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ABSTRACT

A sgmi—claésical method to determine the contribution
to the optical potential in the elastic channel due to the coupling
to other processes taking place in heavy-ion collisions is
developed. An application is made to the case of coulomb excitatioﬁ.'
The lowest order term of our potential is shown to be identical to

the quantum mechanical expression of Baltz et al.
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I .- INTRODUCTION

In a ty?ical.heavy?ion reaction' one frequently .
encounters the situation where several strongly coupled _channels'
are open. The'compiexityﬂof a full coupled channel'calculationami'
the computer time needed_increases rapidly with the numbertl - of.
channels involved. On the other handfone-is often interested S ine

_only a.few,.if not just_one,.of these channels; It iszthus natural-
to attempt.reducing the number of channels:appearing explicitly in'
. the calculation to just those of direct interest, This is achieved

'1,2)

.in the.optical model where the effects of the eliminated

channels are accounted for hy the addition of a complerfpotential
tc the channel Hamiltonian. Such complex optical notentials are
usually determined trough phenomenological analYSis However.it lS.
clearly deSirable to base these potentials on ‘more solid theoretical
grounds. This can be accomplished by constructing a phySical modeln
for the effects of the eliminated channels on-the remaining ones.

Recently such a program was carried out for the.case

of Coulomb exc1tation of a deformed nucleus by Love et al3)and was
4)

subsequently 1mproved upon.by Baltz et al In:this case oneé has

an - electric quadrupole potential c0upling the. different states

+ +
I .

(0 .4

elastic (0 ) channel Baltz et al4)

the approximation of replacing the full interacting Green's function

for the inelastic Channelfby the,Coulomb_green'sufunction. ?his._j-
approximation 'amounts'to neglectinglmultiple.Coulomb excitation and
therefore the effects on elastic scattering due to channels other

- than the 2 are not con51dered at all. The range ofammdioinlity of
such -a potential is consequently limited since in most cases Coulomb
~excitation is very strong, thus demanding the 1ncluSion of hlgher

. order effects as was shown recently by" Doll et al 5)

.Jof the ground rotatichnal band In order to study the;-l

employed:Feshbachhs_formalism with

[+
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The purpose of the present work is to suggest ah |
alternative method to deriVe.the.complex dpticai potential based on
a semi-classical description 0of a nuclear collision process.
in section- 2 we summarizé'the coﬁveﬁtipnal quanhﬁn
mechanical treatment of the effective local potential. An alternative
approach based upon classical trajectorieé fof the colliding'nuclei

is developed in section 3. In section 4 an application of the

formalism of the previous section is made for the case of Coulomb

excitation. The results are then compared to other existing guantum
mechanical expressions. Finally, in section 5 the main conclusions

of the present work are presented;

IT - EFFECTIVE LOCAL POTENTIAL : QUANTUM MECHANICAL TREATMENT

Let us consider two colliding nuclei. The complete

Hamiltonian for the system may be written as

H =H, +V o | - (1)

where H;is the part of the Hamiltonian which is diagonal in channel
space and V is the interaction coupling the different channels. Let

P be the projection operator which slects out of the whole channei

' space a particular channel which we want to consider explicitly.The

complementary operator,

Q=4-P | " (@2
will therefore project on the subspace spanned by the remaining

2)

channels. According to Feshbach the component ]3|§f>.of the full

wave function |¥) satisfies the Schrddinger-type equation

(3)

(H;" E)Plg> =0



with the effective Hamiltonian-Hf‘given by.
H = PHP +PHQGaHP w

In eqg.(4) G is the Green function

G,"‘(::-—&HQ-H‘&) (5)

The generallzed optlcal Hamlltonlan for the channel

we have isolated is glven by

h = (3iH18) = (& HIE)+@HEGaH IR)
where |9g)is that part of the channel wave function P{¥> which

describes the intrinsic state of the nuclear system. The first term

in eq.(6) is the channel Hamiltonian. The second term ,.which

accounts for the effects of_the other channels on P!¥>, is in general_

a complex,-energy dependent, non-local potential, whose matrix
elements in the coordinate spaceerepresentation we designate by

W(E,x'}._ln principle W(T,E') can be evaluated provided'that the

Green function, G, is known. However, finding an exact expression

fortG is a very difficult task and one has to resort to some approxi-

mate way to evalute'W(r,f). In ref. 3) and 4) this is done by
Mo .
employing an approximate,form for G.
Integrating eq. (4) over the internal degrees of freedom

contained in |®a) and maklnq the usual decomp031tlon into partial

waves one obtains the &ﬂu&iumﬁr equatlon for the radial wave functlon_

LLtr)
A

o | _ : L lFo__ __ ' -
h, () W”“"XN“‘) Auch A’ = B e (7)
1 L9 J Ea S

o : : _
In eq.(7) h {r/ is the i*component of the channel-Hamiltonian while E
is the center of mass energy. o

Most opt1cal model computer codes were developed to -

Ly
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specifically deal‘with local potentials. It is thus convenient to

define for each state UIQQ a local potential LJ([)L
— ¥ / / C!l
U(r) W) = | Wl.r;r)U.j(rJ r (8)
11 ] h

which-is equivalent to Wz(r,r’). It should be c¢lear, however, that
lthe non*loca;ity of WQ(V,Y’) still appearsin.Uﬂ(r) through its
intrinsic state dependence.

In cases where the monopole part of the Coulomb inter-
action is dominant, such as in low energy heavy-ion collisions,we can
approximate the wave function uz(r) in eq. (8) by the regulaf Coulomb
wave function Fg}kr), where k is the asymptotic wave number in the
channel considered. Such a procedure was adapted by Baltz EE_EE4)
_through which they obtained the fpllowing egpression for UQ(r)‘

- -

Uw = I-ltkr) f \’\fg“”"/’ ‘:;_‘“f"‘ dr’
3 .

Let us define in a similar way effective local potentials

o

for the outgoing and ingoing Coulomb waves, H;ﬁkr) and H;(kr),

respectively.
+
U“(r)'____ ,,fW(rr)H(kr) dr’
g : -(Rﬁ (10}
4
where
ot s
Hy Ckr) = G ler) T cler) (11)

G ékr) being the ifregular Coulomb_function}
Combining egs. (9),(10) and (11) we can express 5Q(r) in

terms of U;{r) and U;(r) as

U (r)} — -—-{ U (r)'t‘U(l"J} +__£Er_)_,_ U‘zl‘)-’U{_H} (12)
ZLF(hr) J) '



The advantage of this formula is that, as we shall sée in the
following section,'it expresses the effective local pétéhtial in terms
of local potentials for ingoing and.outgoing'waves. Thesé Waves are
readily associated with claSSicél particle.trajectories and this fact

will provide an alternative way to evaluate the local potential Uy (x)}.
III - 'EFFECTIVE LOCAL POTENTIAL : SEMICLASSICAL TREATMENT

Semiclassical methods have been shown to be guite

6-10)

adequate in describing processes taking place in heavy ion cqlliSions .
We shall now try to apply thése ideas. to the évaluation of the.
-complex optical potential in the elastic channel resulting from - the
coupling to other compeﬁing channels. |
The connection between the quantum mechanical description
given in the previous section and the semiclassical one to be
developed here is established through the aésociation of iﬁgoing and
outgoing Coulomb wave functions with the corresponding ingoing and
outgoing'Rutherfofd trajectories of a classical charged particle
(see fig. 1 for an illustration). |
The local.optical potential acts along these trajectories
changing the amplitude for finding the system in the elastic channel;
For_the case of an ingoing trajectofy this amplitude, a;(r), is

related to the potential U;(r) through the WKB expression

. o0 Ul(”#c‘._

o (r) = exp - = ~Tr o T
ﬁ' + ( d¥ (13)
r dt

where rg(t) is the Rutherford trajectory. An equation similar to
eq. (13) holds for the outgoing amplitude, a;(r), where in this caSe_

the potential U;(r) is integrated along the outgoing trajeétory



=)

3

(see fig.lb).

From eq.(13) it is possible to solve for U;(r) in
terms of the amplitude a|(r) by first taking logarithms and then
differentiating both sides of the equation with respect to r . The

result is

o = (@ 2w o]

f
Since rg(t) is a Rutherford trajectory ;Fé,is simply given by

alﬁ Z.Z e® ] (15)
e[ (- 2R 50 |

where E is the center of mass energy of the system, m its reduced
17 22 the atomic numbers of target and projectile,respectively.

The minus sign is chosen since we are considering. the ingoing branch -

mass and Z

of the Rutherford trajectory.
A similar expression holds for UZ(r).

The amplitudesai(r) are smoothly varying functions of r,

which results in slowly varying potentials U (r). If we insert them

¢ _
into eq.(12) we find that the potential ﬁQ(r) is a sum of two terms;

a smooth term given by the average of*U;(r},and=U£(r) and a very
rapidly oscillating term which we drop since its net effect over any:

distance of the same order of magnitude as the diametrical dimensions.

- of our system is negligible.

The final expression for our effective local'potential

is then
Uyon = F 14 2l a] - 5 1 4]

This general result may be applied to any specific case provided that

the amplitudes_ai(r) can be found. We would like to remark at this point

that the fact that the potential is state dependent is still present



through its dependence on the Rutherford trajectories.
Iv - EFFECTIVE LOCAL. POTENTIAL FOR COULOMB EXCITATION

We shall consider.here the elastié scattering of a

spherical projectile from an even-even deformed nucleus at energies
'below the Coulomb barrier. Using'the:method develbped in section 3
we evaluate the optical pdtential in the elastic channel resultipg'
from the coupling of the elastic (O+) channel to the'inelastic
(2+,4+,...) channels, due to the electric quadrﬁpole interaction .
In this case the amplitudeé ai
a matter of fact they are an optional output of the de_Boef;Winther
11)

(r) may be evaluated numerically. As’

Coulomb excitation computer code It is nevertheless, interesting-

to obtain an: analytical expression for ﬁlfr); This may be
accomplished by evaluating the amplitudés ai(r) in the sudden limit,

where the target moment of inertia is taken to be infinite. In this

7)

limit Q\r) are given by

o)
AT T t

+ | Z'GQ € iD (QDSX:UU)J
AT _ _]__ do( M CI 4 4 Fj _ t
d_ﬁ (r)..._ e ﬁ /' f 2 E 3t)

(& o

{(17)

(from now on we indicate with superscript +(-) gquantities evaluated-
on the outgoing (ingoing)brancheS'of'the Rutherford trajéctory) .

In the above expression o, 8 are the Euler angles that specify
t2)
the orientation of the target's summetry axisﬁGjSs.therintrinsic

quadrupole moment of the target,PZ(x) is the Legendre polynomial’
+ :

of order two and Oczf)are the angles subtended by the target symmetry
axis and the line connecting the centers of the two nuclei. The
expression for cos X (%) is

: _ T , T o '
c# xt(t) -.-_c-w/sw? €) +'MﬁM§(§)m("“ fe(ﬁ)) (18)
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R z ‘
where 'éi(t)f ?%Z (t) are the spherical polar angles that determine

the orientation of the line joining the centers of the colliding
nuclei. Finally t (r) and t+(r) are the times at which the distance
2 2 S .
between' the centers is r “for the ingoing and outgoing branches of -
the trajectory, respectively.
Using eq. (17} in eqg.(l6) we obtain : '
< y ; -
U (r} = ____..___...._. 1 ( fd“[%f&lﬁg(fasx(j (H)-x-,_
(. 20

b4ev?

- 'tcr) o
xeﬂp[_é_#j _é__é_?___e_ P(q:xc-b))dt )x (19)

"R P Lé) 2
- X
I.T 1—“‘
< dd( j/)iv\f’dﬂ L8
Ji g e Dlos X0 cl‘t')
X eJﬂ?Lf-’—jim 2ti%*) (i(- ; ) ]

where the summation above has two terms; one corrésponding to the
ingoing (~) and the other one to the outgoing(+) bréﬁch of the f;g
jectorf. I+ is interesting to remark that in the liﬁit of small values
of the coupling, eqg.(19) leads to (see Appendix)

— (2, @) o et 7 IR
U,Q (r).z _ o b {{ B (,ga T) :’Qa_ﬂd. (7) J.l.q?r? +

' 2,2 _ T R l‘ |
S e

2 . | - 2,2,
where '7 =(2122 e” /Av) is the Sommerfeld parameter and a=—=— is half
) _ 2E :
the distance of closest approach for head-on collision., The above potential’

is identical to the potential of Baltz et al (eq.(8) of ref.4)) .However

we do not expect that for large. values of Q(z} the potential U (2%r)

3
to be a good approximation to ﬁq(r)j Physically this means that in -
taking the lowest order approximation we have neglected multiple
Coulomb'excitation effects. This is clearly seen if we consider the ..

type of approximation made by Baltz et al. These authors replaced .the .

full interacting Green function, G, by the Coulomb Green function Gp .
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Since G is given by the series

o~ , ~ ~ : _
G = G +4, Vo4 + Go'Vﬁd'V_Ga-t‘--- 7 (2
where_V=IQVQ; the approximatibnt@f_ref,4) amounts to neglecting:
%ﬁ% A%ﬁ%%@(%,... » which are the terms containing multipléf..
Coulomb excitation effects. ' |
To illustrate this point we have evaluated ﬁg(r)_for
R=()(heédfoﬁ collision). In this casé the radial dependence of the

.potential goes as r--3 and eq.(20) may be written as

. . z 3 —
(]Ll) - ¥ %u @ =
r) = - - ' .
o (NN ey e (22)
. where
(2)
| 2@ et |
-L{'L - v W oovat _ (23)

is the quadrupole strenath parameter.

Writing _ _

| | o,
- Vig,) re W) & 0
UO“”) = - 7 r3 o (24)

‘we have numerically evaluated bj(})and u)f?) The results are shown

(2}
in flg 2, together with the approximate form CJ(GL) -LU (YJ W)

We notlce that for small values of q2 the potential
E,ft) is almost purely imaginary and very close to 2)

N
o

(r)_ As g,
increases_thé'real part.of-ﬁo(r) starts developing and becomes larger'
in maénitude'than the imaginary. part. However ‘its values will still

be less than 1% of'the-prédominant Coulomb potential for a,typical‘
heavy ion collision. The imaginary part of the potential starté-departing
'trom 50(2)(r) at'q23 1;2 ;, wWwhich corresponds to the onset of multiple

Coulomb excitation y and at large values of'qz(ng 3} it is seen to

- be quite different.



[}
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V - CONCLUSIONS

In the present work a semiclassical method_has been
developed to calculate contributions to the optical potential in
the elastic channel resulting from the coupling to other opeﬁ channels;
Our eqg.(1l2) for the effective local petentiai has been shown to lead
to an expression involving ;he;semicléssical amplitudes of eq.(1l6).
Given these amplitudeé one is able, in principle, to evaluate the .
potential ﬁl{r)‘which accounts for the effects of the coupling to
other channels. We have applied the formalism,developed‘here~to_the3-,
specific case of Coulomb excitation. The émplitudes-ai(t) were
evaluated in thé-sudéen,limit~andua ¢losed expression for the
potential was:&nrd{ﬂn~asﬂ$tanwith small deformation. This eXpression ..
was found to be identical in form to that of Baltz §£_§l4) . Since. .

our method involves no other assumption than those implicit in the

semiclassical limit, and it was found to work correctly in this lowest

"order comparison with the quantum mechanical calculation discussed

above, it is therefore expected to give adeguate results in the general
case of strong guadrupole coupling. As we have mentioned in the text,
the Coulomb excitation amplitudes needed for the calculation can

11)

easily be obtained from a widely used computer code

Further applications of this semiclassical method are

presently under way.
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Appendix
Weak'coupling limit of Eg. {(19).

By expanding Eq (19) to lowest order in Q(z) we obtain

2> . T
“ T B d e S [Aingde x
: | U!m_.._;,_?_zmg zf U feip
¢ 2 (r) e

Now we express-the angles xi(tf(r))land' % (t) in terms of a and
R as 1nd1cated in eq. (18), and we choose a coordlnate system such
that the Rutherford trajectory lles on the XZ plane and it is .

bisected by the Z axis. We then obtain after integrating over

o and R.

r *t¢)

: .- . .( -2) |
xz [t'if B.[wce cqm) -6 &))J A-2)

which may be rewritten in the simpler form

(2. Q(aé fdt [m(t?(r) b)) (a3)
40 v’ 7 r i)

U(H:
1

where ¢ (x) = 8+(E?(r)) = 8_(?j(r)), and now §(t) sweeps the full
Rutherford trajectory. '

Eq. (A-3) may be expressed in terms of orbital integrals as follows
(2>

:q : (if G € ) = at
| | - U(H-———-L T 2m9u R

- P

B8d)) (A-4)

+ (2 wz 90‘)*’)[&“: NES
-2



‘Since we are over a Rutherford trajectory, all quantities may be

given analytically;

c':a?ﬁ_cr) = (A-5)
| i+ A/ 7*
ﬁ;- Bebee) _ | [ ! .
Ne rPw ,zwz, 1+ a?

. (f (w)ﬂme/w T e
[Tat 4};1 B (/___.(%)Am/m_,(%)) ey

ce Fi)

All guantities appearing in eqs.rA—5,6,7 are defined in the text.
Substituting these equations into A-4 we obtain, after ordering

in increaring powers of r

U = -Lz_&i’e...—z[( s
y) SohY” 2([’*?)
(20)
j /fc—/m--—) d)»_? +
TR
SN AP +
()" ar?
24 L

W)
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FIGURE CAPTIONS

Fig.1l
‘Terms contributing to the optical nuclear potential: (a) ingoing wave

(b) outgoing wave.

Fig.2
Exact , %4=0, optical potential of eq.(24) vs. d,

Also shown is the lowest order potential of eq.(22) .
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