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-INTRODUCTION

The problem of convergence of the two~body effective
(1)

interaction expansion has been extensively investigated in
the last few years. Shell model calculations of the spectra of

mass 18 nuclei, including terms up to
(2-6)

3¥4 order in the expansion
+ have been performed and no definite conclusion about  the
convergence of the expansion could be drawn. _
'Calculation.including'avefage 4th order te:ms(7) has

also been performed~and'the contributions from these terms were

d rd order terms. The ex-

found to be a_s‘.J'_I-npo::‘tant_a.'sr'zr.1 and 3
pansion seemsﬁto be slowly convergent and it might even be only
aﬁ asymptotic exbanéion. The most important 2nd order term .
is the core polaiization (Fig. la). Addition of a two~body
effective interaction, .derived from the two~-pion-exchange three-

(8)

nucleon potential ; to the nucleon—nucieon interaction which

enters in the two-body'effective interaction expansion, produces

(9)

an effect which is opposite to ﬁhe core polarization but
its size is small,

The pfoblem_of convergence seems to come from the
tensor component of the nucleon-nucleon interaction which is’
too strong. In fact, diagrams to-which the tensor component
contributes exhibit‘slow convergence with respect to the exci-
tation energy of the intermediéte states so that states up to
at least 10 hﬁrexcitation energy must be included in the inter- -
meaiate'states summation (hQ is the separation enercgy of the
.harﬁonic ogscillator levels). This " is the case with

the core polarisation diagram(lO).



The calculation done by G.Bertsch(z) used as nucleon-
nucleon interaction the Kallio-Koltveit potential and the cal-
culation by E.A.Sanderson et al.(4) used the modified Sussex

(4)

matrix elements which are obtained from two nucleon experi-
mental data. Both calculations include 2nd order terms only.

The D-~state probability of the deuteron, Py, is 4% for the Sussex
interaction.

The other calculations‘3’5’6'7) used the Hamada~Johns~-
ton or the Reid soft core potentials as nucleon-nucleon interac-
tion.  Both potentials give Ppa6.5%, thus their tensor component
is stronger than the tensor component of the_Susséx interaction.
One might then expect that this last interaction provides an
effective interaction expansion with better convergence proper-
ties(4). |

The Hamada-Johnston, the Reid soft core and the Sussex
interactions reduce to the one—pion'exchange potential for large
distances and until recently were considéred the bést phenome—‘
nological nucleon~nucleon interactions. However, a nucleon-
nucleon interaction derived from field theory has always been
sought, The momentum space one-boson exchange potentials (OBEP)
proposed by Holinde an& Machleidt7wamaderived from field theory

(11)

and have a weak tensor component., The HM1 potential (which

was their first version) gives PD=5.75%; while those proposed

(12)

more recently
{(12)

give smaller values for PD' According to

K.Holinde ' PD has to be restricfed to the rangé 4,5-5.5%,
which rules out the potentials mentioned.before. The OBEP
reproduce the nucleon—nucleon phase shifts 5etter than any other
existing nucleon-nucleon intefaction; They therefore provide

the best interaction presently known.




In this paper, a shell model calculation of spectra
of mass 18 nuclei is performed using as nucleon-nucleon interac-

(11’12). The

tion the OBEP proposed by Holinde and Machleidt
effective interaction expansion for such nucleon-nucleon force
stands a better chance of convergence_since its tensor compo-

nent is weakér than the Hamada-Johnston or Reid soft core tensor
components. The calculations were done using the Brueckner
reaction G-matrix bare matrix elementS'only"and bare plus core
pola;isation (Fig. la). Cbmparison with results of'calculations.
using the Reid soft core potential shows that indeed the effect

of the core polarisation term is smaller for the OBEP, mainly

for the low lying states of 18O and 18F. Nevertheless, the
effect of the core polarisation term is still large. The addi-
tion of a two-body effective interaction derived from the two-
pion exchange three~nucleon potential should reduce that effect(gi
as already mentioned.

(3,4r5r7r10'15), the spectra are very

As is well known
much dependent on the energy gap, C, between the single particle
energy spectrum of valence and occupied states and the single
particle energy spectrum of unoccupied states which are used
in the calculation of the Brueckner G-matrix. For the OBEP
such dependence is smaller than for the Reid soft core or Hamada-
Jonhston potentials.

The calculation of the G-matrix elements in the harmo-
nic oscillator (H.O.) basis was done using thé Barrett~Hewitt-

(13) fethod. a brief description of the method and of

McCarthy
the OBEP are given in section 1. The results and discussion are

presented in sections 2 and 3 respectively.



l) CALCULATIONAL PROCEDURE

The Barrett-Hwitt~-McCarthy method(l3)

for calculating
the G-matrix elements in a H.O. basis is simple and provides an
exact treatment of the Pauli operator Q. In this method a refe-
rence reaction matrix, GR(Q=1), is calculéted first and the
G-matrix is obtained from it by matrix inversion. The expression

R

for'the G-matrix elements in terms of G matrix_elements (in

the H.O. basis) is

) 2w - PR 2Ty A
bpglw/ T Lgy i . § TR _EUJ .GUCE(.{‘U_)' - | .1)

The greek indices label 2 particle H.O. states, the
¢'s being the H.O. two-particle energies solutions of the equa-~

tion

Hy ¢4 = £4¢ | | (1,2)

the states ¢, being two-particle H.O. states and HO the 2-par-
ticle H.O. Hamiltonian. | |

The parameter w in Eg.l.l is the so called starting
energy and as one can see from that expression a shift of the
unoccupied single particle spectrum (relative to the valence
and occupied spectrum) by an amount C can be accomplished by
redefining w as w -2C. |

‘The matrix élements of GR_in_the_H.O. bagis are given

by:




where the energies Ei are the eigenvalues of the Schr&dinger_
equation for two interacting particles'bound in the H.QO. poten-
tial H_:
@]
= {1.3)
(V is the nucleon-nucleon potential). The coefficients bia are
the overlaps of the eigenvectors wi with the H.O. two-particle
states ¢d (Eg.1.2):
bia= <¢i!¢q>
The states wi and ¢u can be decomposed in partial
waves and the radial parts can be transformed. to relative and
éenter of mass coordinates. The'coefficiénts bia can then be
expressed in terms of overlaps of the radial parts of wi and
¢u in the relative coordinate. Given these relativé coo:dinate
overlaps, the G-matrix elements (1.l) can be calculated using
the computer program written by Barrett, Hewitt and McCarthy.

The OBEP are in momentum space and have the following

structure:

{e}
Q
@ ™

Vg ',q ) ~.8 — ;@ =m, 0, 0, §, p, ©, ¢ mesons,

Q
-~
[ =]
S0 e

> S : _
where g . and g ' are the nucleon vector momenta,



k? = (Eq,«-Eq)2 - (g '-q)?, Eq=(M2+q2)l/2 (M is the nucleon
massi, g9, are the coupling'constants and Fa are the form fac-
tors which take into account the extended structure of the

nucleon and have the following form:

A, . o
F, =~ :
AZ-k? |
a |

Aa are the cut-off parameters. A small A'i'T means a strong

suppression of the one-pion exchange potential in the inner

(11)

region. The HM] potential has different values of A for

dlfferent mesons and has a value of 2500 MeV for A The poten-
tial named HM3A(12) has A=1530 MeV for all mesons and EM3B (12}
has Aﬂ=1265MeV, while for all the other mesons A;lSBOMeV. B

As the OBEP are in momentum space, the Séhrgdinger ' P
equation (1.3) has tb be written in momentum representation so

that the resulting equation to be solved in the relative momen-

tum is the integro-differential equation: @n,(rn of reference 14)

[+2]

h® ._.d* | A4 o oSd _
W P " Ep) ,sz(p)+2 OdPPPVEQ.{prP)aQ’Sj(p) 0
' 2
where g-= E%__ The coupling occurs for partial waves 3Sl—3Dl
3 -3
and PZ F2.

Given the elgenvectors al {(p) in relative momentum, it

L8]

is very simple to calculate their overlaps with the relative

momentum H.O. wave functions. e o
The above integro~differential eqguations were solved

using part of a computer program written by W.Clockle and

R.Offermann{14) for solving the triton problem in momentum space.



2)° NUMERICAL RESULTS °

The shell model calculations of mass 18 nuclei spectra
were restricted to the s-d shell and used the experimental single

particle energies of o, 0 Mev, .87 MeV and

®oas/2~ ®1s1/27
60d3/2=5.08 MeV. We used a H.O. basis with hQ=14 MeV. The core
polariéation term (Fig. la) was calculated with intermediate"
state excitation up to 2h only; as we.aré mainly interested in
comparing its effect for different potentials.

In Table 1 the parameters of the HMl(ll), mm3a (1) ana

HM3B(12) potentials are cgiven. The deuteron data are shown in
Table 2. The calculations were done for five values of the gap
parameter C:50.5, 25.5, 17.5, 12.0 and 8.0 (MeV). Figures 2-5
show the low lying states of 18O (T=1) as a function of the gap
parameter C for Reid, HM1, HM3A and HM3B, respectively. The
dashed lines correspond to'the'results for the bare G-matrix
elements only and the full lines contain the core polarisatioh'
term (2hfl excitation intermediate states). Figures 6-9 show the

18

same thing for F (T=0).

The ground state of l80 and 18F {inciuding the core
polarisation term} for all four potentials as a funection of C
are shown in figures 10 and 11 respectively; The dependence Qf'
these states on the C parameter is élearly smaller for ﬁhe OBEP
than for the Reid potenﬁial. In particular, the HM3B potential
is the one which is less dependent on C. |

The dependence of the spectra on C is a well know
"problem. Vary and Yang (iS)'have made an extehsive study of
such dependence for a phenomenclogical potential and concludedJ

(12}

that the best value in this case is C=20 MeV. Comins ~also

indicated that a relatively small C would lead to a faster



convergence in excitation energy of diagrams containing one-

body potential and G-matrix ingertions. The core polarisation

diagram converges more rapidly for Smaller C(G). So all

indications are that a small value of C should be used. A com-

parison of the spectrum of l80 for all the potentials with

C=17.5 MeV is shown in figure 12. In figure 13, the comparison

is made for 18F, for the same value of C. The experimental(l7)

spectra are also shown for completeness as there 1s not much
point in making a comparison with experimental results at this

stage.

3) DISCUSSION OF THE RESULTS

The dependence of the spectra on the energy gap C is
smaller for the OBEP as expected since they have a much weaker
tensor component than the Reid potential. The HM3B potential
is the one which is less dependent on C but still the dependence
is not negligible for the lowest lving states.

| From figures 12 and 13, one sees that the effect of
the core polarisation term is smaller for the OBEP than for
the Reid potential but again the effect is still rather large
mainly for the lowest lying states. The main difference is for
the ground states in which cases the core polarisation effect
for the Reid potential is much larger than for the OBEP and the
inclusion of the core pclarisation term produces very similar
spectra for all four potentials. Before cdmparison is.made

with experiment, one should include at least all the other 2nqonkz

terms which are shown in Fig. 1b-d, -After the core polarisa-




tion term, the 4 particle~2hole (4p2h) term (Fig. 1b) is
the most important of these 2nd order terms and in general the

nd

other 2 order terms (Fig.l-c,d) are neglected even though

(4,18) (these

they have been shown to be different from zero
terms would be identically zeroif a self consistent single-
particle baeis had been used instead of the H.0, basis). The
addition of the 4pzh ferm produces in general a lowering of

the states (2,3)

and the shift produced by this term is in
general much smaller than the shift due to the core polarisation
term. |

The spectra of l80 for C=12MeV are shown in figure
14, The third spectrum showns the effect of the addition, to
the Reid potential, of the effective two-body interaction(g)
obtained from a‘three~nucleon potential derived from the two-
pion-exchange amplitude. The same comparison is made.for l8F
in fig.15. From these results one can see that the addition of
such two-body effective interaction will cause some suppression
of the core polarisation term and the ground states are the
most affected by the addition of such term, |

From the present calculation, it is possible to predict
that the 3rd order terms effect will certainly be smaller for |
the OBEP than for the Reid soft core potential. These results
indicate that the convergence of the effective interaction ex-.
pansion is better for the OBEP but it does not seem strikingly
better as 3rd order terms seems to be still important and
probably also 4th order., The HM3B potential seems to be the
best one as it exhibits smaller dependence on the gap parameter
C, i1.e., it has the weekest tensor component, It also gilves

the best triton binding energy: ~8.00 MeV(lg).
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13. 3

TABLE CAPTIONS

TABLE 1 -~ Parameters of the OBEP, Tmanumbers in brackets are
" the ratio f£/g(11),

TABLE 2 - Deuteron results for the OBEP. The experimental re-

sults are given in the first column.



- 14.

8.7

1530

M1 HM3A  HM3B
2 ' 2 ' 2

) e Aa 9a , Aa‘ % Aa
m|138. | 14.1 2500 | 14.4 1530 | 14.4 1265
'n | 548.5 2.2 2500 6. 1530 | 6. 1530 |
o |712. 1.4(4.5) 1400 | 0.77(6.6) 1530 | 0.77(6.6) 1530
w |782.8|  25. 1300 | 23. 1530 | 23. 1530
¢ 11020. 33.6 1300 | 5. 1530 | 5. 1530
o |550. 5.9 2500 | 8.2 1530 | 8.67 1530
§ {960. 2500 | 4.99 2.88 1530




TABLE 2

Exp. HM1 HM32, HM3B
E, (MeV) |2.22462 * 0.00006 2.224 2,225 2.223
o(fm?) |0.2860 = 0.0015 0.284 0.281 0.277
Py (%) 6 = 2 5,75 5.18 4,70
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FIGURE CAPTIONS

Second order corrections: (a) core polarisation;
(b) 4 particles - 2 holes; (c) and (4d) Hartree~Fock
terms.

Spectra of 180 as a function of the gap parameter Cg
for the Reid soft core potential. Dashed lines and
full lines correspond to results with base G only

and bare plus core polarisation respectively.
Sémg as Fig._llfor HMlsu
Same as Fig. 1 for HM3a,
Same as Fig. 1 for HM3B.

Spectra of 18F as a function of C, for the Reid
soft core potential. Dashed lines and full lines

are the same as in Fig. 1.
Same as'Fig. 5 for HM1.
Same as Fig. 5 for HM3A.

Same as Fig. 5 for HM3B.
The ground sate of 180 (bare+core polarisation} as
a function of C for all four potentials.

Same as in Fig. 92 for the ground state of 18F.

Spectra of 18
to bare G-results and even columns to bare plus core
polarisation. The last column is the experimental
spectrum (only the states identified as two-particle
states(l7)).

O for C=17.5 MeV. 0dd columns correspond
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Figure 13 - Same as ﬁig. 12 for 18F.

Figure 14 « Spectra of 180 for C=12 MeV. The 3rd spectrum shown
for the Reid potential contains the two-body effec-
tive interaction derived from a three-body poten-
tial as explained in the text. The rest is as in

" Pig. 12.

Figure 15 - Same as Fig. 14 for 18F.
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