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ABSTRACT

Recent results on hass generation in the Gross-Neveu
model obtained by the use of self-consistent methods are
analysed through renormalization-group methods. The invariance
of the mass under a class of renormalizations introduced by

T.Muta is proved.



I. INTRODUCTION

The study of mass generation through self-consistency
requirements, advocated years ago by Nambu and Jena-Lasiniofl)
has found recently a very elegant application in the study of

(2) ) and Muta(4).

the Gross-Neveu model made by Abarbamel(3
The latter work is particularly interesting as, by introducing
an unconventional renormalization procedure, Muta is able to
derive a gap equation which gives the fermion mass as a function
of the coupling constant » in terms of finite quantities,
containing both Gross-Neveu's and Abarbanel's results.

In this paper we analyse Muta's conclusions by the use of
renormalization-group equations adapted to his procedure,
proving the renormalization invariance of the self-consistent
mass. This is done in Muta's paper only in the particular
case in which Abarbanel's results obtain.

In section II we briefly review Muta's calculation.

Section III discusses the renormalization group equations for

the fermion mass, which are solved in Section IV. A discussion

of some consequences of the invariance follows.

II. THE SELF-CONSISTENT METHOD

The Gross-Neveu lagrangean

>
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is treated in 2 space-time dimensions and large number N of

fermionic field components. As it is well—known(z), one can

trade it for the lagrangean
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In the leading order of the 1/N expansion one has the

self-consistent equation for the fermion self-energy part:

Net L dh TR 4+ |
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D being the dimension of space-time. Putting 2_(p) =T,

the fermion mass, one has
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This must be‘renormalized, so we introduce, following Muta(4),

the renormalized dimensionless coupling constant A through

2
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u being the "renormalization spot", and Z, the renormalization
constant of the o field. From (II.4) and (II.5) it follows
that
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If Zo is known, (II.6) gives a relation between A and u, needed

to compute the Callan-Symanzik function B(X)<6). To evaluate
zZ, we must examine the renormalization of the o propagator A (k?) .

¥We have, for the o self-energy partTT(kz),
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where we introduced a new dimensional parameter, M, instead
of the mass, in the fermion propagator. This is the new
feature introduced bylﬁuta. It is indeed a renormalization,
as our analysis in terms of the renormalization group will
show. Equation (II.7) can be integrated and gives
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The renormalization prescription which determines Z_ is

A(./:) = -2 (I1.9)
or, equivalently,
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Using equation (II.10), (II.8) and (II.6),‘and taking the limit
D+2, one has
1
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o
which, upon integration, gives
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This is Muta's gap equation, and this derivation is exactly

(3)
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his own. It contains Abarbanel's results as a particular

case and has very interesting consequences, like the discovery

of a kind of dimensional transmutation at the infrared-stable

zero of the 8 function. We refer the readér'to ref.(4).



III. THE RENORMALIZATION-GROUP EQUATIONS

The renormalization-group equations for the mass follow,

in a massless theory with two redundant mass-dimensional para-
dwm
AM

content is the renormalization invariance of the fermionic

meters, from the equations chn/%uzo and = O, "whose

mass m. Explicitly, they read
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We leave open the existence of a functional relation between
o4
o

.

M and u, manifest through the presence of terms like
Muta takes M and | to be independent parameters and to get
his results we will eventually ignore gﬁi. at the end. It is,
however, instructive to proceed the way i; do. We look‘for

solutions of the type

m (M )= MG (4 7":'1“) y (ITI.5)

where Q is an arbitrary function.



On dimensional grounds, the most general expression is-
M F M
m = MF (), 2 e O, )

which is contained in (III.5), by taking
M M M
G(,\,.;*._):fju,/kwﬁ-i(,\./,).

With (III.5), equations (III.l) and (III.2) read
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If M and ¥ are related, these equations are not indepen-
dent. In fact, multiplying (III.6) by f? ggi we have the
/IA-

consistency condition between the equations

Q) = A M g (T11.8)
p) == o F

which can be easily verified.

The g and B functions can be calculated from equation

(IT.12) reading

a

3 < 14-'4
[5()) - A 4 ¢M = = + 1 (I11.9)
2r Mm /1»% M2y
3 M2
A o L (I1I.10)

F(.‘\) =
L {¢Yq — /u*{“ + 1
M M

Ml
MM P SR
g 2 M e el gt

T
//-

(I11.11)




Let us consider now the case in which M and p are inde-
pendent parameters. The equationé corresponding to (III.6)

and (III.7) are now independent. Introducing the notation

M
X = —
=
one has
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and
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In order that the mass be renormalization-invariant, QG

must be a solution of both equations.

IV. THE SOLUTIONS

These equations are conveniently solved by the method of

(5)

the characteristics The general solution of (III.12) is

| ; J4+qu -1
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That is, an arbitrary function of the indicated argument. To
solve eq. (III.13), we first write the equation of the

characteristics,

4 N x  m [rx” -f (IV.2)
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which can easily be integrated to
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where C is the integration constant. This slightly unconven-

. tional way of writing the solution is convenient to what

follows. The general solution of (III.13) can be now found

by integrating the equation

- - (IV.4)

and writing the new integration constant as an arbitrary
function of the constant combination of A and x exhibited in

(IV.3). One has

C)(A,x):.-_;_.Gt(im x2~ e V:::: ”) . (Iv.5)

To determine the invariant masses one must then look
for all functions that satisfy both egs. (IV.1l) and (IV.5).
Apart from the trivial vanishing solution, the only way of

satisfying both constraints is having

fryax® +f

except for a multiplicative constant. Therefore, the

N Ji+ -1 |
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invariant mass has the form
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that is, it coincides with Muta's gap egquation, eg. (II.12).
The mass computed by Muta is, hence, renormalization invariant.
This means the following: iet us fix our renormalization,
giving values for u, M and i. This determines the value of C
in equation (IV.3), that is, deterﬁines A as a function of
M/u. Now, change the value of M/u (i.e., change the renormali-
zation). The value of X will also change, so that the value-
of m will remain fixed.

A simple consequence of this is that the various masses
obtained by divers particular values of M and u, though looking
rather different from one another, are in fact, one and the

same.
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