surfaces separating the
cells. In (2), one must sum the volume integrals of all cells
and the surface integrals of all cell boundaries. an is an
outward normal derivative such that, when applied to wj, means
an outward derivative from the cell j , while when applied to
wi it is an outward derivative from i

Varying the coefficients AiA and imposing that
the variation of the energy € 1is null, one arrives at the fol

lowing secular equation

I <id| H |i'A'"> A,,,, = 0 (3)
ita’ 172

where the matrix H is

SIALH[i'A'> = (1-6,..) f as. ; , [anfzxfi,x, s f;Aanfi,A,]
(4)
Equations (3) and (4) are basic to the method. The energy eigen
value determination becomes a simple matter of calculating the
matrix H according to Eq. (4), for several energies € , and
finding the energy for which Eq. (3) has a non trivial solution.
The calculation of H according to Eq.(4) involves

the making of surface integrals along the cell boundaries. In

most instances, these integrals can only be made by establishing




a net of points in the surfaces, and adding the values of the
integrands at these points multiplied by properly chosen weights .
Thus, before discussing some special features of the method, one
must face the two problems of how to define the cells, and how

to establish nets of points for the surface integrations.



III. A Guideline for Cgll Construction

One important asset of the cellular method is the
freedom one gains in the cell construction. By choosing the
~cells judiciously, one can span the whole space withcells where
the potential is spherically symmetric, and obtain a realistic
description of the true potential. In this respect, the cellular
method is outstanding when compared with the multiple-scatter -
inglo methods. In the latter case, the cells are necessarily

spheres, and these cannot be arranged without leaving much open

space.

Despite of being an important asset, the enormous
freedom for cell construction is confusing. One has so many
possibilities that it is difficult to make a choice. In what

follows, we intend to show a simple guideline, by which we loose
a bit of freedom but become a lot less confused when construct-
ing the cells.

To begin with, one may assume that, in each cell,
fhe potential does not depend on how the cells are constructed.
In other words, we assume that in a variation of the cell bound
aries the potential of a cell does not vary. This assumption is
arbitrary but not unreasonable. Indeed, one could expect that
in a variation of the cell boundaries, the wave functions and
charge distribution would be only negligibly varied. Now, if
the spherically symmetric potential of the cell is forced to sat

isfy the Poisson equation, the potential in each cell becomes

only negligibly dependent on the shape of the cell boundaries.
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Thus consider the integrated square error in the

potential
E = Jdn [v(?) - V(?):]Z (5)

v(?) is the true potential, while V(?) is the potential trim
med to become spherically symmetric in each cell. Consider an
arbitrary variation in the surface separating cell i from cell

j , according to Fig. 1. The resulting variation in E is

5) (6)

<l

6E = I dQ (vj - vi)(Z V-V, -

where Vi and Vj are the spherically symmetric potentials of
cells i and j , and the integration is performed just in the

shaded region of Fig. 1.

Insert Figure 1

The cell boundaries should be chosen so that SE
is null, or approximatively so. This is automatically satisfied

at the planes of symmetry for which

— ——

vy v;
In the general case, instead of calculating the surfaces deter-
mined by

6E = 0

one would find insulated points for which

vy = j (7a)

Vi + vV,
or v = ——-Z-—J— (7b)
and pass simple surfaces, such as planes or spheres, at these

points. These surfaces would define the cell boundaries.




IV. Nets of Points for Surface Integration

The regular use of the variational cellular method
would be seriously hindered if the surface integrations had to
be made with much precision. In that case we would be forced
to study the problem of establishing a net of points and their
weights, in each surface, that would permit precise integrations.
Since the very shape of the surfaces is not predetermined, this
problem would be a very serious one.

In what follows we show that the surface integra-
tions need no special cares, but can be made very naively. To
prove this point, consider a situation where the integrations
have been made with much precision. Let Hgif??;. be the matrix

H of Eq. (4) resulting from this precise calculation. Consider

now a deliberate error in the integrations in the surface sep-

arating cell I and cell J . To the point ?o of this surface
we add an extra weight w . Let H(wrong) be the resulting
matrix H . According to Eq. (4) we write

(wrong) (true) (1J)

in,itar T Baaiaa t W I 8y 8y

(JI)

where

(IJ) _ * 5 -+ LIS -+
I T % i (rg) £5,0(0) ¢ £,() 3 £5,0(T)) (9)

Let ¢ be the solution of the true secular equation

det { ultrue) 3 _ (10a)

and let € + 8¢ be the solution of the wrong equation




det { n(wrong) 3 . (10b)
Expanding H(Wrong) linearly in &8¢ and w we obtain
det {'H(wrong) } = det { H(true) }
d (true)
+ Se Z —— H; s 1yt M" 's
(1J3) (J1)
v 1;. { Zaiv Moot ar Mpoagp 50 (11)
where M is the matrix of minors of the matrix H(true) . But
_ *
Mi'k',il = ](AiA Ai'l' (12)

that is, the M are proportional to the products of the expan-
sion coefficients. Then
* (1J) * J1n
L { Ay Zae At A Tae A }

é = - 13
© " (true) (13)

« 4
i&,i,a, A T (Hyy joa0d Apoao

According to Egqs. (9) and (1), the numerator of Eq.
(13) is
t > > *
3, ¥p(Tg) vy(ry) + ¥p(ry) 3, v; *+ c.c.
Now, if the angular momentum expansion in Eq. (1) has been car-

ried out to sufficiently high angular momenta, L2 and by

match at the cell boundaries, or
v () = vy(E) (14a)

and anwl(?o) = -3 wJ(?o) ’ (14b)

Then Se

0
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This derivation proves that the present version of
the cellular method is doubly variational, because the first-
-order variation in the energy is zero for a variation in the
‘expansion coefficients and a variation in the net for the sur-
face integrations. In this respect, it must be remarked that

Leite et a1.4

had observed that, once the angular momentum con
vergence was reached, the net of points could be changed. In

fact, they used those changes in the net of points as a criterion

of convergence in the angular momentum series.
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V. A Criterion of Precision 4

We turn now to the variational expression for ¢ , .

Eq. (2). Up till now we have made variations only in the ex-

pansion coefficients Aix . Now we will consider the variations

in the energy € which is used to define the basis functions

of Eq. (1b). €, must not be confused with €, because this is

the eigenvalue while that is the energy one uses in the radial

- Schrbdinger equation to calculate Rio of Eq. (1b). Thus, the '
first term in the r.h.s. of Eq. (2) becomes

€0 1 I dQ vy ¥y

i
and since

s;. I a8 [' LERRN TR TR “’i]
ij

= - 2 * * 02 _ ' .
= I dv [: wi v wi + wi v wij] = 0
cell i
Eq. (2) simplifies to *
€ ( % J g ¥, ¥, ] = € [ g f dQ . vy ]

1 ) * * * %*
M sZ. I ds [:¢ian¢j oianvy vy o vsdnd; | (15)
ij

But the second term in the r.h.s. of Eq. (15) is simply related

to the matrix H of Eq. (4), then

e [pfaviv ] = e [[]emviv]

1 1

*

%. Ay Hixioar Apa (16)

1
+ = 1
24 i
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Now, making a variation Geo in e, , but maintain

ing fixed the AiA at their values which satisfy the secular
equation (3), setting €, = ¢ , one obtains the following value

for the variation 8¢ in ¢

Se [ g [ dan w; v ] = de, [ ) [ a w; v ]
1
1 « 4
v ey —7_-i§,i'§' Aix . (Hiy goar) Ao (17)
(o]

At the exact solution, the r.h.s. of Eq.(17) will
be necessarily zero. On the other hand, if the angular momentum
series has been cut at a not too high value, the r.h.s. will
be small.but not zero. Thus, the r.h.s. of Eq. (17) gives a
good indication of how precise the calculation is.

In order to formulate a practical criterion of pre
cision, one must write the volume integrals in Eqs. (17) as sur

face integrals. Considering the two equations

- v2 v, (e) + v v;(e) = € ¥;(e)
and

- V2 w;(e +8e) + v w;(e +8e) = (e +8¢) w;(e + 8¢)

*
for the functions wi and wi in the cell i , satisfying the
Schr8dinger equation for energies e and e + 8e , it is a simple

matter to prove that

d * d *
[ ds {:de ("’1) an ‘Pi = wi de (an wl)]

[ an vy v

Thus, letting
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(i) _ ‘ d * d *
Nyar = [ ds [: o i) n fae o iy 2 On fia) | 08
one obtains
* _ * (1)
[ e vy ¥; = x§' Aix N A (19

Then one uses for a criterion C of precision, the value of the

following expression
* d
A

ix g (Hix . ioar) Ay
C = 1 + — (20)
2 Agy Nt A

In Eq. (20) we sum over repeated indices.

We reckon Eq. (20) as an important asset of the
variational cellular method. In all methods for electronic cal
culations - one can only guess the precision of the calculation
by increasing the set of basis functions. On the other hand, in
the present method one can calculate C and reach his conclu-

sions on the precision, without increasing the basis set.

It is interesting to show that C 1is exactly zero
when the function is continuous and has a continuous normal de-
rivative at the surfaces. To see this, from Eqs. (15), (18) and

(19), we derive the following expression

* (1) * d
. H.. .
2 AL, Nyt Ay A e (Hin i

lA') Ai‘xl

-l f s, ; { W; + 3; Y (305 *+ 2,5
ij »

N CREERYON ) -an$;)} ‘e
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In the equation above, adot over a function ¥ implies an energy
derivative with fixed values of the expansion coefficients Aik'
Thus, for an exact match of the functions of the cell boundaries,

or

the value of C is exactly zero. Thus, the value of C is
actually an integratedrerror of function mismatch at the sur-
faces. On the other hand, Eq. (17) tells that this error of
mismatch is related to the derivative de/de0 which says how

much the eigenvalue is independent of the energy ¢

O .
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VI. Spurious Solutions

Eq. (3) has also non-trivial solutions which are
not physical. To recognize a physical solution one can calculate
the value of criterion C of Eq. (20) and see whether it is
small, as it should at a true solution. On the other hand there
is a simpler method to distinguish a physical solution.

First of all, it is being common practice among us
- to look for the solutions of Eq. (3) by searching the zeros of

1,-1

(Tr H) ~ = 0 (21)
instead of

det (H) = 0 (22)

The inverse of the trace of the inverse matrix (ITIM) goes to
zero when the determinant of the matrix goes to zero. On the
other hand, for a degenerate energy level, the zero of the de-
terminant is also degenerate while the zero of ITIM is simple.
Practically this means that a doubly degenerate 1level <can be
easily recognized through Eq. (21) but is difficult to 1locate
when one uses Eq. (22), because the determinant does not change
its sign at the zero. An added advantage is that a determinant
may have a fantastic order of magnitude if proper cares are not
taken, while the ITIM has the order of magnitude of a matrix
element. Of course one must pay a price for these advantages:
the calculation of an inverse matrix is three times slower than
the calculation of a determinant.

For our purposes, the use of Eq. (21) instead of

Eq. (22) permits an easy recognition of the physicai solutions.
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Indeed, consider the derivative of ITIM with respect to the

energy
d -1
—— Tr H
d (Tr H-l)_l = - d€ -1 2
de (Tr H' ™)
but :
d H—l - H-l dH H-l
de de
thus
-1 dH -1
1. Tr (H H )
d_ (e w7 hHl - — & (23)
de (Tr H )

Now, at an energy very near a zero of Eq. (21) one has

1o LAt A 2

Here, i and j are multiple indices and stand for the cell
index and angular momentum indices. Eq. (24) is an imediate

consequence of Eq. (12), and the A's are the expansion coef-

ficients. Thus

2 dH, .

d -1,-1 _ Y * * i
(Tr H ) = — [ T A A ][ J A, —21 o,
de (rr B2 UE TR TR U T T T

But, according to Eq. (20), near a true physical solution

* dHi‘ _ .

I A, —=L_ A, T -2 7 A_ N.. A,
ij ' de ] ig + 13

and, as the matrix N is positive definite, one has

d
de

1,-1

(Tr ) ™% < 0 (25)

Or, in words, the ITIM goes to zero at the non trivial solutions

of the secular equation (3), and, at a true physical solution,

the ITIM is decreasing with increasing energy.
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VII. Normalization of the Wave Function and the Probability of

a Cell

The mafrix N, defined by Eq. (19), could be used
to normalize the wave function and to determine the probability

Pi of the electron being in the cell i . Obviously

« (1)
x§' AN A
p. = 26
! ;o3 oar, NG A, (z6)

The normalization would be made by setting the denominator in
Eq. (26) equal to 1.

This method of normalization can only be relied
upon when fhe criterion C in Eq. (20) is very near zero. When
this does not happen we must recur to the secular matrix H and
its energy derivatives to determine Pi and the normalization.
One must remember that it is H , and not N , the matrix which
is determining the eigenvalue, and that it is H , and not N,
the matrix that can be calculated with naively constructed nets
of points in the boundary surfaces of the cells. Thﬁs, to de-
termine Pi we shift the potential in the cell i by a constant

GVi and recalculate the energy level. The consequent shift in

the energy eigenvalue &8¢ is related to Pi by
P, = 1im S8 - de (27)
8V, » 0 GVi dVi

In order to relate &8¢ and GVi we use

ITIM(e + 8¢, 8V;) = ITIM(e , 0)
d d ; -
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Thus 3
W_ (ITIM)
P, = - 2 (28)
]
=o— (ITIM)
Then, letting
oH
Bei

be the derivative of the matrix with respect to the energy with

which the functions at cell i are calculated, and since

9 - . _3 (29)
aei BVi
we obtain, from Eqs. (23) and (24)
* 3
Lo Ay e Wy 000 A
p, = JAKkA' i (30)
i * 3
j% k;. Ay e i) A

These probabilities add up to 1, this fact following from the

relation

(31)

[+ %)
n
o1
Q
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VIII. The Spherical Electronic Density . n(r) in the Inscribed

Sphere

| In self-consistent calculations, one can only hope
to integrate the Poisson equation if, in each cell, the elec-
tronic density is spherically symmetric. The spherical average
ni(r) of the electronic density in the cell i can be simply
calculated only in the inscribed sphere that just touch the

boundary of the cell (see Fig. 2).

Insert Figure 2

Let T, be a radius smaller than R, the radius of
the inscribed sphere in the cell i . Let vi(r) be the
spheriéally symmetric potential in the cell. Analogously to the
development of the preceding section, we can write an expression

for the electronic density at Ty o ni(ro) i

* 6 '
) .% k;, Ay vy HinLar) Aae .
J 1 0 (32)

+ 3
% § Ax o Hiniae) A

where

§ vi(ro)
means a functional derivative with respect to vi(r) at rg
The calculation of the functional derivative in Eq.

(32) can be made as follows. The radial functions piz(r) in

the cell i obey the equation

2
d R(L+1) _ _
T 7 Pir 7 grel) Pjg * vyt Py, = epyy (33a)

Tr

.

This radial function piz(r) is just r times Rlo(r) of Eq.




=21

»

{1b). At r, we add a potential AS(r - ro) . With this addi-

tion, the radial function becomes 3i£(r) and obeys

2 ' |
__d v 2(2+1) ~ - N - n
oz Pie T T 7 Pag t [}i(r) + A8(x roi] Pig = € Pjy

(33b)

Multiplying (33a) by 312 and subtracting it from (33b) multi-
plied by p‘iz , and then integrating from the origin to the radius

R of the inscribed sphere, we obtain

d n,
ar P

Y d _ v

(34)

Pig(R)

When derivating the matrix H with Tespect to the
engrgy’we have overlooked the problem of how to normalize the
radial functions. Till now, this normalization has been 1left
completely arbitrary. But now we shall make a choice: we will
always normalize the radial functions so that

€

p;,(R) = 1 ; or R°R) = 1/R (35)

With this choice, the derivative of 312 differs from the de-

rivative of Pig by

d o _ d _ n
Ty P, (R) Ty P;o(R) = A py(r)) py,(r,) (34a)
Now let qiz(r) be a solution of Eq.(33a) but such
that
q;,(R) =0

dR
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Then, in the limit when A - 0 and 31% and Pig almost coin

cide, we can write, for any radius r larger than R ,
o 2
Big(r) = pi,(1) + 8p,(r)° q;,(r) (35)
according to Eq. (34a).
Inserting Bil(r) instead of piz(r) in the matrix

elements of H , we obtain the matrix corresponding to the po-

tential perturbed by
AS(r - ro)

But this is what we need to perform the functional derivative

in Eq. (32). Thus

* (i ) 2:)
) 'Zx k%, Aix G A
am r " ng(r)) = - Y pi,(r) J
i‘To g it o Z Z A* 3 . ) A
(36)
where the matrix Q(i » L) is obtained from H through the
following:

1 - qiz(r) substitutes piz(r) .

2 - the matrix elements not containing Pj, are made zero.
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IX. Results for Hz+

Having reported the theoretical framework of the
variational cellular method, we consider now its application to
the évaluation of the energy spectrum of the hydrogen molecular
ion HZ+ . Instead of using the cells reported in Ref. 9, we
now use'cells constructed according to the prescriptions of ses

tion III. The new cells are described in Fig. 3.

Insert Figure 3

In table I is shown the behaviour of the 1cg ener
gy level of HZ+ (R =2 a.u.) with the variation of the number
of terms in the cellular expansion and the number of points used
to perform the numerical surface integrations at the plane and‘

at the hemispheres.

Insert Table I

The choice of the cells according with the pre-
scription indicated in section III leads to a more accurate energy
eigenvalues than the choice we have made in our previous work
(ref. 9). According to table I we obtain the value -2.172 Ry
for the 1cg energy level of H2+ . This value is in better
agreement with the exact result, - 2.205 Ry , than the value
- 2.155 Ry reported by us in reference 9.

The entries quoted in table I show that the varia-
tional cellular method is accurate and of fast convergence.
Since the energy eigenvalue was derived from a variational prin
ciple, the expansion of the cellular function did not have to be

carried to large angular momenta. ‘Table I also enphasizesthe
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double variational character of the method. The same converged
energy eigenvalue is obtained for different sets of points used
to perform the integrations on the cell surfaces.

In table II we show the behaviour of the criterion
of pfecision C as a function of the number of spherical har-
monics in the cellular expansion and the number of points wused
to perform the surface integrations. C 1is defined in the text
by Eq. (20). The entries correspond to the log level, thus

they are related with the entries in table I.

Insert Table II

Table II shows that the lack of precision in the
calculation of the surface integréls is not critical in the meth
od. In fact, for a converged energy eigenvalue, the value of C
is almost insensitive to the number and location of the points

for surface integrations. Another very interesting conclusion

about the cellular method can be reached if we observe the
behavior of the criterion C as a function of zmax , for a
fixed value of the number '"points'". There is an optimal value
of Rmax which leads to a minimal C . If the number of basis
functions is increased by including spherical harmonics with

order higher than the optimal value, C increases. The entries
in table I show that the 1og energy level is fully convergent
for 2 = 4 . By extending the cellular expansion up to
L =5 , C increases while the converged energy eigenvalue

does not change. This has a straightforward interpretation. The

number of points, 15 for example, is not enough to sample cor-
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rectly a spherical harmonic whose angular momentum is 5. The
inclusion of this harmonic generates a mismatch at the cell
boundaries, thus increasing the value of C. On the other hand,
due to the variational character of the method, the mismatch has
no first—order effect in the energy eigenvalue. However, if
more and more basis elements are included in the cellular ex-
pansion, for a fixed number of points, the calculation looses
its meaning and the solution disappears.

Our finding leads to one more argument indisfavour
of the conventional cellular method based on the exact point
matching. In that method, the number of matching points is re-
lated to the number of spherical harmonics in the trial function .
Thus, frequently we are faced with the problem of sampling = a
high order spherical harmonic at few matching points. According
to the conclusions taken from table II, the roots of the secular
equation may not even be found. This limitation in the exact
poiﬁt matching method was already observed by Leite et al? when
dealing with the four-fold partitioning model of the diamond
crystal.

Our results for the lowest electronic energy levels
of H2+ for the internuclear distance 2 a.u. are lisfed in

table III. The results of a multiple scattering calculationlo,

Insert Table III

the overlapping-spheres (0S) calculation12

13

along with the exact

solutions are also shown.

From the cellular calculation af the log level as
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a function of the internuclear distance we obtained the value

2.0 a.u. for the HZ+

result. According to table III, the energy obtained for the

bond length, in agreement with the exact

ground-state 1og agrees with the exact result in 1.5%. The
molecular excited states calculated with the variational cellular

method agree with the exact values within 5%.
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X. Conclusion

In this paper we have surveyed the possibility of
the variational cellular method becoming a satisfactory tool for
~-the solution of the Schrbddinger equation in molecules and crys-
tals. According to the theoretical framework of the method, no
assumption is made about the shape of the cells. Thus, the
motivation of the present work was to add to the flexibility of
the cellular method a much faster convergency. It is just this
flexibility that makes the method suitable to treat awide range
of problems.

It is already known from other calculations with
the cellular method4 that the resulting energy levels are insen
sitive to the choice of matching points, provided that a suf-
ficiently large basis set is used. Our results for HZ+ show
that the statement above is valid as long as the number of points
for surface integration is'sufficiently larger than the maximum
order of the angular momentum series. For high angular momenta
and small number of points, the eigenvalues may even desappear.

In all cases we verified that the value of C was a reliable

criterion of precision of the calculation.
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FIGURE CAPTIONS

Figure 1l -
Figure 2 -

Figuré 3 -

Displacement of the boundary between two cells.
Cell with the inscribed sphere with radius R .

Partitioning of the molecular space for HZ+ . The
dots are the proton sites. The two atomic cells are
spheres not centered at the protons and have a plane
surface of contact. At the points P and X , Egs.
(7) are satisfied. The coordinates of these points
are p = 2.18 a and x = 2.31 a , where 2a is the
interatomic distance. The outer cell extends from

the atomic cells to infinity. The figure was not

drawn to scale.




TABLE 1

Convergence of the lowest energy level, E10 , of Hz+ for the
g

equilibrium internuclear distance R = 2.0 a.u. Lmax is the
maximum spherical harmonic angular momentum in the cellular ex-
pansion. Values are in Rydbergs. '"Points" is the number of

points used for numerical integration in the spherical surfaces

and in the plane. The exact value of the Elcg level is 2.205
"(Ref. 13).
¥ max
~POINTS 1 2 3 4 5
1 -2.12788
2 -2.10705
3 -2.09612 -2.16939
4 -2.09279 -2.16140
5 -2.09142 -2,15803 -2.15923 -2.18275
7 -2.09031 -2.15523 ';2.16075 -2.17621
9 -2.08987 -2.15411 -2.16214 -2.17419 -2.21434
12 -2.08958 -2.15337 -2.16327 -2.17302 -2.18234
15 -2.08944 -2,15304 -2.16385 -2.17252 -2.17280

20 | -2.08934 -2.15277 -2.16432 -2.17215 -2.17215




TABLE II

Behaviour of the criterion C of precision as a function of
Lpax 3nd "points”. C is defined in the text by Eq. (20). The
entries éorrespond to the lcg level and this table should be
compared with Table I.
max
POINTS 1 2 3 4 5
1 -0.21920
2 -0.35569
3 -0.36245 -0.06777
4 -0.36509 -0.07643
5 -0.36662 -0.08091 -0.06601 0.00880
-0.36810 -0.08490 -0.04276 0.00134
-0.36874 -0.08663 -0.03118 -0.00060 0.25710
12 -0.36919 -0.08781 -0.02285 -0.00158 0.08931
15 -0.36951 -0.08853 -0.01891 =-0.00195 0.03114

20 ~-0.36968 -0.08879 -0.01580 -0.00221 0.00257




internuclear distance

TABLE

III

Lowest electronic, energy levels of Hz+

2.0 a.u.

for the equilibrium

| ENERGY  MULTIPLE SCATTERING 0s CELLULAR (e
STATE mopEL (2) mopeL(P)  wmoppL ~ EXACT
E E E E
(Ry) (Ry) (Ry) (Ry)
1o, -2.0716 -2.155  -2.17215  -2.20525
20, -0.70738 -0.71108  -0.72173
30, -0.45574 -0.46451  -0.47155
40, -0.34859 -0.35128  -0.35536
in -0.44646 -0.45600  -0.45340
' 1o, -1.2868 -1.366  -1.41200 -1.33507
. 20, -0.49722 -0.50483  -0.51083
30, -0.26979 -0.27204  -0.27463
4o, -0.24997 -0.25017  -0.25329
1n, -0.88866 -0.860  -0.90525  -0.85755
(a) see Ref.
(b) see Ref.
(c)

see Ref.



