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ABSTRACT

In'the framework of BPHZ renormalization procedure,
we discuss the equivalencé between 4-dimensional renorma-
lizable massive quantum:electrodynamics-{Stuecke;berg

lagrangian), and massive QED in the unitary gauge;
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I. INTRODUCTION

Massive QED can be described by the Proca—Wentzel(l)“La—

grangian:
By = LTI Y- (o) TY - Gatd 3 A A

x _;_ (e a) A, A, 4 (44 b) (3 ARY G

However, this is a non-renormallzable theory, due to the

ultra—v1olet behav1or of the vector meson . propagator-

~J o . %f“ - j&d%L |
As in massless QED, we introduce a.term proportiong] to
(%‘ A )a r Which improves the ultra-violet:behavior. In-this way

(1,2)

we are led to the Stueckelberg Lagrangian:

b= - t(ak‘“"')z . -

which descrlbes the interaction of a vector meson with a
fermlon, in an indefinite metrlc Hilbert space.
~We define the physical subspace by the same procedure as

used by Gupta-Bleuler:
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If we now make the following formal gauge transformation:

'UP’=‘ AP' +_“a}~/\_ i - A L O sa
?L"-) = Q/IJPI -Le AL‘:.)] n-’!"(x..) - ' (5b)
Aw = 4 3 Aw |  (5¢)
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we obtain the separation of the dynamics:

b et £ U 9o L (04 patere
so that the dynamics of the physical fields is separated from
that of the ghost 'aﬁf\ﬁ (which has negative metric).

However, all this separation is only férmél, first be-
cause the renormalization of the Proca'lagrangiaﬂ reqﬁires an
infinite number of couﬁﬁerterms(3); and also_exg[-ietﬁ@5]
is not well defined(z}, in such a way that ifhPGJ defiﬁes a - -
operator valued distribution, Y does not(z).

In the present papér we prod#é'the eqﬁiﬁaleﬁdé betwéeh
the thebry in the Stueckelberg's lagrangian and that oﬁe with
Proca's lagrangian with counterterms (which we shall call
unitary gauge)}, taking into account the problem of renorma-
lization. 1In 2-dimensions this has been done in Ref. (3).

Our'papef is divided as follows: |

ﬁaﬁinglgtated the problem in section II, ~we adjust the
parameters (thch appear in unitary gauge's lagrangian) in
section 111 0 that:Gfeen‘s functions in the renormalizable

_ T o 2\ _ . L
case be independent of 1n} (: O(Tn) "on the mass shell.



In section IV we prove that parameters car be fixed in
such a way that Green's functions be equlvalent in both theories,
in such a way that they differ only by a renormalization.

'In section V we give an explicit example which shows

that the parameters become-infinite in the limit mos = -

II. STATEMENT OF THE PROELEM

Wlth the Proca lagrangian the photon propagator turns

out to be
Oe - : R & o (7)
Fpv = - == Qv - ] .
: R ' o :
The interaction is given by
e V¥, YA | e

yielding a superficial degree of divergence .

sr_wul‘_%i_as,Pwﬂw) | = (2)
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Since ér,tf3 depends on Ngivs , any Green's function
will eventually turn out to be divergent. Consequently we
have a non-renormalizable theory, and an infinite number of
counterterms is gene:ated; In order to define a unique |

theory an infinite number of renormalization conditions is
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criterion: ~the Green's functions of the unitary gauge (non-
renormalizable theory) must be equ:.valent to those of .the
renormalizable gauges.

Having in mind this aim, we define the following . 1-—
dependent Laqrangian ( 4 -Lagrangian):
vfo‘*m) .Lmdmw,zﬂﬂ (M) Ny (F4)- 4, [F,..,,F" 1o Lorbeay Mo [AR]
- IO PSS LF,“. F*) 4 2 N [Fee FP1) ¢ (e+i)*”
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where -Q.mpﬁq is a complete, linearly independent

set of formally gauge—:.nvarlant countertems. The prescrip-

(10)

Trmald

tion to flnd the finite part is the BPHZ renormalizable

procedure, with degree:

S 4 3 F By 28 o T (5-4)

) . ' Vo €Y
i'_: ne of externe_._l _bos-eﬁ_ li_l_.';es._a.tached to:_vertj,ces_
but not to Al‘” from ( Sp -le Ap ) B-mtof the other enternal

boson lines. in such a way that

Sd"xﬁoi..:
R(% Finite par'* o} (0\'1"““&4)- 'J)tm)@lg,) '%3") A (33) AH' L}L)e g \O>
P i .d foll
'“""‘PPA? can be parametrized as follows:
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e is the same as 3@,--- "aG..,.,
@}refers to any of the possible permutations of kv, {E,
3[ ok &:\6 ’ 3:13, ; such that m, n,p,pl,q stay invariant
besides 1ntegrat10n by parts. '

m(n)(v}ta >(_c)
and finally

is a matrlx to contract the Lorentz indices, |

3 =g 4 2P+ 2P + 2m + 3m
We call attention to the fact that if A=0 and *ﬂi = O
the A-lagrangian becomes the ProcaQLagrangian (plus,of coutsa,
;an infinite number of counterterms). If fa[ﬂ=ﬂ=0, we have
- for A= =1 the Stueckelberg lagra.ng:.an
The problem now is to shcw that Green s functions are..
1ndependent of A o | ”

III. DEPENDENCE ON mi

Now we shall fix the counterterms in such a way that the

usual relation is ensured(l'4):

3G _ A % - (11)
Bmo """*0* R _

where Aoq vanishes in the mass-shell.
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Jl.mﬂpm -2, , y>o (12a)
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= -b_ Mito y . (12b)
36 alll and 53 '_g_-_mmql Sor 3>6__ /o
We define furthermore:
By - (ot N (ALAM) 1y
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+ (_Hd) Z'. [AF (2-x0) By (x-x4) + Bee-yi) Ap (x-
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From the Gell-Man Low formula we have:

__9.r_ L iy a . SR 128l
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In order to use this formula let us establish a relation

between Ao and AG

" Ay 1 BN AN, |
} A
= AG :’ + ol -(16)
|
Using N L
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we find .-
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where /ﬁl\ ] t?ﬁ\
Iterating the above process for the other vertex we find

G = [see]ecG + 2 (MR, - (eon)R

27304, G

(22

with ’21 coming from the extra subtraction of
~&=2

so that

A - fa %Cﬁ

?Z o )

Now inserting
By~ 04 = A 353 Ay

o bs Ty 4

(24)

>

in (15) and comparing with (23) we obtain

s O, €2)

. (25a)
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2 SERE T
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So that (11) holds.

Iv) THE EQU IVALENCE

In this section we shall proove that the Green's functmons
calculated with the Ao lagranglan (10) are A 1ndependent, i.e.

we shall proove that (3)

9A

From the Gell-~-Man-Low formula:

_2_3_(_\3_:{2 Dy A.a+(e+§)(A5A3+b(Az Aa)

81 §¥2.5 oA

+_§.[mms+w] %...[(H)A.HA]} ae

Inserting (24} in (29)

_B_sz__= Z[ ag% . a& Q- ’1‘)35 ab (4- h}_-(eﬁ).g%

27y Loy

_ : (30).
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Now it is our aim to find A.a % gauge independent,

that is:

(g"ﬂ:"- ™ ) ?I% ) o (31)

We can construct A‘a by the following p'r'oc.edu're: gauge
~J
invariant ﬂ% are constructed, taking linear combinations of

the Aa’s
D D S R N
A I A (e e
tn) | : (m) d 2 _
ST &, g T 33)
o{”\) _ Z 3(w-a) O((-n-.u . o =-"(34)
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‘Then we can write:
Aa = Z LJULM.' Ear " such that
%=Z&2§z_+ﬁiu‘2)§%+ 2b - A)} -(e+4_£ bgﬁ C5(3«3) :

N L
oA

: 2
where the coeficient of A'j' is independent of M- We put

m,2_=0, and impose E_C&.:O. ( ﬁ%ﬁ © holds. independently of m_,
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since the coeficient of Zﬁy is ?nz independent) . By the fact
that det Lw] #0: '
(©)

. . |
33 _1y Ofw -3y 28 - (e+4a)b -

(37)

2
¥
-b{o) } = 0O
1) z%
(4] .
5%_ can be calculated in pe;turbatiqn theory, using:
% [A:i) = 0 ' 2 v 6

and the normalization conditons of QED for 3 { 6 . Equation
(37) implies independence of the Green's.functioné with

respect  to A, eq. (28).

V) AN EXAMPLE

In this chapter we take the explicit Green's function
2,0) S D o
(ﬁ and proove that

(%,0) 2,0

1. (j (A=141) = %( )KA)

2. The counterterms diverge for A=1 as it should be,
because in this case, the graphs are explicitly finite,
but Green's function must be infinite, because in
the case A =0 the Green's functions are infinite.

Let us take

2 4 X 12  _+ X >
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An straightforward calculation shows that:

Cam = Cﬁ (4)

where

rﬂb . . t4) _
comes from anisotropies, and F%._from:

s
o= M j 3 2%
o %"‘ﬂc?,' -+ l.‘l-a) Ml

Ty :—:m‘j ik _2M4§ 'k
| (K md) (3. m2) (g Y2 (2 M2)

L U-:x’*)m& e (4 M) [.\ + 1MZ QX
(2w ) (1= W)™ k- ™M

For _‘h\:'» MY we find:

(38)

(39)

(40)

(41)

(42)

- (43)

(44)

- (45)

(46)
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3
M .
h o= e - (47)
2
Vo= oo 5P2-. (48)
My
nos o X | ¥ (49)

which diverge logaritmically when integrated.
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FOOTNOTES
n ’ _ 2
[1] The gauge independence of A.a will be used to put ™, = o
in eguation (37). This is important in order not to have

contradiction between

Jigk = 4 A, Cé - and jasé' =9

awﬁ' vxw-m 83
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