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Complex angu]éf'mdméntum theory
of the rainbow and the glory

H. M. Nussenzveig ,
Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo,
Brazil

A survey is given of the applications of complex
angular momentum theory to Mie scattering, with specia1
emphasis on the recent treatments of the rainbow and the
glory. The theory yields uniform asymptotic expansions
of the scattering amplitudes for rainbows of arbitrary |
order, for size parameters > 50, in close agreement with
the exact results. The Airy theory fails for parallel
polarization in the primary bow and for both polarizations
in higher-order rainbows. The theory provides for the |
first time a complete physical explanation of the glory.
It leads to the identification of the dominant contribu-
tions to the giory and to asymptotic expressions for them.
They include a surface-wave contribution, whose relevance
was Tirst conjectured by van de Hulst, and the effect of
compiex rays in the shadow of the tenth-order rainbow .
Good agreement with the exact results is obtained. Physic



al effects that play an important role include axial
focusing, cross-polarization, orbiting, the interplay of
various damping effects, and geometrical resonances as-
sociated with closed or almost-closed orbits. All
significant features of the glory pattern found in recent
numerical studies are reproduced.




1. INTRODUCTION

Analysing exact solutions for the diffraction of
" light by an object, Sommerfeld points out in his lectures
on optics]: ' ' '

"The simplest example of such an object is the
sphere. The field outside a sphere can be represented by
series of spherical harmonics and Bessel functions of
half-integer indices. These series have been discussed
by G. Mie for colloidal particies of arbitrary composi -
tions. But even there a mathematical difficulty develops
which quite generally is a drawback of this "method of.
series development": for fairly large particles (ka > 1,
a = radius, k = 2n/2) the series converge so slowly that
they become practically useless. Except for this diffi-
culty we could in this way obtain a complete solution of
the problem of the rainbow, the difficulty of which ~was
pointed out..." '

The purpose of this review is to outline how this
problem has finally been solved, through the application
of complex angular momentum techniques originally introdu
ced by Poincare and Watson essentially for this purpose,
and to which Sommerfeld himself gave important contribu-
tions. These techniques enable us to solve not only the
problem of the rainbow, "that most impressive of celestial
phenomena" (in Sommerfeld's expression), but also a much
more difficult one, posed by an egually beautiful, though
more elusive, phenomenon: the glory. HWhile the physical.
origin of the rainbow was well understood, this was not -



so for the glory, although a conjectured explanation by
van de Hu]stz’3 included some of the relevant effects.

The essential role played by the extension to
complex variables in the solution deserves some discussion.
An early example of such an extension is Sommerfeld's own.
solution of the half-plane diffraction problem. It would
be misleading to view this extension as some contrived
mathematical device: it has a much deeper significance,

. We are accustomed to picturing optics in terms of
real rays. It will be seen, though, that "complex rays",
which represent the analytic continuation of real rays to
complex values of some aSsdciated parameters, play an
important role in both the rainbow and the glory.

Complex rays are already well-known in eptics in
total reflection, where they describe the exponentially
damped penetration into fhe rarer medium, associated with
surface waves travelling along the boundary. This typic-
al wave effect is responsible, in quantum mechanics, for
the tunneling through a potential barrier. It is very
natural, from this viewpoint, to describe diffraction in
terms of complex rays, since diffraction always represents
the penetration of light into regions that are forbidden
to the real rays of geometrical optics.

We begin with a brief survey of the complex angular
momentum theory, as applied to the present problem (Sect.2).
The applications to the rainbow and the glory are described
in Sects. 3 and 4, respectively. The conclusions and some
additional applications to meteorological optics are summed -
up in Sect. 5. '



O

-5 -

2. COMPLEX ANGULAR MOMENTUM THEORY OF MIE SCATTERING

The Mie solution

The exact Mie so]ution4 for the scattering ampli-
tudes when a monochromatic plane wave is incident on &
homogeneous sphere of radius a and refractive index N

s

may be written as follows:

5;(8,8) = % £§1{IJ - Sﬂ(j)(s)]tﬂ(cos 0)

+ [1 - Si(i)(e)]pt(cos 0)} (1.3 = 1,25 i43), (2.1)

where S](B,e)_and .52(8,8) are the scattering amplitudes.

~associated with perpendicular and with parallel polariza-

tion, respectiveiy, ¢ is the scattering angle and B = ka
is the size parameter.

The angular functions are defined by
p. {cos 8) = [P‘ (cos 8) - P~ _.{cos e)Jlsinze (2.2)
v Ly-] o ? g
tv(cose) = - co0sb pv(cose) + (2v+1} P (cos8), (2.3)

where -Pv(coss) is the Legendre function of the first
kind (Legendre polynomial, when v = £ is an integer). The
functions S£'J (B) are é;matrix elements associated with
magnetic (j=1) and electric (j=2) multipoles of order
£, respectively. They are given by | o

2, 20 (8) [ ent £, (%) (8)-tnjenvy(a)

cﬂtq)(ﬁ) ﬂn’_C£(])(s)-Nnj£nfw£(a)

. (2.4)
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' 1,2
and WZ and CL( : ) are the R1catt1—8esse1 and Ricatti-

" -Hankel functions, respectively.

The scattered intensities for the two poiar1za -
tions are given by '

i5(8:8) = |s5(8,0)(% (2.6)

and 5(8,0) .= arg_S_T - arg 52 determines the state of

polarization of the scattered light,

Except near 0 = 0 and © = 7 , the contribution
from t, is dominant over that from p, in (2.1), so
that Sy (52) is dominated by magnetic (electric) multi-
pole contributions.

In the domain of interest ( B >> 1 ), the £th
“partial wave" in (2.1) is associated with incident rays
having an impact parameter b£ given by tﬁe "localiza-
tion principle" ' '

by = (£ )k L (2.7)

We expect that only rays h1tt1ng the sphere (bz < a) are
s1gn1f1cant1y scattered, so that the number of terms. that
must be retained in the Mie series to get an accurate re-
sult should be of the order of 8 . For visible light
scattered by water droplets in the atmosphere, B8 ranges
up to values bf several thousand. This justifies Som -
merfeld's statement quoted in Sect. 1. '




B Numerical calculations of backscatter1n95’6 based
on (2.1) have shown.an extremely rapid variation of the
intensity with B . To resolve the details, the computa
tions are made at intervals 68 = 10'2, with double pre-
cision arithmetic, using 11 significant decimal digits_.
The intensities are also rapidly-varying functions of N
and 8 . Thus, even the availability of Iarge_computérs
has not solved the practical problem of extracting the
information contained in the Mie solution.

. The Wat$on transformation

Complex angular momentum techniques were introduced

to deal with this problem in the early years of this cehtg

ry7 . The Watson transformation starts by rewriting a

“partial-wave series;such'as (2.1) as a contour {ntegral

around the positive real half-axis in the A-plane, where

A= Ly - (2.8)

is now regarded as a complex variable ("complex angular
momentum”), and a suitable factor is introduced to generatke
poles at the physical values of A (integral £),so that
the corresponding residues reproduce the partial-wave o
series., ' o

The advantage of rewriting the series as a path
integral is that the path may be deformed in the A-plane,

and one may then look for paths such that the dominant

high-frequency contributions arise from a small number
of critical points, instead of being distributed among a
large number of partial waves. '



Watson's interest was in radio wave prbpagation R
and he confined his attention to the deep shadow of - a
highly absorbing sphere (the Earth), where the critical
points are complex poles, now known as Regge poles. The
corresponding residues are "creeping waves“8 generated by
incident rays tangent to the sphere, and travelling around
it as surface waves, rapidly damped by radiation in tan-
gential directions. The imaginary part of the poles,which
determines the damping, increases rapidly, leading to a
rapidly-convergent residue series in the deep shadow re -
gion._ The results can also be interpreted in terms  of
“diffracted rays", as shown by Kellerg in his geometrical
theory of diffraction.

In a 1it region, Regge poles, as a rule, are not
dominant critical points any longer. Such a region is ac
cessible to geometrical-optic rays; since real rays cor-
respond to stationary optical paths by Fermat's principle,
they give rise to stationary-phase points on the real A-
axis. These are then real saddle points, which are the
new dominant critical points, and one looks for a differ-
ent deformation of the original path integral into a “back
ground integral", so as to include portions of the as -
sociated steepest-descent paths going through the new
critical points. Fock!0 was one of the main proponents 7
of this idea. He also studied the transition from Tlight
to shadow (“penumbra") on the surface of the sphere, and
showed that it is described by a new mathematical function,
the Fock function,

Applications of Watson's transformation to diffrac-
tion up to this point, including Fock's reformulation,were
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lTimited in scope to only a few disconnected regions of

space. It was applied to the rainbow problem by van der
Pol and BremmerT], who employed it to recover Airy's ap-

proximation, but they did not go any further.

The modified Watson transformation

In 1965, the author!? developed a modified form
of the Watson transformation that can be applied in any’
region of_space. For an impenetrable sphere, one starts
.by applying to the partial-wave series the Poisson sum
formula ' '

0

@Lz+l,.§) = 3 (—)“:}”¢[k,§]exp(Zimﬂk)dk, (2.9)

m==c

U F

L=0

0

where the "interpolating function" ¢{X,x)reduces  to
¢(£+i,g) at the physical points. The term m=0 in (2.9)
corresponds to approximating the sum by an integra113
Terms with m # 0 are associated with paths that wind
im| times around the center of the sphere.

Making use of reflection properties of the inte -
grand, one can rewrite (2.9) in terms of integrals over
the whole real axis, which are then judiciously deformed
into the complex A-plane. Different deformations are
employed in different regions of space. They usualily. lead
to background integrals and to residues at Regge poles ,
with interpretations similar to those given above. Finally,.
one must consider the transitional domains between dif -
ferent spatial regions, where diffraction effects appear.

We refer to a previous‘survey14 for an account of this work.
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The method succeeds for an impenetrable sphere
‘because of the rapid damping'of the surface waves as -
sociated with the Regge-pole contributions, Thié damping ‘
is determined by a puﬁe1y'geometrica1 property, the »é
curvature of the surface, which gives rise to radiation |
as the waves travel around it. |

‘The Debye expansion'

If the sphere is penetrable, the ‘'waves get inside,
Teading to resonance effects with much weaker damping :
Correspondingly, many Regge poles are Idcated close to.
the real axis, spoiling the rapid convergence.

In order to recover it, the solution must be re-
written in terms of surface interactions. This can be
done by a procedure similar to the multiple-refiection
treatment of the Fabry-Perot interferometer': each'spherig
al multipole wave undergoes successive internal reflec -
tions from the surface and from the center of the sphere
(which simulates a perfect reflector, converting incoming
waves into outgoing ones). The resulting expansion was
employed by Debye15 for a cylinder, so that we call it
the Debye expansion. For the S-matrix elements in (2.1),
it is of the form "

(2} {2)

| (1)
(g - 20 B oy fe BT R 19 () (0

S = + _ T :
£ : !},181 22 r (1)[8} r (2}(q)_ 21 12
£ £ JN S ,
P P
p-1 _ C. : _ _ :
AR o (2.10)

il
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where

) 2], ) j |
o; = &z (a1 /e Haﬂ.%1”’ (2.71)

and Trs(J) s Rrs(J) (r,s = 1,2) are spherical trans-
mission and reflection coefficients between region 1
(inside the sphere) and region 2 (outside the Sphereo..
They are given by expressions similar to (2.4), except
that they 1nvo]ve";£tl’2](al instead of y,(a) (i.e.sf
travelling waves instead of standing waves inside the
sphere). ' |

The corresponding Debye expansion of (2.1) is

S;.p(8:8) ¥ remainder, (2.12)

(B,B) = S, .8 '
SJ(B ) SJ,O(B )+ Js

I 1=
e

P

is associated with direct reflection from the

where Sj o
., the pth term of the Debye expansion ,

surface and Sj,p
is associated with transmission after (p-1) internal re -
flections at the surface. Since_lpjl < 1 , we can ‘euen
let P > = in (2.10) and (2.12), but the above form yields

the remainder after P terms.

. We can now apply the modified Watson transformation
to each term in {2.12). * Since only surface interactions
are involved, the corresponding poles in the A-plane,which
we call ReggeQDebye_dees, are all associated with rapid-
ly-damped surface waves, so that we get rapid1y—convergent

asymptotic expansions for each Debye term]G.

On the other hand, |pj(£;s)1; as defined by (2.11),
is approximately equal to the Fresnel reflection coef -
ficient at the corresponding impact parameter. (2.7),which
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is fairly small below the "edge domain®

1/3 1/3

B - cB <L < B +cCcB ,» C = F(1). o (2.13)

Thus, when the dominant contributions to (2.12) do
not come from this domain, the Debye expansion converges
rapidiy. For water droplets, at most values of 8 , . we
can stop at P = 2 in (2.12). A conspicuous exception,as
will be seen below, is the glory (neighborhood of & = =}.

Results for penetrabTe sphere

For each Debye term, the critical points in the
x-plane are Regge-Debye poles and saddle points (real or
complex) associated with background integrals.

A real saddle point & in the range 0 g A < B
for the pth Debye term corresponds to a geometrical -
-optic ray incident at the impact parameter A/k (cf.
(2.7)}, that undergoes (p-1) internal reflections before
emerging in the direction 6 , so that the Debye expan -
sion also parallels the geometrical-optic ray-tracing
method. For a given p , as the impact parameter ranges

from 0 to a , each domain of scattering angles may be

covered one or more times by geometrically scattered rays.

Thus, for each p , the domain 0 < 8 ¢ 7 1is subdivided
into angular sectors, at the level of geometrical optics,
corresponding to O-ray (shadow) regions, l-ray regions ,
2-ray regions, etc.. Each region usually requires a dif
ferent path deformation to go through the associated sad
dle points. ' | o

- The residues at Regge-Debye poles again correspond
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to surface waves excited by tangentially incident rays.
In contrast with the impenetrable sphere probliem, how-
ever, these waves not only travel around the surface ,
but also, at each point, they may undergo critical re-
fraction into the sphere, taking a "shortcut"™ through
it and either undergoing "total" internal reflection at
the opposite side or being critically refracted to the
outside, to reemerge tangentially as surface waves. For
the pth Debye term, there are p shortcuts. CAn 9=
lustrative example for p=2 is shown in Fig. 1. |

The boundary between two different angular sectors
for a given Debye-term is a shadow boundary, in the sense
that one or more real geometrical-optic rays disappear as
we cross it. The forward and backward directions may |
also be regarded as special boundaries in this sense .
Diffraction broadens each such boundary into a transition
region, and the most interesting effects are found in
such regions.

In the neighborhood of the forward direction ,- 
0 g8 < 5'] » one finds the forward diffraction peak .,
where the intensity is dominated by the well~-known Airy
pattern of Fraunhofer diffraction by a circular disk.

A common transition region is associated with the
disappearance of one rea]lray. In the A-plane, one type
of critical point, a real saddle point, is replaced by a
set of Regge-Debye poles. We call the corresponding
transition a Fock~type transition, because the ampiitudes
in the transition region are described by Fock-type func-
tions. These functions are defined by integrals whose
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asymptotic behavior is determined by a saddle point on
one side of the transition and by a residue series on
the other side; 1in between, they interpolate smoothly
between the two types of behavior. The angular width
of Fock-type transition regions is, typically, of the
order of g~ 1/3 '

The other types of transition regions found in
this problem are rainbow regions and the glory region.
Their treatment, the main topic of the present review ,
is discussed below. |

3. THE RAINBOW
Previous theories

A rainbow occurs when the scattering angle, as a
function of impact parameter, goes through an extremum.
The "folding back™ of the corresponding scattered ray
takes place at the extremal scattering angle, the rain-
bow angle. Thus, two rays scattered in the same direc-
tion with different impact parameters on the 1it side of
the rainbow fuse together at the rainbow angle and then
disappear as we go over to the dark side. This is one
of the simplest exampies of a "fold catastrophe®” in the

sense of Thom17.

‘Rainbows of different orders are associated with
Debye terms of different orders; multiple reflection
renders them fainter as their order increases. The most.
common rainbows are the primary bow, associated with p=2
in (2.12), and the secondary bow, associated with p = 3.
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Descartes' geometrical theory of the rainbow ex-
plained the primary and secondary bows in terms of the
intensity enhancements at the extremal scattering angles
for p=2 and p=3 , respectively; it also explaihed the
dark band in the sky between the two bows (Fig. 2) as a
shadow side common to both bows. Since a rainbow angle
-corresponds to a caustic for the scattered rays, geometric
al optics predicts infinite intensity at a rainbow angle,
as well as zero intensity on the dark side. R

The supernumerary arcs (Fig. 2) were explained by

Young as one of the earliest examples of interference
phenomena: they arise from the interference between the
two scattered rays on the 1it side which merge together'
at the rainbow angle. |

Classical diffraction theory was applied to the
rainbow by Aify]s. He applied the Huygens-Fresnel prin-
ciple to a virtual wave front associated with geometrical
1y scattered rays near the rainbow angle, making an as-
sumption similar to Kirchhoff's approximation: constant
amplitude along this wave front. The result was his |
celebrated "rainbow integral", now known as the Airy func
tion, which plays in rainbow phenomena a role similar to
that of Fresnel's integral in Fresnel diffraction. It
shows.osci11atory behavior on the 1it side, corresponding
to the supernumerary arcs, and it is damped out faster
than exponentially on the dark side. a

Light from the rainbow is strongly polarized per-
pendicular to the observation plane, as was discovered by
Biot and Brewster. The suppression of the parallel com -
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ponent is due to a coincidence: the angle of incidence,
for the primary bow, is close to Brewster's angle. A mo
re detailed survey of the historical development of the
theory of the rainbow can be found elsewhere '
The domain of validity of Airy's theory was inves
tigated by van de Hulst®, who concluded that it is  1i-
mited, by the constant-amp1itude_assumptioﬁ,to B > 5,000
and to |e | < 0.5°, where | |

Eze "eR (3.])

is the deviation from the rainbow angle O ‘He pointed

out at the time that no quantitative rainbow theory was:

available outside of this domain (apart from the numeri
cal summation of the Mie series). -

Complex angular momentum theory of the rainbow

The comp1ex angular momentum theory allows us to

derive the asymptotic behavior of the exact Mie solution

20,21

in a rainbow region , bridging the gap towards lower

values of B and larger | e |

For a Debye term of given order p, a rainbow is
characterized.in the A-plane, by the occurrence of two
real saddle points A  and X" between 0 and 8 in sg
me domain of scattering angles €, corresponding to thé
two scattered rays on the 1it side. When © approaéhes

8p from this side, the two saddle points move towards

each other along the real axis, merging togethe? oy at

8 =8 As & goes over to the dark side, the two saddle

R
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points become complex, moving away from the real axis:
along complex conjugate directions, Thus, from a mathe-
matical point of view, a rainbow can be defined as a
collision between two saddle points in the complex angu--
lar momentum plane {Fig. 3).

It is well-known in the saddle-point method that
each saddle point has a characteristic range, the region
of the complex plane around it which yields the main_cog
tribution to the integral. Within the rainbow region,
the ranges of the saddle points % and X" overiap,
so that the usual method cannot be applied. '

Uniform asymptotic expansions of integrals with
overlapping saddle points were first der1ved by Chester,
“Friedman and Ursell

According to (2.7) and (2.8) and to the relation
b = a sind, between the impact parameter b and the angle
of incidence 6,, the saddle points 3 and % may be
written as

3P = 1 P o= i P Y ing? = ing¥
3 Bsing ] NRsin® 5 A gsing 1 NBsin® 93

(3.2)
where, on the 1it side, 6‘1 and 9"] are the angles - of
incidence of the two scattered rays that merge at the
rainbow angle (8’, and 6", are the corresponding angles
of refraction); on the shadow side, &'y and 8“; become
complex.

The angle of incidence B]R D aSSDCiatEd With

the rainbow of order p-1 (in the_gth Debye term) is g1ven
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by
sin 8yp,p = (p2 - NZ) T2 - )y T (p = 2.3,...),

_ - - (3.3)

and G{' and 8y may be regarded as functions of ¢ |,

where e is g1ven by (3.1), with 8p now referring to

the pth term. ' ' B o

| _ The Chester Fraedman Urse11 method Teads to exprég

sions of the follow1ng form for S éR) » the rainbow con

tr1but1on to the pth term in (2 2)

: SJ’(R) (B,& é?{é -Exp'[ZBA Lg)].

X { 5 p(Bs €} A1[ (28)2/3C (ey 3

(s, ) B 13 [(zs)' z (e)]} - (3.4)

J

wheré, A1(z) is the Airy function,

2 ép(s'3/2 “‘= % [hﬂ(cos 8, + cos BY)-(cos B! + cos 9")],
£ [Cp(i)]' : 2 2 1 1‘_

(3.5)
and |
Cjipts’;)'# 3,;0)( €) .+ 5*1 J,§1) {e) +- |
(o) =T () (3.6)
dJ!p(B,e) =dj9p (E) _+ B dJ3p (5) + .. s

are asymptot1c expansions in inverse powers of B8

The r. h.s. of (3.5) is proportional to the sum (d1f

ference} of the opt1ca1 paths through the sphere associated .
with the rays corresponding to 8;' and B; . The difference
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vanishes at the rainbow angle: tp (0) =0 ,

The coefficients Si.p (k) g dj ék) in (3,6)

are given by expressions involving the Fresnel trénsmiSf
sion and reflection coefficients (including multiple re-
flections) and their derivatives of various orders with
respect to the angle of incidence, eva]uated at 8' and
9" . For small enough le|, these coefficients,as well
as the funct1ons A (e) and c (e), can be expanded as power
ser1es in ¢ 3 1n particular, p(r-:) le) for_ sma?I
€] |

- The Airy theory corresponds to the lowest-order ap
proximation to (3.4) in several senses: (a) Ap(e) and
';p(s) are replaced by terms up to &{c) of their power-
-series expansion in e ; (b) all coefficients d, (k) are
set equal to zero, so that the Ai' correction in ’ .(3.4)'
is heglected; (c) all coefficients . c; (k) for k p3 1"

: _ Jsp -
are set equal to zero; (d) C. (0)(3) is approx1mated by

c, (o)(o) J.p

Predictions of complex angular momentum theory

Let us now discuss the main features-predicted by
the complex angular momentum result (3. 4) and compare them
with previous theories. . .

(1) Geometrical- opt1c contr1but1ons to the scatter
ing amplitudes are, typically, of order B , whereas (3.4)
reaches values of order 87/6 near the rainbow angle.. Thus,
the maximum rainbow enhancement for the amplitudes is, . .
typ1ca1]y2 , 0f order ]/6 : _

(i1) The main raihbow peak is characterized by

(28)23 |z () |5 1, where cp(e) = 8le);  dts  width,
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' _ -2/3 i .
therefore, is G ( B ). As a function of p, the width
increases 24, growing linearly with p for p >>1, so that
the peak becomes flatter as the order of the rainbow in-
creases. ' |

(iii) Within the main rainbow peak, the Ai and

Ai! funct1ons in (3.4) are of the same order, so that the

dominant contr1but1on would be expected to come from
(0) in (3. 6) However,_c,(?) is proportional to the

Fresnel ref1ect1on coeff1c1ent for p01ar1zat1on j at angles

of incidence near 91R,p. For the primary bow (p=2), 61R 2

4s close. to Brewster's angle, so that c22(°) is very small,

rendering the Ai' correction to: Airy's theory much more
important for polarization 2 (paral]e]) The smallness of
| c22(0) as compared with CIZ{D) also accounts for the
strong perpend1cu1ar polarization of the primary bow.

Since the Fresnel reflection coefficient is always larger
for perpend1cu1ar polarization, we may expect this pola-
rization to be dominant also for higher- order ra1nbows

(iv) Since Ai' (z) / Ai (z) = '@'(z ) for

|z| »>> 1, the Ai' terms become of the same order as the
Ai terms in (3.4) outside of the main rainbow peak. Thus,
the validity of the Airy theory is limited, at best, to
small values of |e|, within the main peak, in agreement
with van de Hulst's criticism. For the primary bow, the
worst disagreement should be found for parallel polariza :
tion: due to the dominance of the Ai' term, (3.4)
predicts supernumerary peaks where the Airy theory pre-
dicts zeros, and minima at the peaks of the Airy theory.
Thus, maxima and minima are interchanged for the two po -
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larizations. This effect,-which has been observed . by
Bricard 25 at large ang1es,ﬁis related to the change of
sign in the reflection coefficient as it goes through the
zero at Brewster's angle. This affects one of the two
scattered rays that interfere at large angles, leading -
to destructive rather than constructive interference.

(v) The result (3.4),in contrast with Airy's theo
ry, is .2 uniform asymptotic expansion. Thus, for large
lel on the 1it side, where the two real saddle points.
are outside each other's range, it goes over smoothly
into the sum of their contributions, yielding the inter

ference between real scattered rays that gives rise  to
the supernumeraries (osciliatory behavior of the Airy .
“function).

On the shadow side, for large |e|, we may employ

the asymptotic expansion of Ai (z) for large positive z,
Ri(z) - 2 Woexp( - %‘ 2 3/2y/2 /H (2 >>1). (3.7)
Although both complex saddle points contribute to (3.5)
and (3.6), only the contribution from the saddle point

in the lower half of the A - plane survivesfor large |e|,
in agreement with the prediction of the steepest-descents
method. Thus, (3.4) also merges smoothly with the wide-
-angle result on the dark side of the rainbow. This is a
typical complex-ray contribution on the shadow side of a
caustic >, -similar to the guantum barrier-penetration
effect. a ' B

(vi) Rainbows of order higher than the second are
usually masked by background glare in the sky, although
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they can be observed in the laboratory 26, While their
intensity becomes progressively damped by multiple re -
~flections, the damping weakens as the order increases,
because, by (3.3), they are formed by rays closer and
closer to glancing incidence. 0On the ‘other hand, they
become progressively broader. S |

'The fact that high-order rainbows are formed by
rays incident close to the edge has another consequence:
since the Fresnel reflection coefficients afe not onty
close to unity but -also vary rapidly with the angle in
this region, their derivatives with respect to_angle
become larger, thus enhancing the contribution of higher-
order coefficients in (3.6). Therefore, the Airy appro-
ximation becomes progressively worse (for both polariza-
tions) for higher-order rainbows. '

For a rainbow formed near the backward direction,
there is an additional enhancement factor arising from
axial focusing, as will be seen in Sect. 4. We will see
that Tight diffracted into the shadow of the tenth-order
rainbow contributes significantly to the glory, exempli
fying a {(rather indirect) natural manifestation of a
higher-order rainbow.

Comparison with the exact solution

"Numerical comparisons between (3.4) and the exact.
Mie solution (2.71), as well as with the Airy approxima-.
tion, have been carried out 2'° 7 28 for N = 1.33,
50 < B < 1500, fbk thé primary rainbow p = 2
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(‘[360 < 8 s 142°), and also, in connection with the
glory 27-29, for the tenth-order rainbow (p=11).  The

results agree with the above predictions in all cases.

In a rainbow region, (3;4) should be the
dominant contribution to the scattering amplitudes.
However, to carry out comparisons with (2.1), one must
take into account the effect of other Debye terms that
may still yield significant (though smaller)contributions.
For the primary bow, besides the rainbow term (3.4) w1th
p = 2, one should also include the direct ref1ect1on
term $‘J 0. in (2.12). 1Its interference with the rainbow
term g1ves rise to fast, small-amplitude osc111at1ons
superimposed on the rainbow oscillations.

As an illustration of the results, we show in
Fig. 4 a comparison of the Mie, Airy and complex angular
momentum results for B = 1500 and parallel polarization.
To avoid the rapid oscillations, we have subtracted out
the direct reflection term from the Mie solution, compa
ring | S, = S, ol2 where S, is given by (2.1), with

2
2,2 | given by (3.4) and with the Airy approximation,

In agreement with the above discussion, the Airy approxi
mat1on fails badly for this polarization, except in a
small neighborhood of the main rainbow peak; its out-
-of-phase character in the supernumeraries is apparent. |
The complex angular meomentum result for the rainbow
term agrees closely with the exact result. The devia-
"tions, which have an oscillatory character, are due to.

interference with higher-order Debye terms, the effects .
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of which will be discussed in connection with the glory.

The complex angular momentum théory, in con-
trast with the ARiry approximation, is also in excelient
agreementZ] with the exact Mie results for the phase

difference § = arg S1 - arg 52' 1ts domain of app]icg_
bility extends down to values of g of the order of 50.

4. THE GLORY
The van de Hu]St.conjecture

Although it offers a display hardly less im-
pressive than the'rainbow, the giory has PEmained a con

siderably more recondite phenomenon, ever since its
first reported observation in 1735 . [Its sighting

(Fig. 5) requires 1dcating the antisoltar point, usually "
through the shadow of some object on the clouds (most -

often an airplane). Typical sightings occur over thin
clouds or mist, with size parameters ranging from the

order of a hundred to about one thousand (the average 8

in reported observations3 is ~160). The intensity de~
crease is siower than in coronae, so that as many as'fi
ve sets of colored rings have been seen. There is con-
siderable variability in the observations; some obser-

vers have reported finding parallel polarization in _thé

rings.
The first significant theoretical contributiqn
towards the explanation of the glory is due to van de

Hulst 7. Central or near-central rays, backscattered.
by direct reflection or after undergoing one or more in-
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ternal reflections, cannot provide an explanation: they
do not lead to an intensity enhancement and their contri’
bution is much weaker than the observed effects. Suppose,
however, that a non-paraxial incident ray were to emerge
in the backward direction, e.g., after one internal re-
flection (p=2).. Such a ray is usua11y called a "glory
ray". It was pointed out by van de Hulst that there
would indeed be an intensity enhancement associated with
a glory ray.

This enhancement arises from the axial symmetry.

A narrow pencil of scattered rays emerging in a non-axial
direction is usually associated with a virtual focus and -
with a portion of a spherical wave front. For a pencil
of non-paraxial rays-scaftered in an axial direction,
however, the axial symmetry spreads out the virtual focal
point into a virtual focal circle,corresponding to toroi
dal wave fronts. Constructive interference along the
axis of the rays emanating from this focal circle produces
the enhancement. We will call this the axial focusing ef-
fect. o |

_ Another peculiarity of the axial direction is
that the associated scattering piane is undefined. - In
other directions, as was noted following (2.6), the scat
tering amplitude for magnetic (electric) polarization is
dominated by magnetic (electric) contributions, but both
become comparable in the axial direction, simulating an
interference between parallel and perpendicular po1ariz§ _
tion (contributﬁons from orthogonally situated points of
the virtual focal circle). This effect was also pointed
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out by van de Hulst, who called it the cross-polarization
effect.

For p=2 , however, there are no glory rays, except
for refractive indices in the range vZ <N< 2 . For the
refractive index of water, the closest approach to such a
ray is provided by a tangentially incident ray, which,
after one internal reflection, emerges some 15° away from
the backward direction, It was conjectured by van de Hulst
that this angular gap may be bridged by surface waves ,
taking paths similar to that shown in Fig. 1. We will
call the effective contribution of all such paths the van
de Hulst contribution.

_ The asymptotic evaluation of this contribution was
not at hand at the time when van de Hulst formulated his
conjecture, so that, although it seemed to account for
some qualitative features of the glory then known, a
quantitative test was missing.

Glory features revealed by numerical studies

More recently, several new numerical studies of
the Mie series in the glory region have been made, reveal
ing a remarkable degree of complexity and bringing out
many new features to be explained. ' '

]

Bryant and coworkers computed'the back-scat-
tered intensity for 200.0 & B < 201.8 and 500 & 8 501
with N = 1.333, and for 3000.0 < B < 3001.4, with
N = 1.333 and N = 1.333 + 2x107°%4. Dave’? computed the
scattered intensity and the degree of po]arization for
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natural incident 1ight as a function of © near 180°, with
N =1.342, for g8 = 98.2, 196.3, 392.7 and 785.4. Shipley
and weinman6 computed the norma]ized phase function

P(N,B,0) = 2B~ L1 (N,B,9) + 12(N B,8)]/Q B) ., (4.1)

sca Ns

where Q ., IS the total scattering efficiency’, with
N=1.333 and & = n , for several size parameter ranges in
the 1nterva1 200 ¢ B < 4520. They also evaluated average
values of (4.1) over certain ranges of size parameters .
Such'averages are needed in lidar (laser radar) studies
of rainfall, where the drop1et popu1at1ons are po]yd1s -

perse.

The following features of glory scattering have
emerged from these numerical studies: .

(i) The scattered intensities in the glory region
are rapidly-varying functions of 8,6 and N . Within the
usual range of observation of natural glories, they are,
typically, about one order of magnitude 1arger than the
geometrical-optic axial-ray contributions. o

(11)‘As a function of B , the backscattered intensi
ty shows extreme1y”rapid quasi-periodic oscilltations., For
refractive indices in the range associated with water ,
fheﬁqUESi-period AB of these OSC1llat1ons ranges from
about 0.81 to about 0.83. '

These oscil]ations have been experimentally ob -
served by Fahlen and Bryant31 in laser light backscat -
tered by a single water droplet, with 8 1in the range
103 to 10%: continuous evaporation of the dropiet pro -
duced the variation in 8 . Similar observations, with 8
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ranging from about 50 to about 300, have been made by
Saunders ' ' ' ' ' :

(ii1) Within a single quasi;périod, there are
rapid intensity fluctuations superimposed on a relatively
stowly-varying "background". The latter goes through two 1o
three humps per quasi-period. ' ' '

(1v) The rapid f]uctuat1ons include sp1kes
where the intensity varies by one to two orders of mag-
nitude for size parametér variations g ~ 0.01 (correg_
ponding to a change in average dropiet radius of a few
thousandths of a wavelength, i.e., of atomic dimensions.}.

(v) The inclusion of a small absorptive term
in the refractive index tends to smooth down the sharp
spikes, but not the humps.

(vi) Fourier analysis of the backscattered
intensity as a function of 8 reveals, besides the basic
quasi-period. strong'periodic components with the_peﬁ
riods A; 8 = 0.41, A, 6 = 1.1 and A3 B = 14 (for
N = 1.333).

(vii) A plot of the normalized backscattering
phase function, with N = 1.333, averaged over the lar-
gest period AB,B' ® 14, as a function of B, in the ran-
ge 200 ¢ B g 4520, shows a broad peak, with the max1mum
average backscattering Tocated around B ~ 103, |

{(viii) The angu]ar d1str1but1on and. polar1za—
tion of the scattered intensity for 10 B <1O vary
considerably with 8. For 8 5.102, the first dark ring
is rather hazy and the outer rings are predominantly
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3
parallel~poiarized. For 8 ~ 10, they tend to become
perpendicular-polarized. -
| (ix) Studiess of numerical convergence of the
Mie series show that the dominant contr1but1ons to the

intensity in the g]ory region arise from the ”edge do-
main® (2.13), .

General considerations

The complex. angu?ar momentum theory of the
20,27-29,34
glory explains all of the above features. Let
us first consider some general features of near-backward

scattering,

As was mentioned following (2.6), the terms in
tz in {2.1) are dominant'{n_non-paraxialjdirections; oh
the other hand, for 6 = m, since t,(-1) =_-p£(-1), - we
get

S,(8sm) = SM(B) + _SE(B)'= - S,(B,m) (4.2)'

‘where s" and st ., the magnet1c and electric contribu-~

tjdns, are comparable, so that their 1nterference has to
be taken into account. This is van de Hulst's cross -
polarization effect. . |

- The axial focus1ng effect may be discussed in

.terms of the behavior of the angu1ar functions (2.2) and
(2 3), where v = ) - % . For non-paraxial ray contri-
butions, we have A = ®(B), so that we may employ the

asymptotic expansion of these functions for large index.

For scattering angles not very close to axial directions,

this introduces an extra factor e(a'lfz) = 3(8_]/2), as
e e Lo PR _
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compéred with the neighborhood of axial directions. Thus,
the amplitude enhancement associated with axial focusing
is 8(81/2). ' |

Let us concentrate our attention on the exact back
scatteking direction, 6 = w . The axial ray cbntfibu -
tions arise from saddle points at A = 0 in the even -

. -order terms of the Debye expansion. They are readily
evaluated, yielding the geometrical-optic result ( plus
higher-order WKB corrections). The main contributions
are those from p = 0 and p'= 2

{(g)

‘ S;ax1a1

~ (g)
j ) =3

(B,m j,o (B,m) 5j,2 (B,m) B (4.3)
where fhe_superécript {g) stands for "geometrical". Higheré
-order axia1:Debye contributions are strongly damped by
multip1e'internal reflections. The cdhtributions {4.3)
are of the form ajB , where _Iajl is of the order of

the Fresnel reflection coefficient at perpendicular inci-
dence. As was mentioned.above, they are completely unable
to account for the g]ory} They provide a smoothly-vary -
ing background, representing qn]y a small fraction of the

glory intensity.

- Analysing the Debye expansion, we find that only
the edge domain (2.13) can yield contributions capable of
explaining the glory. This agrees with feature (ix) above.
In this domain, the magnitude of the spherical reflection
amplitude (2.11) is B |

eyl = IR e ey 6T (4.2)

where bj " is of the order unity: tot@1 reflection is not’
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reached, due to the surface curvature,

~ The reflection damping factor associated with the
(p+1)th Debye ‘term in the edge domain, for large p, is_
therefore

-1/3

o5 1P = exp(-p by 870, S (4.5)

so that Debye terms of order up to ‘8(81/3) can stil]_giVe
apprec1ab3e contributions. Thus, for incident rays in the_
edge doma1n, an effect similar to "orb1t1ng“]3 takes pilace.
Higher-order contributions from outside of the edge domain.
are damped out by multiple reflections and may be neglect-
ed. _

Classification of leading Debye contributions

The basic problem, when so many Debye terms may
‘contribute, is to find out which are the leading ones and
to classify them in order of decreasing importance.

In view of the axial focusing effect, it should be
expected'that“one significant contribution would be that -
of a glory ray. -Aithough such a ray does not exist for:
p=2 in water, it may exist (at least to a close approxima
tion) for higher p , although very high values of p , for
a given 8 , are excluded by the reflection damping factor.
(4.5). If '

N'= [cos(11n/a8)]"1 = 1.33007 , (4.6)
there exists a glory ray for p=24 . It is associated

with a tangentially incident ray, which produces the
closed orbit shown in Fig. 6, & regular stellated polygon
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of 48 sides.

The discussion could equally well be carried out
for neighboring values of N , associated with nearly-
" ~closed orbits around this or other values of p . However,
it is somewhat simpler to illustrate the various effects
for a value of N such that a closed orbit exists, so that
we now fix N at the value (4.6). Closed or nearly-closed
orbits lead to "geometrical resonance effects"?0,implying
quasi-periodic features which, as we have seen, are indeed
manifested in the glory. '

Apart from the glory ray cohtribution, what other
contributions from the edge domain do we expect to be
important at 6 = 1 ? We know that the edge rays give
rise to surface waves with p shortcuts for the pth Debye
term and that, for p=2 (van de Hulst term), the "missing
angle" To that must be described along the surface before
emerging in the backward direction after two shortcuts is
small (Fig. 1; 1z, = n/24 for N given by (4.6)). The
angular damping exponent of the surface waves, given by
the imaginary part of the Regge-Debye poles, is 3(81/3 )
(cf. (4.10) below), so that, for the range of B relevant
to the glory, the damping along the missing angle is not
very targe. Furthermore, this damping is counteracted by
the enhancement due to axial focusing.

We expect, therefore, that the van de Hulst term
is indeed significant. This was first quantitatively
confirmedzo for scalar scattering; however, it was also
pointed out that the van de Hulst term alone cannot ac -
count for the glory; there must be other significant con
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tributions from higher-order Debye terms.

If the radiation damping associated with surface-
~wave propagafion were the only damping effect, the magni -
tude of surface-wave contributions of order p would de
crease roughly exponentially with the increase of the-
associated missing angle 7. . Restricting ourselves to

surface waves that emerge less than one shortcut away

from 6 = 7w , the angle cp is given by

CP =T - p et (mod 2m), O 5-;p< et = 2 cost(1/N). (4.7)
These considerations lead to the "naive" ordering of
surface-wave contributions illustrated in ?ig. 6 by the
decreasing length of the arrows that point at increasing
Besides the valugs of p shown'in Fig.

values of Zp
6, we would get additional solutions of (4.7) by adding
to each p multiples of the basic period Ap = 48

"The true ordering will be affected by the reflec-
tion damping, which, according to (4.5), increases expo-
‘nentially with p for high p . This cuts off higher
values of p , and the cutoff point decreases when 8
decreases; so that this effect is of special importance
within the range of B relevant to the glory. For
instance, while the contributions from p=24 and p = 37
shoqu'be dominant over the van de Hulst p=2 term for
large 8 , the reverse should be true for lower B '

_ Besides these surface-wave contributions, the
‘edge domain also generates higher-order rainbows ( cf,
Sect. 3, {(vi), some of which lie close to the backward
direction, turning their dark side towards it, Let
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BR o denote the rainbow scattering angle for the pth
Debye term. Then, the angular distance from the rainbow

engle to the backward direction, for large p , is given

' 2 1/2 .
g - B e )

' (4.8}
where £ is defined by (4.7), now extended to negative

"R.p R.p ~

angles.

The penetration of light within the dark side of
the rainbow is described by a complex ray (Sect. 3), with
a damping exponent which, for large p , according to (3.4)
;nd (3.7), is proportional to f.’r(e:R"p/p)?’/2 at & = m .
Although this is faster than the surface-wave damping,
these contributions are enhanted not only by the axial
1/2), but also by the rainbow enhance-

focusing factor O(B
ment 3(81/6).

Thus, we also expect significant contributions to

the glory from complex rays on the shadow side of higher-
-order rainbows formed at angular distances from & = 7
given by (4.8), for values of p such that |

t,2 7 - pe, (mod 2m), -8, <t <O . o (4.9)
The "naive" ordering of these contributions classifies
them in order of decreasing importance according to in-
creasing values of ER@ /p. The arrows in Fig. 6 point
at the directions Cp , and their lengths decrease ac-
cording to this "naive" ordering. The leading contribu-
tion arises from the 10th-order rainbow, for which

€R,11 = 0.05 rad = 3°
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Agaiﬁ, the true ordering will be affected -by reflec
tion damping, the more strongly the lower the value of 8 .
Thus, fof-low B . p = 33 should dominate over p = 46. ,
while the reverse should be true for large B8 .

An additional consideration that affects the order
ing is that the width of the main rainbow peak - is
.U(p 8”2/3) for large p {Sect. 3, (ii}), so that, for a
given p , the backward direction, while lying deep within
the rainbow shadow for high B8 , may lie within the main
rainbow peak fOr.lowi'B , thus yielding a larger contribu
tion, because the damping given by (3.7) has not yet set

in.
Verification

- To check the validity of the above d1scussxon, the
contr1but1ons from different Debye terms to ]S (B)] and
S (B)]z in (4.2) were numer1ca11y eva'luated29 34 by sum-~
ming the correspond1ng partial-wave series for B = 150 ,
500 and 1,500, The results, including all terms that
contribute up to ~ 0.1% to the total, are sﬁpwn in Fig. 7.
They are in complete agreement with our expectations.

For B8 '= 150, which is close to the average size
parameter in reported observations of the glory3 » the
'van de Hulst term is the leading one, followed by the
10th-order rainbow term. The two contributions become
comparable at B = 500, and the 10th-order rainbow pre -
dominates at g = 1,500, where the glory-ray contribution
(p=24) is already larger than the van de Hulst term for
magnetic polarization.
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~In order to carry out a quantitatfve'comparisOn
with the exact Mie solution, as well as to justify the
physical interpretation ascribed to the various terms’
in the above discussion, we must be able to asymptotically
evaluate the leading Debye contributions.

For the p 11 rajnbow term, the compTex angular
momentum theory leads to an expression of the type (3. 4y,
except that the &(8 1/‘2) axial focusing enhancement re -
places the factor 87/6 by B /3 . This should be
compared with the geometrical-optic axial-ray contribu -
tions (4.3), which are U(B)' The eva]uat1on of the coef
ficients {(3.6) shows, in agreement w1th our expectataons
(Sect. 3, (V1)) that the ATry theory fails for both_
polar1zat1ons at’ th:s hugher value of p”;;sA nymerical
compar1son of the complex angu?ar momentum pred1ct1on with
the exact Mie result for. the A1th Debye term 27-29,34
‘shows good agreement in. both amp11tude and phase? Justify
ing the 1nterpretat1on of th1s term as. a compiex ray con-
tribution on the dark side of the ]Oth-order rainbow .
This is also a good test of the complex-angutlar momentum
theory of the rainbow for a high-order rainbow.

For the p = 2 van de Hulst term, we must, ec—
cording to the complex angular momentum theory, evaluate
a series of residues at the Regge-Debye poles, which are
of the third order for this term2°?%’. The evaluation
leads to an expression of the form

g (res) _ o%/3 ™
5.2 (B,m) 8 2; rnj exp(1lnj_;2 )

.2 e | (4.10)
[ee,, 87 v o],
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where ¢, 1is the missing angle (4.7) for p = 2, and
A . 1is the nth Regge-Debye pole for polarization j .

nJ
in order of increasing imaginary part; Im ln = #(8 1/3 )
yields the radiation damping of the surface waves.

Since Im Anj increases rapid]y'with n , the re-
sidue series is rapidly convergent, and it usually suf -
fices, in practice, to keep only one or two pdles The

coefficients Pnj are proport1ona1 to Ta s and there -
fore small, so that the &(8 2/3) correction inside

the square brackets in (4.10) is important, specially for
“low B. Agafn, a2 numerical comparison with the exact Mie

'resu1t28 shows good agreement in amplitude and phase.

The asymptot1c eva]uat1on of the p = 24 glory-ray
'contr1but1on is somewhat more comp11cated27 »34 ., because
8 = 1ies w1th1n a Fock transition region for this term.
Numerically, the results again compare favorably with the

exact Mie so]ut1on 29, 34 v

Comp]ex'angu1ar mdmehtumftheory of the glory

o Hav1ng at hand ‘both the classification of the
dominant Debye terms and -asymptotic expressions for the
1ead1ng contr1but1ons, we can finally d1scuss the explana
tion of the character1st1c features of the glory 11sted'
before. | | _‘ |

” The'gIOry'arises frqm'the_interféténce among Debye
terms of various different orders, whose relative import-
ance varies with 8 ., The phase factors relevant to the

interference pattern or1g1nate mainly from the shortcu%sz
through the sphere. Each shortcut contributes 2(N 1) /
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to thefphaSE, Nith jN given by (4.6), a change in B
by an'amOUnt " o _
Ag = sm/(22W%-1 ) = 0.814 (4.11)

changes " “the phase of the dominant Debye terms in Fig. 7

either by ﬂ or by an amount close to w (mod 2w), thus
leaving the intensity almost (but not quite) invariant .
This .explains the qua51~per10d1c1ty of the backscattered
1nten51ty, as well as. the observed va1ue of the quaei-l
perlod (feature ¢ii) " above) '

Wlth]n a quas1 per1od, .ong can con51der, as a first
approx1mat1on to ‘the amp11tudes, the sum of the two lead- .
ing Debye terms in F1g 7, one. of wh1ch is a surface-wave‘e
term and the other ‘a ra1nbbw term Compar1ng the result-
ing approxxmatTOn to [S (B)Iz- w1th the exact results near‘
B = 150, 500 and 1500, one. f1nds ’34 that the approxxma-
tion yields the re]at1ve1y slowly~vary1ng “background“
with two to. three humps per quas1~per1od, whzch accounts
for most of ‘the average 1ntens1ty in’the glory (feature
(111)) Fig. 8 111ustrates th1s near .B 1500.__“

1f one 1nc1udes the contr1but1ons from all ]thef-

values of p- shown in Fig. 6; w1thout summ1ng over the
per1od Ap = 48, the resuit 15 very. c]ose to the exact

curve, fa111ng to reproduce on1y the sharp splkes (F1g 8) jﬁﬁjf

.  The sp1kes are obta1ned when we carry out the sum 7 
mat1on over Ap ;-48. This is 111ustrated for one sp1ke?'

by the 1nset 1n F1g 8. Thus, the spikes represent geq-
metrical resonance effects'associated with the existeete
of quaei-periede‘drbits.‘ Their sharpness arises from’
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their association with very long optical paths with low
damping {feature (iv)), If one includes a small amount
of absorption, they must therefore be the first to dis-
appear (feature (v)). '

The spikes, as well as other peaks, occur at dif-
ferent values of g8 for SM and SE
zation effect (interference between

The cross-po]afi
s and sE in the
backscattered intensity (4.2)) therefore gives rise to
additional interference features in the total intensity;

Within the range 102 < B < 103 that is most rele-
vant to observations of the glory, the dominant contribu-
tions arise from the van de Hulst term (4.10), from the
10th~-order rainbow term (given by (3.4) for p = 11 with.
an extra axial focusing factor B8 / )}, and from the geo .-
metrical-optic axial-ray contributions (4.3):

. (res) (R) () (9) (417
5% 5,2 t S5 S50 0+ Sy, (412)

2 ,» the interference among

In the intensity iSj]
the terms in (4.12) gives rise to oscillations (whose
amplitudes are slowly-varying on the scale of the basic
quasi-period (4.11)), with quasi-periods given by:

" .
(Y‘ES and 53,1]( )),

(g
¥ and $55°))

and 8.8 - 14 (interference between S, Z(res) and S, %g));
the quasi-periods A, and A3 had already been predict-

e0 These results are in complete agreement -

' 618,: 0,41 (interference between Sj,z

A,B = 1.1 (interference between S (res)

ed eariier
with feature (vi).

If we average {SJ-|2 » as given by the approximation
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(4.12), over the largest period A48 , we find the sum of
the squared moduli of the four terms in (4.12). The last
two {(geometrical-optic) terms contribute only a small
constant background to the average normalized phase func-
tion. The van de Hulst term (4,10) yields a contribution
of order 82/3 exp(- ¢ 81/3
This is the leading term for B =~ 102 , but it decreases
as B increases, and is surpassed by the 10th-order rain-
bow contribution at values of B of the order of a few
hundred. This contribution to the phase function contains
a factor 8%/3 and terms proportional to Ail and Ai'?
(cf.(3.4)) with rather small coefficients. Due to the ef.
fect of increased width for higher-order rainbows discus-
sed above, the backward direction falls within the main
peak of the tenth-order rainbow up to B 2 103 ; there-
after, it starts to get deep within the rainbow shadow ,
where the strong complex-ray attenuation appears, This

explainszs why the average backscattering phase function
goes through a peak around B ~ 103 (feature (vii)). The
" four-term approximation (4.12) accounts for 80% to 90% of

the computed exact results®

Finally, let us consider the angular distribution
and polarization of the scattered intensity for natural
incident light. We restrict our consideration to the
first few glory rings, where S

u = B(w-8) (4.13)
is not >> 1 . In this region, as a first approximation,

we find27’28

S,(8,8) = 2 SM(B)J;(u) w2 sEE)a (e, o (A4)

} (where ¢ 1is of order unity).
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where Jy s Bessel's functidn‘bf,the first order, we
obtain - S, by interchanging ‘sM and sE . At 6 =1,
this reduces to (4.2). van de Hulst?23 had proposed an
expression of this form ‘with unknown coefficients ¢y and

Co s correspond1ng respectively to 25M and ZSE

The polarized intensities associated with S; and
S, follow from (2.6). For natural incident light, the
angular d1str1but1on and polar1zat1on are prOport1ona1 .
respectively, to 1i,+i, and to (iy-15)/(i; +i,), 50 that
they depend on the relative magn1tude and phase of. 5M .
and S in (4.%Y4). For Targe u, Sy s dominated by
sM and \52 by SE , as expected Inspection of the graphs
of 3;%(u) and ;%(u)/u? shows3* that the first dark
ring will be hazy when the orders of magn1tude of SM and
SE are comparable. Also, the polarizat1on of the outer
rings tends to be ma1n]y perpend1cu1ar when SM predom1-

nates and mainly parallel when SE predom1nates.

According to (3.4), magnetic polarization is domiF:
nant in the 10th-order rainbow contribution,'in agreement
with Sect. 3,(iii) and with Fig. 7. It follows from (4.10)
that electric polarization is dominant in the van de Hulst
term; this may also be seen in Fig. 7, |

The nature of the leading contribution to the glory
changes with B8 1in the range 102—103; the angular dis -
tributior and polarization undergo corresponding changes.
In particular, near B - 102 , where the van de Hulst term
predominates, the outer rings tend to be para1lel-po1arized
and the first dark ring is rather hazy (this is the s;tua-

)

.
3

tion in most reported observations of natural g10r1es
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near B - 103 » the rainbow contribution is dominant and
the outer rings tend to be perpendicu]ar-po]arized
(feature {viii)).

5. CONCLUSION

The complex angular momentum theory of Mie scat -
tering allows us to account completely for both rainbow

and glory effects. In both cases, contributions from dif '

fracted light appear as a kind of analytic continuation

from ray optics, rEpresenting the penetration into regions
forbidden to real rays. Thus, use of the complex angular

momentum theory leads to new insights and allows us to
treat a new domain in optics,

The characteristic feature of rainbow scattering

is the coalescence of real rays that become complex; this

allows us to separate it from other interfering contfibg
tions that emerge in the same direction. We obtain a
uniform asymptotic expansion for a rainbow contribution
of arbitrary order, The Airy theory represents a2 crude

approximation to this expression, which already fails bad

1y for parallel polarization in the primary bow, and for

both polarizations in higher-order bows. The domain of

applicability of the complex angular momentum theory also
extends to much Tower values of B8

The glory arises from incident rays in the edge
domain (2.13). After penetrating inside the sphere close
to the critical angle, they are almost totally reflected
(not'quite, because of surface curvature), so that orbits
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involving many shortcuté through the sphere stilil contri-
bute appreciably ("orbiting"). '

While geometrical-optic paraxial-ray contributions:
are of only marginal importance, non-paraxial contributions
" to near-backwards scattering, in particular those from the
edge domain, are enhanced by axial focusing. Cross-polari
zation effects are also significant.

The leading contributions to the glory come from
theICOmp]ex domain. Those of surface-wave type, such as '
the van de Hulst term, are associated with Regge-Debye
poles. As‘a,1imiting case, one may have higher-order glory
rays (sdch as p=24 for N given by (4.6)), whose contribu
tions are of Fock type. Complex rays within the shadow of
higher~order rainbows formed near the backward direction, .
specially thé-tenth~order rainbow, represent the other type
of teading contribution

The quasi-periodic features of the glory as a func-
'taon of s1ze parameter correspond to the existence of
closed or near]y -~closed orbits, which give rise to narrow
spikes through geometrical resonance effects.

. Several types of damping with different B8-dependence
‘play a .role in the glory: the radiation damping of surface
waves, the damping of complex-ray rainbow contributions by
"tunne11ng“, which is also affected by the broadening of
the ‘main rainbow peak as the order of the rainbow increases,
and ‘the damping due to muitiple internal reflections,which
affects both types of contributions. "

The nature and the ordering of the leading Debye
contributions changes with '8 due to the competition
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among these various damping effects, producing changes in
the angular distribution and polarization of the glory .
The same effects are responsible for the peak in the
average backscattering phase function around B8 ~ 103 .

Quasi-periodic intensity fluctuations with size
parameter, similar to those in the glory, also occur at
other angles, but their amplitude decreases rapidly as
one moves away from the backward direction20 , due to
the absence of axjal focusing. Their treatment is analo.
gous to that of the glory.

In particular, they give rise to the "ripple" in
the extinction efficiency35 and in the radiation pressure;
the latter has been observed36 by optical-levitation

techniques.
The average efficiency factors over a range of

size parameters (where the “ripple" component is averaged
out), including both extinction and absorption, play an
important role in meteorological optics. The complex an-
gular momentum theory of Mie scattering remains valid for
compiex refractive indices, and it leads to asymptotic ex’
pressions for the average efficiency factors3’ that are
accurate over a wide range of size parameters and absorp:
tive parts of the complex refractive 1'ndex38
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Figure Captions

FIG.1. Tangential incident ray IT gives rise to surface
wave along TA, critically refracted to the inside at A,
"totally" reflected at B and critically refracted to the
outside at C, travelling as surface wave along CT' and
reemerging tangentially as the scattered ray T'S. This

path with two shorcuts contributes to the p = 2 Debye term.

FIG.2. The primary and secondary bows. Alexander's dark
band is the darker region in the sky between the bows.
The supernumerary arcs are the narrow arcs visible on the
inner side of the primary bow (photograph courtesy of
Prof. Alistair B.Fraser).

FIG.3. As © approaches &p from the 1it side, the two real
saddle points A'and A" move towards confluence; for 8 in
the dark side, they separate along complex conjugate direc-
tions.

FIG.4. Comparison between the exact Mie solution for
1Sy = S2 olz‘( ), the intensity 1S, Z(R)!Z of the
rainbow term according to complex angular momentum theory

( ---- ) and the Airy approximation ( —+=«=), for N=1,33
and 8=1500.

FIG.5. The glory (photograph courtesy of Prof. A]istaif
B. Fraser).

FIG.6. The closed orbit associated with tangential in-
cidence for N=1.33007, The numbers are the values of p




at the vertices, The directions of the adjoining arrows
are those'of the ang1es.gp defined by (4.,7) and (4.9).
Their lengths give a qualitative indication of the or-
dering of surface-wave contributions (—---- ) by increa-
sing ¢ and of rainbow contributions ( } by increa-
sing ER,p/p (cf. (4.8)), The rainbow angles © ’ are
shifted from the corresponding z_ (this is indicated for
eR’11), This ordering does not take into account reflec-

tion damping, which suppresses high-p contributions.

FIG.7. Contributions to |SM(B)|2 and to ISE(B)I2 from
Debye terms of various orders p (the values of p are in-
dicated) for N = 1.33007 and 8 = 150, 500 and 1500:
rainbow terms; ----- surface-wave terms. For

B = 150, there are contributions {( —+—+—) from values
of p that do not appear in Fig.6.

FIG.8. Behavior of ]SM(B)]2 for N= 1.33007 near B=1500:
exact; =—~-~—-—approximation by the two leading
Debye terms in Fig.,7 {(p = 11 + p = 24); —— —— approxi-
mation by the sum of all Debye terms shown in Fig. 6,
without summing over Ap = 48. The inset shows an ampliifi
cation ( ) of the spike at position A, together with
the result obtained by summing over Ap = 48 ( -=-v-mn-- ).
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