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ON THE RATE OF FALL-OFF OF EIGENFUNCTIONS OF A

MODEL RANDOM HAMILTONIAN

Walter F. Wreszinski

Depto. de Fisica Matemdtica, Instituto de Fisica - U.S.P, S.Paulo

ABSTRACT

The rate of fall-off in configuration space of eigen-
functions of a model random Hamiltonian is studied. It is proved
that an exponential rate of fall~off does not follow from the

"exponential growth of particular solutions" ([24],[25]), as ‘some-
times conjectured ([15],[8]). A theorem concerning the fall-off
of non-isolated point eigenstates of the Hamiltonian is then proved,

based upon an argument of Agmon ([l?]).
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Equilibrium statistical mechanical propefties - specially
regarding low-temperature behaviour - of fandom systems, which have
been studied rigorously in some models ([1], 021, [3],[4],[5]), are
not particularly sensitive to_t@e.ffine s;:uctqre" of the spectrum
of the Hamiltonian, which is known to be pure point, with pfobability
one, for a large class of one~dimensional models ({6]). This is
because thermodynamic quantities such as; e.g., specific heat,
depend only on the "integrated density of states", which is expected
to be.continuous (this fact is known at least for a class of one?
dimensional models [7],[8]). 1In contrast, this does not seem to be
the case for nonequilibrium (transport) properties. Although no
rigorous derivation (from first érinéiples) of Mott's fdfmula”'
for the hopping conductivity of: amorphous semi-conductors exists,
in all model derivations we know of (see [22] and references given
there) an important role is played by the aSsumption that states ih'
the so-called "mobility edge"” belong to the point spectrum and
‘have exponential fall-off in configuration space. In this paper
we present some rigorous results concerning this assumption in model
one-dimensional random systems.

In this paper we.shall.study the random tight-binding”'
electron model in one dimension ([9!,!8]). It is also a special ™~
case of the one-dimensional version of the model studied in ([1],
2]1). We give here a brief description.of the mﬁael,“following 2.

Let I = {g;, = 0/, vuues e.t, 2 < r < », be a sequence of distinct"

positive real numbers, assign to €y 1 f‘i < r, a measure Py > o,

r
such that 2 pi=l, and let Q be the cartesian product of copies

i=0
of I indexed by the points of Z. Assign to Q the product (proba- .
bility) measure, denoted by P. becomes thus a compact topological
space, with family B of Borel sets, and (Q,B,P} a probability space.

Oon 2 we define the independent, identically distribﬁted poéitive =

random variables:



volw) 2w if w ) jay €0 ' . - ' ' (1) §
- o é
For each w € 0, the Hamiltdénian is defined aS'Ehé'Eoundéé“?bSitive
self-adjoint operator on H = 22(z) by T - %
HW = H v (2) ,
where
B = 7 2 B (3)
where, for all u E-(-un)nez E-H,
Bgw g T Ungy t Ppeg 724, y P‘Q_Z e o (4)
is the difference Laplacian operator, and - .-
Wy = vplwluy  ne2 weq . . (5) 5
‘We also introduce the_Hilbert_Spaceﬁﬂ.EtLa(Bjdk),_Where_B is the ’
first Brillouin zone, B = (-m,7) (in fact, B is a circle, the
points -m and 7 being identified). _H”is isomq:phic to H , the
isomorphism being given by Fourier transformation. On H, Ho takes
the form
(How) (k) = wik) a(k) keB, ueH (6a)
where
w(k) = 1 -cos:k:- Kk eB _ N owie o oo o (6b)
'By ([lQ], example 1.9, pg.SlB);(EH =[0,2];'-is absolutely conti-
o)
nuous. For each wel , Zhw c [O,aw},.where'. :
<‘ — L}
a, - a2 + sup e, o e N

1 ror any linear operator A, I, denotes spectrim of A and Ei'p

part.

"its pure point
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Let EQ%;O, ké—ﬁ'zfp,bc)} denote thé'spectral family assoclated
' 0!

to the self-adjoint operator HY. The following fundamental result
applies to a large class of random Hamiltonians in one dimension

(including the present one):

Theorem 1 ([6])

Let
_ B-P.
A = {U..‘ ZHw- ZHUJ } (8}

wher the bar denotes closure (in the topology of ®R). Then
P(a) =1 - (gfﬁg

Remark 1 : We shall denote by {Eg} the eigenvalues of H", and

ael
Sa,w

by {¢a

(EZ)} the corresponding eigenfunctions, where

I is some index set, and s, labels the multiplicities. In this
s

notation, theorem 1 asserts that, with probability one,{¢aq'u(E:)-

is a basis of H. B

Remark 2: Theorem 1 does not assert whether the states_¢§q'“(E§j
are in any sense "localised". 1In fact, they are locali-

zed in the sense of Anderson ([9]); this is a direct cqrqllaryhof

theorem 1 and is proven for completeness in appendix B, although

it follows essentially from remarks in '8]. @a
A logical gquestion which now poses . itself is to know

what type of point spectrum is involved in theorem 1. Let

(e} 4 =6 , n,n' € 27

be the standard basis of H. We shall occasion to consider thé

subspace H_ of H consisting of all ¢EH of the form®= nio c . e
: _

n>0 lep

self-adjoint) restriction of Y to #, (defined to be zero on Hf).

|? < » and we shall denote by Hf the {bounded,.positive,



Theorem 2
_ .The're exists a fixed closed set S ancfl a number 0< b=x a

such that To0,b] <€ S and

P hw - 'ZHQ = st oSy )= 1 - ao)

Proof: It follows from (1) and (5) and the ergodicity of the two-
sided shift in Z (see, e.g., [11], pg.18) that V is a metrically
transitive potehtial (as defined in ElZ]) . Hence, by a theorem

of Pasthur ([13]) there exists a fixed closed set S < (0,al} such
that Plw: 2,u = sY) = 4. (10) follows then by Theorem 1.

Let, now : | ' _ ) S
g:‘l(mg-(aw(:\)e“- e, ) l€Z wefl, NER

and, denoting by <.> e-xpectation' with respect to P,

| e = <3l (AN)> e R | o
We shall also denote by ‘3:1_(- ), E\:( )rand €, () the analogous
guantities for Hf . Note that: a) (') and S_( ) are the "inte-

grated densities of states” of ([12] ,.[2]) for the models described

by H™ and H, respectively; b) 9;_"::,(') is, for each w € §} and

v € Z’+ a continuous function of A& R by ([8_] , Lemma 9,4) and

c) H:-u < H” for each WEX | Tt follows from a), b) and c) *

that @) SO) < €+(>\) at each continuity point N\ of ¢ . By ([l;f) or

([2]) (under the assumed conditions p(€,=0) >0 and r »2), S is not
identically zero in some neighbourhood of zero, hence the same

holds for ?_k by d). From this and the fact that $_is a continu-

ous (and nondecreasi;ig) function of », it follows that_'thére «
exists an interval {0,b] , 0 45,53_!' such .tﬁa,t.-.ea.qh' 7\ ¢ Lo blis
an increa-sing.' point of < (:Ln ‘the _se'nse jof_.:"J:ltl‘:[ ;. §—,8_2,' pg l238) :

: ‘ \ . . " wo o
Since, for each We&il, eo is a cyclic vector for H+ {see theorem
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A-1 of appendix A), »€ R belongs to ztf_ if and only if it is an
increasing point of ? ([14] Chap. VI, pg.246). The last two
assertions, coupled W1Eh the fact thatg -°9 for almost all quESLl
([12]), imply that-z w,?\_o,b] for almost all mé&l, .whence ZHt-o_
2 LD b) for almost all LOEQ. and therefore S 2‘:0 b, @
What can be said of the rate of fall-off of the eigen-
functionS'in configuration space ? Thoulessl {[lS] see also [16]
and [81) conjectured the follow1ng behav1our of the eigenstates
.{qh (E:J 3 (in the notation of remark l we omit the index Su

and consider just H+ as in appendix A)

PrEr) v epFWED In-mli ]y
where f\ is some point of Ei,lend ervj is the function charac-
teriSLng the 'exponentiel'growth of particuiar solutions”, defined
in (A-3a) of appendix A. By {(a-4), Br)(e-): X;) E) =0
(where )’;( ) is defined in (aA-3b)), for Eé' Aw where A;ois
a.set of zero Lebesgue measure, with probability one {(inWw). This
set A, might consist, however, of just the eigenvalues of Hf
This is physically reasonable, because we might expect that eigen-
functions of the restriction of the Hamiltonian to.a box, growing
exponentially with the size of the box, eorrespond to eigenvalues
which "in the‘iimit"_do not beloné to the.spectrum. The latter
must therefore be contained in the complement of this "limiting set”.

We make this idea precise in

1 In fact, Thouless‘conjecture was formulated for finite systems,
but the uniform rate of fall-off (independent of the size of
w w
the system) depended crucially on the pr:operty‘}f,l (ﬁ;{)77chwith
probability one in W), where *X\is the "coefficient of exponen-

. tial growth" for the infinite system,



In the notation-of remark 1

P (hw: 7 (EY) =0 vxel}) =

Proof - By theorem 1 there exists {2, Q_Q, such that P({2;)=1 and
for all WEJL, and all .néz_._,?:‘(-)is pure point with
respect to Lebesgue measure, in the notation of (A-1) of
appendix A. By (A-3)., (A-—4) and (A-5) theré exi'stsQ' Q._Q
such that P({4)=1 and for all @6@1 | -
\PPE? 4+ 1PS (BYY — oo
' \ o=
for all E ¢ Ay where A, is a set of zero Lebesgue mea-
sure. Suppose that for some W€ Q,N82, and some % E_I
7 (E ) # O , that is, that there exist some subse-

quence {Lx ] ez < Z 4 such that

\P \Ewi)! | b+1. (E )\ K—'w ao. .
' (12)
Taking S-s [ E:: ‘} as the Borel set in (A~-2), we obtain
Y X
\(@:fi\ em}J\ + I(L‘Pot: | €0ss )\2
3 2 . —
e LIPS (B2 + l PL - >l 1
(13).
By (12) and (13),
@' 1e)
S ' (14)

It follows from (14) and (A—Z) (W:Lth S lLE“‘} ) that -

_(Cpoc,'\-et}) ='.O | VL € Z

(15}
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Slnce %,8 _ZS éZ’.ls a bas:.s of &{’, E CZ' ) 1t follows from (15) :
‘“Q'that C?uh;nta Therefore (12) cannot hold and hence, by (A 3a),
 for each wéﬂ ﬂQL and each °<(,_L 2( (J:: ) O @ :

‘We shall now prove a theorem about the rate of fall—off

. In ordlnary A -o-ne—body“) quantum mechanlcs w1th a potentlal \/(;();\PO o
“toa -
_1n some sense (for :Lnstance, if V is. relat:.vely compact with respect

"_,to H —-A) . the follow:n.ng bound holds for -an e:.genfunctlon ‘-P 6 L

correspondlng to an elgenvalue E < 0 for all E, >O there ex:.sts s

' C& < e '- such that ) . S e T
\*:\3 (x)\ exp\_ u—a\\f E, "R‘] R T
"From this 1t follows in part:.cular a un:l.form exponent1al bound for
_any compact subset C f (— 0) (1 e_ r not includlng the poz.nt :
.._E-O thz.s is. the only poss:l.ble 11m3_t pOlnt of the set of en.qen-

. values, under similar assumpt:.ons on V)

ES'?PC % (XN | A QXP[ ‘ilx(]

L. .

where CL?O and A <0‘= are constants dependlng only on C S (17)
In the present case, V.-w is not except perhaps for uQ

."J.n a set of zZero probablllty, relatn.vely compact W.‘Lth respect to

HO', and by theorems 1 and 2 there ex:Lst 0<b and {2, CQ w:Lth '

P(-Q) 0 such that

L@ b] | PP evwd 2y g

S:ane each po:Lnt of Z mj \1s a. llmlt poz.nt of J .o’n,e__ mlght
rexpect that ‘ne bound of the form (17) be pOSSlble, f_‘o:r. o anycozn— .
. Pact sublnterval [c d_] “of J w1th 0 < c < o<b W‘e-.nou-" pro{r'e ‘
..thlS, follow:mg closely a beautlful argument of Agmon ([17] »-OF -
rather its vers:.on glven in- theorem XIII 33 of . ([_18]) We shall o

:' say that a _seq.u,_encef {:? } Cb :Lff for all P € Z’
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“:F “’P = | EZ"E/[ U‘" _ lgﬂ;tjz)_? \:FV" \] < ot | .. It fo-l_ic;ws thaﬁ -f— E,,g_

iff r-? < C: (B) . We shall call a linear functional on 72,' con-
tinuous in the topology defined by each of the norms | \l,? , a
_teﬁpered distribution. If T is a tempered distribution, its
Fourier transform is a functional r'i‘/ on C:(B)' defined in the stan-

dard way. We shall also need the "weighted spaces":

R @)=1§ 2z ~¢ Aflgs I Gl R ]

neZ
(19)

Lemma - If } Eiﬂ;gz),-there.exist-tempered distributions T sa-
tisfying '
C(k—Ko) = ~
where K, € QJT,ﬂ’) . Further, there exists among them one and
only one such that
T = 0 (2
| — o _ _ S
Proof - By Fourier transformation, it follows that | = ET;J,,
defined by

T o= - 2 'E'm

mzn - (22)

vke (M= n)

: ‘ 4
also satisfies (20). Since {-e_ 14 (Z), it also satisfies (21).
To prove unicity, let L be a terrjtpered; distribution satisfying -

Cetthke) 1Yl =0

(23)



' ' (k- ku) '

'-SJ.nce the zeroes of Qe e - i) are s:.mple, it follows from (23)
e s

-_"that u,- 1s a measure supported by the pOln‘tS Ek0+2'\YW WGZ’_}, and

k € (—ﬂ‘ Tr’j ' :Lt follows from (23) that as a’ functlonal on.

B C (E) C— S(K ) . and U- = Q requ:.res s O ﬁ\

wn i oo

i‘Theorem 4 7 _ _ o
. Let J be deflned by (18) 2 wz.th b<-2 In the notation
"*--of remark 1, for each UJQE.QO ' each 1nterval C fC d] with
.,:_0<c<d<b and. each E >0, S

SK,uJ S
sup n@ Q?. )\\ PR B P
Ea < C L T s
Proof - Suppose the contrary, i. e., that there exlsts E 70,‘

,wé _Q.O -and an 1nterval C [C d] v with 0<c<d<b /such that _ - |

eu? H 4’ (E )“ P R _;(26). B
We omlt henceforth the :Lndex w " assum1ng 1t is fixed not :Ln D_
' '_and the indices « S.. Let’ | -

‘P(E) \/ C_P (E)

Then; s:.nce V lS bounded - o col .\

N e( Mg <o e
Eec SRR A B Loen o

~

_'Slnce FP(E) is an elgenfunctron-of H of ergenvalue-E -
(Hy € YeE -~ we

;and hencel | ;h_ ch | | R | o 3

& E)._:—(w(k eyt B E) kew em

B By (2‘7%):.,-, -_'f-o_r-_' each E € J, W( E ) .'LS a co_nti"n‘uo_su.s[ function on _-35,
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hencé it has a reStriction to the "hypersurface" defined by

(see, e.g. [19] , sect. IX-9). 1In the present case, the hypersur-'

face consists of two points T K(E) , where k(E)é (0 TY), and the

restrlctlons must be zero, otherw:.se CP could not belong toé‘e

ﬂ\) (i k(E),E):

.(30)
We have '
u.)(K)“ = i - cosk ~E - cos K@) -~ cos k. =
.;_— - 238n E_f_\f_&&i} St ___._K“.K__.__LE)
| ' | P2 : 2
Hence, '
W(k) “.E =2 sin K+ k &) Sivi K- k‘.(E-) : -
:_ | _C_OS k+ZK(E) Q,)(k\E) COS k k(E) LP( )
, g “_‘H-‘—‘__‘___-—“—“—' -
Z Sin k (E) Sin K+ k(E) ——s::—_—%_-\_ﬁ‘_ M )
SR EYEY

Under assumption (27), it is easy to verify that ‘the functions

h, . defined by )
b, WEY =  cos X k@ J(cg)
- 2—1 >
satisfy

h, (FK(E),E)=C | ._ '. . (3za)

and
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SK | b e Efj ‘ _ L e -
i@ < o

We shall prove that the functlons %*_ defined by

i« (k £) = _V‘i.U‘\E) (33)
St kK% k(E) S
2
satisfy
swp b go @) < e
R

We give the proof for g_, the other is simular g_ satisfies

k- kLE) L K:;ELE) N e
_Qef’ ) -1) §-, E)ﬂ 20 e * h_(KE):=
= (k\-E').- |
(35)
By (32a), (32b) and (35)
o (kE®), ') = o
(36a)
end _
swp W@, & <o
. e T ST
EecC _ T (36b)

By (36b) and the lemma, there ex1sts one and only one tempered -
dlstrlbutlon g_ satisfying (35) and such that (g_) ;Jj“xC) o
given explicitly by (22) (with %m._ (Clﬁ))w‘ ) and (34) follows
from this explicit formula and {36a) by a proof identlcal to ([19]
‘sect. IX-9, pg.83). Tt now follows from (28), (31, (33_) and (34)

that
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SWp “ P (E)“ €/2 : L oo _ | : (37) ‘i
E€ C - ) . _

To obtain (37}, we used the fac_t that C= [C—, d] with 'O<C_Z<OL< 2 ,

hence K (E) # O, , and SinK(E) is bounded away from zero in the

denominator in (31). By (37), eny eigenfunction (E)of H may be

written : :
— -€/2
R (E) = (L4 n¥®) Y., (E)
where
SUp “ (E \ oo
| A ] W e
The operator of multiplication by {( i+ ini{? )—8/2 is easily seen to

be compact (it transforms any weakly convergent sequence into a

strongly convergent:one); Hence, by the Rellich compactness

theorem as in ([17']) the set ‘i__E‘é_C}mﬁst consist of a finite _ ~
number of eigenvalues, each of finite mﬁltiplicity, which by (18)

it does not. Therefore (21) must be false, and (20} follows. Eﬁ

Remark 3 - We note that in theorem 4 E must belong to the interior
of Z for the proof of (25) to go through (if Ho=—A
as in [19] sect IX-9, E must be in (0, °°)} For that reason it
was 1mportant to prove that J 0 zﬁois not empty (theorem 2). In
fact, from our experience with the case of a finite number of im-
purities in an infinite crystal ("zero concentration®) ([?0]), we
expect that, with probability one, ZQDC:E;”’ and that the part
of :an in the complement of §§* consist of discrete eigen-
values with flnlte mult1p11c1tes (the latter part corresponds in,

our model to the moblllty edge - in a model of decoupled bands

such as 27, these elgenvalues would lie in the gap“)._Ea

Remark 4 - There exists a solvable model([?l],[}]) where the whole
| spectrum consists, with probability one, of the closure

of the set of all rational numbers in a fixed interval [0,a],a>0
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(that is, there are no 1solated elgenvalues with probability: one-- -

see the previous remark) i)

because of the existence of a non-isolated point spec-

trum, the function }Q_in (11) should have rather unu-

sual properties. As an example, suppose Z = 2_?\’ Lo a,] az0),
and ZFP Q_all rational numbers in 10, a]}(see remark 4).

possible type of behav1our allowed by theorem 4 would be

(€ &), ~ exp [-2E) in-nal]

n — oo

where er is fixed, and:

_ QO if E_ dirrational
'kktw) = '

1/n if qxzm/n, m,n, integers, relatively prime

In the above example, "many" states are localised, but “(Rxggx)m*a
is not uniformly bounded in any compact subset of [O,a] with non--
empty interior. The above function X is not so pathological:it is

even continuous almost everywhere. Eﬁ
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- APPENDIX A

In this appendix, we collect some important spectral pro-
perties of the Hamiltonian of the model used in the text. Let
{P:)-O\) o K & Z‘«F AEeER } denote the system of real-valued
polynomials ("of the first kind" in the terminology of [23‘_\)

associated to ;i satisfying

BRI = R ) - e —KL}P m+ 5 P

k)\j O | PO (™) = 4 K € Z+
Let (enyw\ = gn,'w' A éZ+ be the standard basis of 1= (22(‘%—)
and
Ty = (E" (Ve ) »eR wen cez (a-1)

Theorem A-1 ([23] pg.145)
_ For each L\JEQ H has simple spectrum, W:Lth cyclic y
vector e {P }form a total system in L UQ) g Sdg L’A)H—(‘?x) <00}

orthonormal with respect to ?0 :

Tae? 00 PP PP 0N = S, 1 €2, wen

Fﬁrther_,__ the Radon-Nikodym derivative of ‘s_‘:uwj_th_resgxect to

L& L
?:}0. is_H_::; (H , that is, for all Borel subsets S of R,

S dern = § ch () iP (x)l VEZ (2
- +
AES NES

We now define, for each 3y € {2 and AE R,

2_\&/;_»' () = Rimm Sup *—1;1_‘ {ioc& [.Pnb:., U\)z + P:) U\)Z_]}

i — o

(A-3a)
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and, for all well ana Ké\?'spch that the limit exists:

Y1 — oo

2 ¥ (N = bim M{LO% {Pmm *ﬂp m‘?]}

(3-3p)

Theorem A-2 _  9¢l 7 _ _

If .S \C Ci\7(c) and the support of Yis not a single
point, and C &LU : there exists a set Atéiim of Lebesgue measure
zero such that \/’,\ﬁ Aw' ?f; (M) exists and '\J;J (?\) 7_0: }(A_—‘Ia)j
then _

PLC) = A | (A~4b)

Proof - Thla theorem follows from an extension of a theorem of
Matsuda and Ish11 (E24]) due to Yoshioka ([(25]), after

an application of Pubini's theorem along the lines of

E_appe_ndix l_of_([B]),.Eﬂ

APPENDIX B

Iﬁ this eppendix_we show_briefl?_(see‘remark 2} that
Anderson's criterion of locelisatien ((B—l).below) holds (in the
strongest possible form) forour model, as a corollary of theorem
1 (see also [é], pg.126); | | | |

Let Vy denote the unigue solution of the Schreedinger

equation _
. W . " - .
) dﬁ_@). - HYUNR) weZ teloes) wedd
with boundary condiction . . (B-la)
\L;U (0) = SW;N for some NE Z and all WEL. (B-1b)

(that is, initially localised). Anderson's ({9]) definition of

localisation may now be precisely stated:
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o (L Lmsup [(e AV -c>o}3 Lo

W _
when V = O, the (unique) solution of (B-la) with boundary condition

zﬁ—, «,U» N)T/2

(B-1b) is given by V, (£)= an(t) , which does

not satisfy (B-2), but exhibits instead, as expected, the typical
itd l/2) decay due to the spreading of the wavewpacket

We have now the following corollary of theorem 1l:

Theorem B-1

{B=-2) holds with c=1.

o

proof - (e | V2 (5)) = (e] ¢ e, =0 e T ey )

tet B, =lw: lmsup \(eﬂ'w;ﬂm)\: LY e

oo

W :
and AtﬁEku)i g& is pure point with respect to Lebesgue measure

on |R) - (B-4) -

It then follows from a standard theorem on almost-perio-
dic characteristic functions ({261) that o

A, C B, (¥nez,)

 Hence P(B“) = P(AN); By theorem 1, P(A)=4 for all  NE Z+ =
hence P(BN) 1. B ' o
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