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ABSTRACT:

A hydrodynamlcal approach is presented in order
to study the large missing-mass clusters, often produced in
high-energy hadron-hadron colllslons. By analogy with Landau's
hydrodynamical model, these systems of particles are treated as
originated from the expansion of a highly compressed fluid
which are formed during a collision and which is assumed to be
at rest at t=0 in the center-of-mass frame of the resulting.
cluster. Comparisons with the existing data on ths-average
multiplicity, the multiplicity distribution and the rapidity -
distribution of charged particles inside a clusterlshow quite

good agreements, giving support to the present approach.



I. INTRODUCTION

It is well known that, in high-energy collisions - A

between two hadrons, one o% the incident particles often survi-

ves throughout the collision, conserving not only its guantum

numbers but also a large amount of the incident energy. This

is the so called leading particle effect. As for the remaining

part of the outgoing parti¢les, which are frequently interpreted

as fragments coming from the other incident particle, we know

it shows an invariant-mass distribution with a pronounced peak

near the threshould (M ~ 1.4 GeV in the case of p+tp-—> p+X),

but its tail extends far into the large-mass regidnl). A two-

péak

step mechanism (that is, excitation of one of the incident
particles followed by its decay) has been proposed a long time

agoZ) to explain the above effect and revived3)

, becoming one
of the most popular models for multi-particle production in

the early seventies. But, as far as I know, the investigation

R T

of this compound system itself has been restricted mostly to
the small-mass region. Thus, it is worthwhile trying to give
a description which especially accounts for large missing-mass
clusters.

In a recent paper4), N.Masuda and R.M.Weiner
employed a hydrodynamical model in discussing the space-time
extension of the fireballs. Although our purpose is not the
same and our treatment slightly different from theirs, our
approach is similar in many respects. That is, we propose to
describe thermissing—mass system (especially with large mass),

which is formed in a hadron-hadron collision where one of them

survives as a leading particle, as provenient from the expan-

o g

sion of a highly compressed fluid, in an exact analogy with

Landau's hydrodynamical modelS). | : )



We show, in this paper, that this description of
the missing4mass clusters satisfactorily reprdduces_several
quantities related to thesé sysﬁéﬂé such as the avérage'multi4-
plicity ﬁe'asslfunctiOn'Of their invariant mass M, the moments
of their multiplicity distributions C,_ = ﬁf(;)/ mk ‘and
the pseudo-rapdity distribution dN o/ ) as afunction of 7 and
M. This kind of data are, however, Very scarce and more ex-
periments'are welcome in order to test our pictufe, as well as-
to establish more details.

Although our belief is that this mechanism of
reaction consﬁitutes the main part of'the'multi—particle: pro- -
duction and, thus; it completes thé model which has been

6)

analysed in an earlier work, here, we confine ourselves jus£ 
to the study of thepmiSSing-mass cluster itself. 1In the next
section, we begin describing the model, by choosing the frame
where the expansion is studied and defining the initial condi-
tions. 1In Section III, the average mﬂltiplicity“is computed
and compared with the existing data, which fix the fireball's
radius, the ohly parameter of the model. In Section IV, the
moments of the multiplicity distribution is computed following
F. Cooper and E.SchonbengTK From these moments, the analogue’
of the KNO interpolating functionfydz) ié obtained, and both
of them are compared with the data. The computatiOn of the
rapidity and the pseudo-rapdity distributions is presented in
Section V, within one-dimensional aﬁprdximatioﬁ; .Finally, in ~

Section VI, we give some additional remarks.




I1, THE MODEL.

In the conventional hydrodynamical model for
particle productionS), one assumes that the two incident particles
coalesce converting all their kinetic energy into heat, formlng,
thus, a hlghly excited intermediate state (a flreball), which
then, due to a large pressqre_gnﬂﬁﬁnt inside it, expands until
some critical dissociatioh_temperature is reached, when the out-
going particles finally emerge. The natural frame where all
these are described would be the center-of-mass frame of the
.collision, where, due to the Lorentz contrection, the incident
particles appear flattened_by a factor l/y’. Since the formation
of the fireball is expected to occur in the region of space where
the incident particles come to superpose each_other and_duripg
the short time it happens, the initial fireball volume should

approximately be
VY | | (1)

where.V0 is the volume ozcupied by a proton in its rest frame
(here and in the following, we ccnsider pp collision to fix our
idea) .

However, despite several nice features of this
picture for multi-particle production, it is clear that it
cannot be applied to all the inelastic events, for at least in_
a nonfnegligible_fraction of the“ccl;isione_the so_calledwleadf
ing particle appears,_which i$¢n0t p:edicted by the model, even
taking the statistical fluctuations into account.

Since the existence of a leading particle is a
fact, we prefer to assume, as in Refs. 2,3) that there is a finite

- non-negligible probability for one of the incident particles



surviving through the collision, approximately keeping alllits' . §
initial characteristics, including its momentum and enerqgy. The
other particle would suffer fragmentation, resulting in a system,
the invariant-mass distribution of which shows a peék near the
threshould, but with a tail which extends far into large mass

1)

values (it seems natural- that, if this happens, there must

also be a finite probability for the fragmentation of both the

incident particles). Our main purpose here is to déscribe such
a system (which will be called fireball, though this term has’

several different meanings), namely, in a reaction of the form
p+p ~—>» pHX(M)  , | S (2)

to.study the many-particle system X(M) (especially with large
mass: ij>mp, mp is the proton mass), regarded as the products
of fragmentation of one of the incident protons.
Let us assume that during.a collision between
two incident protons, a fireball is formed and a part of the.
kinetic energy.is converted into heat. The fireball would,
then, expand exactly as depicted by Landau's hydrodynamical
model. We do not try, here, to describe the fireball-formation
process in terms of hydrodynamics, by studying, for instance,
shock waves propagating through thé inéident protons until a
complet equilibrium is established. We think a hydrodynamical
approach may appropriately be uéed only for treating the fire- .
ball expansion, where we have a sufficiently complex system
which would allow its statistical description. |
Although a detailed description of the fireball
. formation is certéinly necessary, here we shall be contented
just by assuming there is a probability for its occurrence,'

éonfining ourselves to the study of its expansion. We think



reasonable; héwever, that if a fireball is to be formed, it shall
occur around the region where the two incident particles come

to superpoée each other and during the short time it takes place..
.Also, it seems natural, inr studying fragmentation, to observe

the phenomenon not in the center-of-mass frame bf the collision,
but instead in the rest frame of the fireball (in Landau's model,
both frames coincide), where, immediately after the interaction
between the incident protons, there would be just one moving
particle (the leading particle) and the remaining of the system
would be confined in a small volume just like a compressed fluid
instantaneously at rest (see Fig. 1). Since, with respect to
this frame, the incident particles do not have the same energy,

they appear contracted by different Lorentz factors, which are

o= oot L
a = and T — (3)
Zm M Yb 2 m /
P | [
that is, in this frame the longitudinal dimension of the particle
which would suffer fragmentation (b) is much larger than that

of the one which would survive (a). Thus, the small volume

where the fireball developpes is taken approximately to be’
Ve m |
V - = M. | (4)

We assume a part of the incident kinetic energy is released’
within this flat volume, forming a complex interacting system,
which will be treated as a relativistic fluid following Landau's
idea.

Accordingly, the hydronynamic equations are written

’a"‘7;w_=_o. L ()



where Thv'is the energy-momentum tensor of the fluid

}m (€+P)U. u, — g/*“/? I_ _ (6)

(here € is the energy density, p the pressure and uF‘the four-

velocity of the fluid). The fireball expansion is accounted

for by Egs. (5), complemented with the equation of state.

€ -

p = = (7)
and the initial conditions that the fluid is at rest for t=0
inside the volume V given by Eqg. (4). Thus, all the results
already obtained within the conventional hydrodynamical model
may bé adapted for our purpose, provided the initial volume
given by Relation (1) is replaced by Eq.(4)} and the results

reinterpreted as referring to missing-mass clusters.

III. AVERAGE MULTIPLICITY N (M)

In a hydrodynamical approach, the entropy of the
system under study playé a fundamental role. This follows'

from the adiabaticity of the expansion process (:9(4l3“5 = 0),

I.l
which is a direct consequence of Eqgs. (5) and (6). Thus, the
average multiplicity N is written as
‘N =dAs , (8)

where S is now the (conserved) total eﬁtrdpy of our fireball,

which may be computed at the time t=0. That is,

S=Vs : o T



where V is our initial volume, given by Eg. (4). Since the
total number of particles becomes definite only when the tempe-
T (here, m. is the
pion mass and c=h=k=1), when the fluid's contituents may already

rature reaches some critical value Td:f m

be regarded as free, the'propottionality conétant(! in Eqg. (8)
shall instead be expressed in terms of the particle and the

entropy densities ny and sy at that temperature:

N n
«{ = — = 2 ) (10)
S Ad
By putting this § into Eq. (8) and using Eq.(9),
we have |
- ¢ 3/4 _
et " " Co _ . .
N = T4y, = 'ﬂdV("g*) , (11)
dd. _d .

where, in the last step, we have used the relation S, ~ 62/4
which follows from the equation of state, Eq. (7), together
with the statistical equilibrium condition. Remembering what

Eb = M/V and by using Eq. (4),

n VW 3/ . 2m "
H:AEWMq - /nﬂ({ —)VH id,W. (12)

a d
That is, W(M) is proportional to Vﬂi | _
The constant o' in Eg. (12) may be estimated by
studying a pion gas at the dissociation temperature Td (obserVe
that, in this model, the fluig constituting a fireball is
essentially reduced to a pion gas at the temperature Tqr when_the
total number of particles becomes.definite and does not change

anymore) . We have



L dp / 3Ta¢

= 3 = F(z), @3
Zu)? ep(E/T4)-) 2T b
with Fla)= 23 " xPdx BRNSTY
| , (232 )-1
where 5 < _;ZEE; (15)
and ABP ’ E 3 7;3 (16)
=35 — = = $f2),
RE) e (E/73) - | 2T

bo _
with $lz) = 2* XVai+)| da - an
| L ap(zVita) -
Now, assuming V_ is a spherical volume with

1

. jradius R (R -~ m; ), the substitution of ny and €4 given by

Egs. (13) and (16) into Egq. (12) wields

O{f=(m)f/4 Fl) (4m,,)'/¢ F(2) (72441,7:)%

Tt [é(z)]glﬂ- 'T['m,?t ['43(2)]3/96

or, by using Table I of Ref. 5), we have at Td=m7£(in all the

(18)

calculations below we will take this value of dissociation
temperature, following the usual estimates),

. 3/9 .
i < 2.3 (Qfmn) , .

As a matter of fact, ' depends very weakly on Té.

~ To perform a comparison of N with experimental
data, one must have in mind that N given by Eg. (12) is the
total multiplicity (assuming all the particles are pions), |

whereas experimental data refer, in general, only to charged



particles. Thus, assuming NC :(2/3)[\] , one has finally

a Vb
3/y (20)

with Cl‘--l#'a' (Rmm-)

|

e (M)

Notice that R, which we expect to be approximately

egual to rnf’ » is the only free parameter throughout the

19
present calculations (including those which follow).
' In Fig. 2, we show two curves corresponding to
N given by Eg. (20) for two different values of a (or R). Some

8,9) are also displayed there. At first sight,

experimental data
it seems that, contrary to our model, the multiplicity data ex-
hibit certain energy dependence, since there are definite

8)

systematic discrepancies between the data from ISR and those

from NALg). However, one must pay attention that all the ISR .
data are coincident among them, including those which have not
been plotted in Fig. 2, and also all the NAL data are essentially
identical among them. One set of ISR data is at s=549 GeV2
(py, = 291 GeV ), so it is in the same energy region of NAL data,
and yet it agrees with those ISR data plotted in Fig. 2. Thus,
we prefer to consider that'ﬁ;(M) is independent of the incident
energy. It is also shown in Fig. 2 and, in addition, by other
existing data that E;(M) is essentially independent of t
(Here, we are not caring about the large—[tl region, where the
cross section becomes negligible).

The conclusion we reach by looking at Fig. 2 is
that Eg. (20) reproduces the existing data quite well and the
parameter a must be chosen around a=1.8 ~ 2.1, which corresponds

to

Rm = 1.33.- 1.64, R 1 B



This value of R is very close to our rough estimation (R~nﬁg)._
Before going into the discussion of other obser-

vables, let us also compute the quantity
Sd_=¢);-4—=_%-’—"-&_ @)
(where To is the initial fireball temperatu;e), which will

appear later in Sec, V. The initial temperature T, may be

expressed in terms of the initial energy_density E?o as -

gL
T ..T(f: S Ta My T [ 3 A
- R VAN Ry, 3 * (23)

€a / g1V HETLE NS

By putting Eﬁ_ , given by Eg. (16), into this expressionrand

recalling that a in Eq. (20) may be written as

2 _- §(4mp)!/4 F(z) Qé{tf

2 9.
we have " [@(2)]/4
| Vo
_ T | 2FE)
o v - 2R e
h'mPR 6}(2) 3a @_?)‘_
So, finally |
3,,(: Q"? 3ammé[2) """_' , o.47a (24)

2:F)q 2=t 7 ym -

That is, this parameter which will determine the particle dis-
tribution (Sec. V) may be expressed in terms of the same

parameter a in Eg. (20).



IV. MULTIPLICITY DISTRIBUTION

In the last section, we have established that the

average multiplicity-ﬁ;(M). can well be represented by Eq. (20).

Let us now proceed to a comparison of the multiplicity distribu-

tion predicted by our model with corresponding data.
In the fraﬁeWork of the hydrodYnamical approach,
the moments of the multiplicity distribution have first been

7

calculated by F.Cooper and E.Schonberg’’, who start writing the
grand partition function 2 for a relativistic Bose gas at
temperature Tg4 (just one kind of pions is considered here):

F'-Et

E

0 kR
TA\/[E«?( )"LF’ -A;eu ki?%)’

(25)

where A ' V Tj -2_2’
7{7f1 | (26}

and'K2 is a modified Bessel function. 1In terms of log Z, the

g-th moment Zlq'is defined by

(27)

_ 40 ) S S
A?_TM%Z(& =~ A nZ n? K, (ma)

Thus, if one expresses everything in terms of the

average multiplicity N = A, , the constant A disappears from

l.
Eg. (27) and one has



A% :[Z %%-zkz(m?:)/z &_&@] N = | a%—:_\!ﬂ,i (28)

An explicit computation of a_ above gives for

d
the first moments*: '
| AZ: _1.105 N ; ' , A= 54.0;03 N .
A5 - 1.366 N , _Ag: 278.29 N ;
Aq: 2.088 N, A7:l727.75 N ,
A = 4.403.N . A =12522.9 N
s : _ p . AV . P
A, = 13.251 N
6’ / . _

(29)

These results may be compared with the data on

Nf(M) | |
| oo

- N, (M) |

For this end, let us write C, in terms of Aq,_ remembering that

* These values are slightly different from those presented in
Ref. 7), but we believe our results are correct, provided :
the numerical table we have usedll) is correct.



- — 7
ALHNZ_M 7 ~

—_— — — —3
A3=N3-—3N'N + Z N,

- — - __.2_2, — =2 —_
A, = NP =4 NN =~ IN + IZN N — (N

')
-(31)

{and assuming the above results are valid also when we have

charged particles as well, and applied to these particles),

A Q
C;‘== / *‘__fi = | + _mf ,

N. ¢

A a

C3ﬁ=. I +'3fii,'+ *“jg = | +':3fzf t -j2 )

NC NC NC NC

A Al A A, | 2 a
= 1+ ey 4-:3*—?-“ = ¢ 60 3010y

N N N N woN R

(32)

In Table I, the experimental data on ﬁc, Cz, C3
and Cy for different M2 intervals given in Ref. 1ll) are
displayed. 1In comparison, C, , C; and C, computed by using.
Egs. (32), with the experimental §C taken as the impuf, aré.

- shown. It is seen that the agreement is excellent.



Once the momentszﬁq (or Cq) have been calculated,

we can obtain the multiplicity distribution itself, that is,

the probability PNC(M) of having N, charged particles inside a

fireball of mass M. By introducing a generating function for

the multiplicity distribution (here we use Koba's_notation;z))

_ SNy .,
- (t) =2 ¢ f.
= ? ) é%b 2b+{ Y, - (33)
the moments Aq may be expressed as follows
| g b
b =0ty =] y
gg% g0 _(. )

This last expression shows that the generating function intro-

duced above may be written in terms of.Aq as

= (5) < o3 4]

(35)

On the other hand, it follows from Eq. {(33) that
o0

- 2 2k | S
e Ez@) = kZe fak_ﬂ (36)

is a periodical function with period . Thus, we can determine

the coefficients P2k+1' by inverting the above Fourier series:

Puwt = [ 45 €*9[62(3)]




'Now; instead of PNC, defined just for discrete
values of Nc' perhaps it is more convenient tc consider an
interpolating function PM(NC), whére NC is now.a continuous
variable, and which is defined by Eg. (37) letting k to take
integer as well as non-integer values, With an éppropriété

normalization, we have finally

7{”4(2) = P(M)

A(z1

H
£ § 2 [-fZ? +%’%ﬂ;(¢§)$]§/;
: .. {38)

where 2=N5/Eg. The series above may be shown to be convergent
and, thus, approximated by a finite sum.

Fig. 3 shows the results of numerical integrations
of Eq. (38}, with the series in the exponent approximated by
the first seven terms, for three different values of Mz. Observe
that ourfyﬁ(z) is not a scaling function in contraposition
to the similar functions defined for the multiplicity distribu-
tions in hadron-hadron collisions.

In Fig. 4, we éompare q%ﬁ(z) obtained in.this.
way with the data given in Ref. 11). Although the authours of
that paper state that there is an épproximate scaling df’%&(Z),
it is seen that the experiméhtal data db'depeﬁd on the invariant

-

mass M and our model. is able to reproduce this experimentally

observed behaviour.




V. RAPIDITY AND PSEUDO-RAPIDITY DISTRIBUTION

In studying the momentum distribution of particles,
if-ﬁé génfine ourselve§ just to the small-p_L particles, one-
dimensional:approximation for the fluid expansion becomes appli-
cable. This is due to the flatness of our fireball at t=0.

The exact solution of the hydrodynamic equations (Eq. (5)) for
one-dimensional expansion is given, in terms of a potential

function X ' aslB' >)

=3
, 3 23’ Z /
X(So) =-T,05¢ e I[Jgh & )43 9{-§~%),
| 3 | (39)
X
I3
where § = Qa;(‘r/-ro ) , 2¢ is the initial thickness of
the fluid and K 1is the rapidity of a fluid element. The

solution above is valid for K20 and, evidentlly, we have

for o < O
X(3,-«) = X(3,«) . ; .§4o>_

In terms of ?((KJX), which by the way satisfies

the differential equation

4 2

?3’2 3?§'._)_ @

the space-time coordinates x and t are given by

T T 2% - oy

t= 2K o L72X .
2T T 7X |

X

A



To calculate the rapidity (or pseudo-rapidity)
distribution of particles, we must compute the entropy distribu-
" tion as a function of the fluid rapidityof, not at a fixed
instant t, but on a surface t(x) where the temperature is equal
to the dissociation temperature T4, that is 3::;3 given by Eq.

(24). Thus, by writing ds as™?)

dS A(ofdx - au'dt )

fi

it

Ad(c&o{c&t *‘M"(dx) ’

(43)

where A is the area of the disc in expansion, and putting Egs.

(42) into Eq. (43),

as = - Az ég[?f-b'@—r—'—@?-do(]

3
- _ Mo 2% 1.9 ]
_roe [fao(dpg?xdo( ,
where
22X (45)
P=x TX :

LAY

and in the last step the relation s/so=(T/To)3 has been used.

For T=Tg4 ($= gk'):

ds = - Ado ezgd ?ﬁ d X |
3To 2¢ 3 (46)
4 - -

or, by replacing X by Eq. (39),



d S _ S o™ X I(V3:-4 -3 )9(“3.1**),
\/_gd__ I(Vfd )9( fd‘"")l r |
+zz(v/}7)8fzd+~) dw, (a30) “

Usually, the last term in the above expression,

—

as well as the factors 9 multiplying I0 and.Il, are omitted,
which is justified in the convéntional hydrodynamical model,

where the asymptotic limit PL“*;OO is considered. We know that .
in this case the remaining-térms may be approximated by a -
gaussian in . | In.odr problem, however, this simplification

is found not to be valid and we will maintain the complete
expression above. As the number of particles is proportional

to the entropy, we may write the charged particle density inside .
a fluid element with rapidity in the range from X to o + o X

‘as

(48)

We have now to consider the&thermal motion of

particles inside each fluid,elementls). With réspect to the




proper frame of the element, we have
I '
_ -Uip' | |
dn_ = D e‘”l/f“' [ , (49)

~where D is the normalization cdnstaht,'which can béteaéiiy computed.
At this point, we mut decide which of.the

commonly used variables

yoo E+P~.. |

or e e e : ﬁ- “, PR
. _ taﬂ¢ éa | éh?? e  .
we are going to use.: In Ref.l6} ,-it was shown'that,'desPite” o
'the common belief, AN/dy may be considérably different from
dN/dvs.and a care muSt be exercised in dealing-with the ex-
perimentalldata. Applied to our problem, it is found, indeed, -
that the asymwetry which appears in particle-distribution data
(see Figs, 5 and 6) is due to the use of the experimentally more
convenient 77 variable gndrhas no dfnamicél implicétiqn as
diécussed in Ref. 4). |

By rewriting Eq. (49) in terms of the center-
of-masgs variables and integrating it in the transverse variables,
we will have d‘ﬂbfo()/cf’} Di‘ d’nc (o() /0(.)} . in each case. Using

these distributions and Eq. (48), the final rapidity and the

- pseudo-rapidity distributions are expressed as convolutions

dec 6{716

do( OL? ey




and

ol Ne L dp dn

_— C
do ——‘E —_— (53)
(177 A X oh) ‘ | |
In Fig. 5, we show ch/dv and dN,/dy computed

in this way, at M2=93 GeV2 and s=934 GeVz (observe that ch/d)?
depends on s, whereas dN,/dy does not). For comparison, experi-

mental dataB)

on ch/d7 at the corresponding mass value and

for s=549 Gev® and 934 Gev? are also displayed. There, both the
experimental data and the theoretical curves'have_been shifted
by log(ﬁi}M) which corresponds to the fireball's center~of5mass'

rapidity. As is clearly seen, the agreement of our curve with

the experimental points is quite gqod, reproducing perfectly

the observed asymmetry. Although we have not plotted it in

Fig. 5, the result for s = 549 GeV2

_shows smaller_asymmetxy,‘lying.'
somewhat in between the two curves shown there. This energy
dependence is also exhibited by the egperimental pointe.

The invariant-mass dependency of ch/d7 is

shown in Fig. 6, where the curves correspond to s = 934_GeV2

and M2 = 93, 41, 13 and 1 GeVz,'respectively.' For_M2=1,_since'
Eq. (24) gives §d>o , We put simply dnc/d)? at o = - e"? [lf;,/n)
It is not surprising that some discrepancies appear for small- -

M values, because the model is suited'for large—M region. In

our opinion, the fact that the invariantfmass dependency of. the

width of ch/d7 as well as its asymmetry ere.well-reproduced 

gives an additional support to the model.

VI. CONCLUDING REMARKS

In the present paper, we have studied several -
aspects of the large missing-mass clusters, by assuming that

they were mainly originated from a fragmentation of one of the




incident particles, around which an initially flat fireball
would be formed and which would expand then according to the
hydrodynamical laws. Our conciusion is that the relevant expe-
rimental data give sypport tb'Ehis picture of missing-mass-~
cluster formation. |

If we go one step further and assume this
mechanism is dominant-in multiparticle produétion, we;arrive"
at a model which is guite similar to those of:Réfs- 3), excebﬁz
that now we know how the fireball,evol&es in time, so thatIWe"
are able to compute several of its characteristics. Although?
this picture of multiparticle production is By now out of
fashion, we believe it is absolutely not obsolete nor incon~
sistent with the present day experlmental data, except perhaps
some aspects of very large P, experiments. o .

Thus, our next step would be to consider a
hadron-hadron collision as a whole and compute several quanfities
such as the total chérged multipliciﬁy(N ', the total
multlpllclty dlstrlbutlon, the inclusive cross sectlons CUldedP /
correlations among produced particles, etc. This would requlre
an additional assumption concerning the excitation probability'
of a fireball of mass M, as well as some supplementary imprO*‘
vements in details of the model. For instance, if one assumes{
dominance of the single fragmentation and take d6/dM - a/ Vs,
which is in perfect agreement with the eXisting data, one maf

1/4

correctly reproduce both the obéefved<Na>- a s and the

moments of the multiplicity distributionlﬂ Cq- <Nq >/< N }q
In a previous papers), a model has been
proposed which correctly accounts for the energy dependence

of Ob't' Oy » 0. as well as dU;g/d,t in pp collisions. This

model was based on two independent mechanisms of interaction:



i} fragmentation, which is dominant and corresponds to_the_ope
which has been discussed above; ii) pionization, depicteéléé an
analogue of bremsstrahlung and which accounts for the increase.
of the cross-sections; _In our opiniqn, this §éqopd.mechanism

is responsible for the recently observedla)

positive correlation
between two leading protons and it is already manifest iﬁ'the |
data of Figs. 5 and Gras_a_small peak which systematically
appears near the incident-proton rapidity.. We shall returﬁ to

these questions in anear future.
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TABLE CAPTION

Table I : The moments C,_ of the multiplicity distribution in
different M2 bins for pL_=;205 GeV.  The values

quoted as theoéetical are the predictions of our

model; by takihg'thé expéfiméntél Fe éé the_imput}

The data are from Ref. 11).




FIGURE CAPTIONS

Fig.l -

Fig.2 -

Fig.3 -

Fig.4 -

Fig.5 -

Fig.6 -

A schematic representation of a missing-mass cluster
formation. i) Two differently Lorentz-contracted in-
cident protons as seen from the rest-frame of the
cluster; ii) Immediately after the impact, one imagines
the surviving proton (c) is in movement to the wright,
whereas a highly condensed matter at rest is formed
around the other proton, where a thermal egquilibrium

is assumed to set up before the system breaks up; iii)
A hydrodynamical expansion takes place inside the fire-
ball, until the local temperature reaches some critical
value T4, when the particles composing the cluster

finally arise.

The average charged multiplicity N. given by Eg. (20)
as function of M2. The experimental points are from
Refs. 8,9).

The normalized multiplicity distribution 'y%(gj)deflned
by Egq. (38) for three different values of M2,

A comparison of ’#f (2) given by Eq. (38) with the exis-
ting datall). For computing these curves, ﬁ;(M) has
been taken equal to 2.74, 4.85, 5.55 and 6.03 for

M2= 0-30 GevZ, 30-70 GeVv?, 70-110 GeV? and 110-150 Gev?,
respectively, which are the experimental values at |

pL=205 GeV tabulated in Ref.1l1l).

Pseudo-rapidity and rapidity distribution of chafged

particles for a given invariant mass. The solid line
indicates the predicted ch/d at M%=93 GeV2 and s=934
GeVZ, whereas the broken line corresponds to ch/dy at
the same M2
presented in Fig.6, we have fixed a=2.1, where a is

the parameter of the model, which appears in Egs. (20)

and (24). Experimental points are from Ref. 8 ).

Invariant-mass dependence of dN_/d¥ . The curves have

been calculated at s=934 Gevz; For M2=l GeVz, the

value. In computing these curves and those -



broken line indicates thé result normalized to.the observed = |

Nea,

in contrast to the solid line which has been normalized
by using Eq. (20). '
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