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"ABSTRACT

A reinterpretation of the Nambu - Jona =~ Lasinio
self~consistent technique allows, in the Grbss—Neveu modél , for-
‘interpreting some recent works on the spontaneous mass generatioh
in a unifiedlway and alsc for the extension of the computations . |

te a higher order.




1 - INTRODUCTION

The study of spontaneous mass generation, that is,of
the appearance of massive particles in theories described by lagran

gians with only dimensionless parameters, initiated by the Landau

(1) (21

school , has, as a landmark, the work of Nambu and Jona-Lasinio

who introduced a technique of self-consistent computation of the
mass as the effect of a spontaneous breakdown of symmetry. This is
made possible because renormalization introduces parameﬁers with
the dimension of mass. A well~known example is the work of Coleman

(3)

and Weinberg . An important contribution to the methodology of the

(4),where

problem was done in the classical paper by Gross and Neveu
a model involving a quartic fermionic interaction was solved in two
dimensions and in the limit of large number of components N, and

shown to exhibit the phenomenon of spontaneously generated mass. A

(5) 4dded to the understanding

of the problem by stating some more restrictive conditions for the

_ (6) )
existence of a generated mass. Recently Abarbanel , with a different

paper by Frishman, ROmer and Yankielowicz

approach, suceeded into extending the range of validity of the
solutions to higher values of the coupling constant, and, in so doing,
discovered a second zero of the B-function (the Callan-Symanzik: .

{7)

function'’’),a fact thét,connected to the analysis of ref.(3), is

of great interest, as it raises suspicion as to the physical meaning

of the computed mass. Finally, Muta(s)

has shown how to obtain
Abarbanel's results by applying the classical Nambu-Jona-Lasinio
self-consistent method to the Gross-Neveu model, a nice, if formal,
completion of the original program, which was marred by the fact that
ref.(2) used the Fermi lagrangian, known to be unrenormalizable.By
the end of last year the situation was the following: the Gross-Neveu

model, with N two-component fermions,was believed to present

spohtaneously generated mass in the limit N+~ ®, Two classes of




3.

3‘
computation existed: one, essentially perturbative, perfomed by Gross

and Neveu, and other, self-consistent, performed by Abarbanel and by
Muta. It was not clear whether they were computing the same mass ,

as the f~function éf Gross and Neveu had only one zeré(at the origin),
whereas Abarbanel's one vanished for still another wvalue of the
coupling constant. They coincide for small values of the coupling
constant but are very different for larger ones: there, Abarbanel's
results have been considered to be better on acdount of its being
"less perturbative", relying as they do on ideas of self-éonsistency.

| In this paper we intend to clarify some points of this

problem, as well as to investigate.whether the-generatéd ﬁass survives
the addition.of corrections of o::ciler'm—l . This is done by reinterpre-
ting the Nambu-Jona-Lasinio self-consistent method in terms of a
condition on the tadpoles of the Gross-Neveu model with_a symme try-
breaking linear term, made to vanish in the end(g), and reveals a
simple way to computé higher'order correétions. Wé find out that thé -
results of Gross and Neveu and those of Abarbanel are just consequences
of different renormalization procedures, and so describe the same
physical effect. Introducing thé l/N corrections, the.spontaﬁeously_
generated'mass still appears, és well as the second zero of B .

The dimension of the composite boson operator ¥Y (see below) af

this second zero is canonical, thus satisfying the requisites of ref,
{5) . Of some interest is the fact that the Nambu-Jona—Lasinio method,
“in Qu:_version, is essentially perturbative in all but the last step ,
which is the solution of a transcendental equation. We consider this
to be an improfement.

In section 2 we describe the Gross-Nevey model, their
results, and the new results of Abarbanel. Section 3 presents our
method of computation and shows how to obtain either Gross-Neveu's
or Abarbanel's results. In section 4 the.next order caiculation is

performed, and comments are made.



2 - THE MODEL ‘4<;

it is a sort of Fermi interaction in 2-dimensional -

space-time.The lagrangian is (imaginary metric)

2

L =YY 4 17 (Vvy )2 (2.1)

where 9. is a dimensionlegs (in 2 dimensions) coupling:COnstant.
The fermion field Y is, in fact, a multipiet of N fields, being

represented by a column of ZN.elements. It happens to be rengﬁmﬂizable
and, in the case.N=l ; 18 equivalent to the Thirring model(lo).

A very ‘interesting feature of this model is that the identity

Zl7] = ‘-°“5"J [d¥][dF] exp i[-Tpov + ""9”"’”*‘7“’“""]

- mst’J (d¥]1d¥](dadexp i [- Fray - %"z‘fgow’”??"*‘"".'ﬂ.'.

allows one to study its Green functions using the lagrangian

L= -Fray -L¢ + g ¥ve 2o
where the composite boson operatdr 0,.' equal to %?ll" at thé.
"classical level”, appears. It is this operator that, by develoéing
a nonvanishing vaccum expectation value, will provide the parametera
in terms of which the spontaneous breaking of symmétry will be |
measured. Gross and Neveu(4)compute the effective potential(ll) of:
(2. 2) as a function of o, detect a minimum a o # o and, proceedlng'
in the usual way, observe that the corrected fermion propagator has'
a pole at p = —m2 , with |
27

- —

2 2z A* o
m =M € (2.3)

¥ being a parameter introduced by the renormalization and A being

the renormalized coupling constant, quantities to be described in



all detail in our unifying approach of next Section. The B-fﬁnction
of Gross and Neveu is given bY‘
3
' A

showing that the model is asymptotically free (as it éhould(4)).-

The correspondihg'quantities.in Abarbanel's camputation
are(lG)

' , m o | .
4+-4%%: In U L = - Ef;— ’ ¢ . _
I e e

a mass-gap equation that replaces eq. (2.3), and a 8-function that,

though agreeing with (2.4) for small ) , is markedly. different for
large values. In fact, '

- ' (2.6)
¥

LX) ~ -

for A*~nm o, exhibiting a new zero for B, absent from (2.4). Another
importante feature éf Abarbanel's solution is that the anomalous
dimension of ¢ vanishes at the second zero of f. If this were not
the case, no mass generation would be possible, according :to_.
Frishman et al.(s) We will now show how to get either eq. (2.3) or
eq.{2.5) , depending on how we renormalize our theoryﬁ.the results
of Gross and Neveu will be obtained when the counterterms of  the’

symmetric theory are used 12

, whereas Abarbanel's come out in a
renormalization that, in a sense to be made precise later,"follows"

the breakdown of symmetry.



3 -~ LARGE N (one-loop)COMPUTATION

We will be working with the lagranglan of eq.(2.2) .
To study the symmetry breaking of the theory, we add to it a driving
term which breaks the symmetry and, simultaneously, shift the o
field by a constant v , getting |

- Zo S » Fy -
L:-z\rr-w“z—(v-vwzlﬁr rrle-ses )

where the renormalization constants are defined by the following

relations with the unrenormalized fields and coupling constants :

Wc = Z \P
Y, '
0,-v, = £, (0-v) (3.2)
Z; X = ZZZ!?N gio ’Ln-z

where p is a parameter with the dimension of mass and n is the
continuous dimension in the sense of dimensional'regularization(l3).
Isclating the'counterterms, one writes
— s - _
= .'°‘Ph"a"l’-if“'-'\T)\+i[‘-1 YYie-v) +co |
on (3.3)
_ﬁr-a"\?' L(c s} + % _‘_:,wa-a)

where Z=]1+z and s0 on. We will look for solutions with spontanecusly

broken symmetries by examining the possibility of havinga nonvanishing

vacuum expectation value of ¢ when ¢ 1is put equal to zero after
the computations are done. This means we must put the sum of all
tadpoles with a o-leg, equal to zero, thus getting an equation for
v ; if this equation has nonvanishing solutions for ¢=o , then we
(9)

have spontaneocus breakdown of symmetry

The Feynman rules of (3.3} are (see Fig. 1)



Fig. 1

(3.4)
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where we introduced
1-n .
DY T ,
a = —-}1 U ' (3.5)
' |

Let us work at the one loop level, what corresponds'

to the limit N»~ ,Then the tadpole eguation, given in Fig. 2, is

Fig. 2

- '
Aoy ? l dg -ip . (3.6)
¢+ Vv + v - L2 M NTr g —¥:4+a _ g . .
_ ‘30, N _ .(_3111)";_ q_z.; ar o

Pérforming the "integration, one has -

o
C"“r""'acr“'—k—: I_[.l;_?_'n o
2w (%.)“7;' (3.7)
}I.

2 ‘
T}
A .|.5, - A T(“—T = 0 ' (3.8)
v 2% (i) 2
P‘l
AS soon as Zd is determined by some renormalization prescription,

(3.8) will give a -as a function of the coupling constant A .This



will be our mass-gap equation. - 8.

Before doing that, let us analyze eg.(3.6) in a

. =n '
different way. Putting c¢=0 .and multiplying by —L-}L1 ; one gets
T g.m - d . ’ : o
=ii-F +Q
-a = }_’1 TY'J __%.. J{m_z_ + Q B'O'
2ni ¢+ a -
and, omitting the counterterm,
N q. 1
- a - ..—.S% Trjdq - . |
(2wl - g +a o (3.9)

This is equivalent to the equation depicted in Fig.3, valid for

N-»w» , which reads

Fig. 3

2
Lip) = N3, T"Jd‘i. 1 o (3.10)
In fact, as Z(p) is a constant (Z(p)=-m) , (3.10) goes into

(3.9) for a=m .Equation (3.10} is the Nambu-Jona-Lasinio self-

(2) (8)

~consistent condition ,and is also the starting equation of Muta

We learn in this way that a is equal to the electron mass(13).
After this dig;ession,let'us.go back to eg.(3.8). It

is necessary to determine ZG .We do that in Ewo different ways.

Consider the one—loop'approximation for ﬁ?',-the.two-point proper

Green function of the field o . It is represented in Fig.4, and

is given by

Fig. 4

% = - ) 2'"Jd ng(h-gl+na
¥ 4 Lg'+ a’)[(h- qlz_+ d']
1

2 2

n 2 . :
_—,_tTian—nl'lP(‘l*%).Jd‘ : =2
o 5 o [x(eae -;{;] -



First, we determined z by the condition
. g

{2) &
T;V(ﬁ:rz) + (.?..u) 60‘ = 0 _ ._(3_12)_.

[

which gives

- X T(q1— » - 4 o (3.13)
e =0 =10 (1--;)[&:.\: by B

z n
T (4-x) 4+ -ﬁg] z,

Putting this into (3.8) and using

9 -y
Sh“% 1+olx ~ox = =12 f44+“&m—i——@-

one gets

T = e &y AL (3.15)
'1+q_—z .2 - l" . )
¥ J1+QT°‘L+4

which is Abarbanel's mass formula.

If, instead,we use the renormalization prescription

“ A 2
5 2 ' ~
—'Eliz‘n(‘l-’“) ;H"(‘I-Q)Sdﬂ’- ! ' (25) 30’ “Or

(xt1-2)]"7 C (3.16)

0
that is, determine zZ. by the condition analogous to (3.12) but for

‘the symmetric theory (a=o) , then

x 4 ‘Y‘U. =) .
oA om by T-2) (3.17)
do T “)S T -t

0
Putting this into (3.8), one gets

a =y expl-2m/%) (3.18)

which is Gross-Neveu's mass formula.

It seems plausible to us tha£ the renormalization
prescription (3.12) is more adequate to describe the theory when
the symmetry breaking.is large. As this is the only difference between the two

approaches,we think that Abarbanel's result is the correct one for finite A values.



10.

4 - CORRECTIONS OF ORDER 1/N (two loops).

No special difficulties remain to extend our COmputation
to higher orders. This is not so if we look at the problem from the
point of view of ref,(6),_(8) or, for that matter, (2). No obvious
scheme of sucessive approximations is apparent, there. Within our
strategy, however, things are quite clear: it is just a matter of
adding, to the tadpéle equation, tadpoles of higher and higher order'

in the loop expansion. We perform here, in detail, the tﬁo—loop

computation.
The tadpole equation is then given in Fig. 5,
Fig. 5
that is,
A+B+C+D+E+F=o0 (4.1)
where
t 3 Tu-3) ;
- F) 2
A = wnlLWG'ﬁ—FET:% (4.2)
[
. z.
B = (2Miv _ (4.3)
o,
c = lam_l-ac.v' : - (4.4)
' 'A.-“ l" _?- T
nn-NiTAw T(1-2
D = 3 T (4.5)
(2w)'N a '\ |
n n
N2, & LW a n-
g = AMjaf 22 nlon) v, 2 (4.6)
la’}’ 2 '
._:,l_ n m _n
F= AN 3 )uf tintan %) (4.7)
A (a*)"2

To fully write the tadpole equation one needs, there-

fore, the values of Z, to second order, as well as 23 to first order.



11.

The counterterm z is not yet necessary.

11.

Z, is determined as explained

in Fig. 6,
FPig. 6
that is,
f}lzmq i.'ii% T 2 ' ('ﬁi"-}“ =
/ U-3) + 2y v - (2 AT T
N S AR |
giving
%
= TN (%)"’% (4.8)
The counterterm z is determined as explained in
o
Fig. 7.
Fig. 7
This gives
22 _
l2'ﬁ§130_= nn-niwAT-3 I +%JLT'(1 —JI +
(]
20T n(n-) TU-2) (4.9)
enf N (L)% o
where 4
1
1= gdx 4 I (4.10)

1-
b [%1-1- zu-z;]

Inserting (4.8) and (4.9)

(4. l), one gets, for

o hiw =.T“;_

()"

c=0o,

(21{)1 - n{n-1)iwA

-1-1

in the tadpole equation

-0 nin-1 l F -1
(-3 1 - (TQF)_“ I

T‘“"'!'z')

[g)z-n (4.11)

Caiaend TU=D atenidk
(27)* N (s5)' "3 en)’ N
» 2 _—
3 nln=NiT Iy T(i-3) ni’ﬁ'2 A
{zuR N (%’;)““ (27) N

T'z(1-z-';"] =0

&



12.

This can be put in the form 12.

nfirﬁ%‘r\(q_ﬂ)[—i__ _(n_4)l - ﬂ““£T2(1-%') ( 4 I :
Tho(e)E (2uFi N gy

(4.12)

x>

2z,
= {(2uyt

<)

0

1

-9 e o M-;‘:iw“*lﬁ—.”m &) =-v-ax

4]

where

l’4+4 I d“’“ﬂ’ -4 (4.13)

[1va g
oA

The tadpole equation, eq.(4.12), is, therefore,

4
A ¥ _z«r.w( m

TR - =0 way
whose sblution is
_  2TN _ 2
X = A (4 4‘*N) (4.15)

This is the cheoice of sign that reprodﬁces, for N+» ,the one-loop

result. Therefore, our mass eguation is

1ey & a In {1+ 4 7; - 2
/4+4Qz+1 At

=t
P4
|
~
+
z|~ _
-
‘_I
o

Notice that for small a one has

at = M exP[ __“N(. 1+ % *4)] L (4.17)

e _.(“-4) _I = 4‘(1—-"‘2-39‘“%,—(“-1)[4*H-%]deﬂm(%i.,.x“_x)j=




13,
satisfying the condition that the generated mass should vanish for
vanishing A. On the other hand, a become very large er_l?_near Te

In fact, a’/u? » « for S _ L .
- - 4,18
¥ o=wn(1ed - 1) o e

which is close to mfor large N.

The RB-function can be computed from (4.16). One finds

Pu)_:__f_ p +—1-—--2—i-——)m4“4£" -4 ] e
27 p "“‘"?Tz 4+4~F,-f4
wherefrom it is clear that, besides the ultraviolet-stable zero at
the origin, a second zero exists at precisely the value of 3% given |
by (4.18) . This seceond zero is, for growing ) , an infrared stable -
one. In order that these results make sense, it is then necessary ,
as shown by Frishman et alflS), that the anomalous dimension vanish.

That of the fermion field is trivially zero, as Z egquals one,to this

order. The anomalous dimension of ¢ is given by
L) = g2 In(trge) . (4.20)
L ,L a'f‘

which, taking (3.13) into account,is shown to be

2T N ¥ 1445, + 1

J a " F .1
Fq,(li) =—-1—z-[4'—2%2-44+49—, I ]“"E -1 I[H_ 2 a _ j,,,\““"gﬁu 1]
P ¥ _

and, in fact, vanishes at the second zero ocf B , as so does the
last factor of its expression,

Some comments oW these results are in order. First ,
the remarkable simplicity of equations (4.12) and (4.16), which are
results of a two-loop calculation, hints possibly. at some other |,
wiser, method of analysis. Second, the introduction of the 1/N

corrections arose no new complications, as compared to the one-loop



14,

result. However,.something must happen, because as we proceed'towards
smaller values of N we will reach N=1 ,where no mass generation |
occurs, the model being then equivalent to the Thirring model, One

possibility is that something new could appear when Z{the fermion

wave-function renormalization constant) become nontrivial. We are
investigating this now. | |

It is 6ur pleasure.td thgﬂk ﬁarcelo Gomes, Josif Frenkel.
and Adilson Silva for advice and discussions. One of us (KF) thanks

FAPESP for financial support.
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FIGURE CAPTIONS

Feynman diagrams,

The tédpole equation:one loop

Diagrammatic equivalent of eq.(3.10}.

The o-propagator: one loop.

Determination of %

Determination of
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The tadpole equation:

two loops.
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